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Abstract: A three-colored digraph D is primitive if and only if there
exist nonnegative integers h, k and v with h + k + v > 0 such that for
each pair (i, j) of vertices there is an (h, k,v)-walk in D from i to j. The
exponent of the primitive three-colored digraph D is defined to be the
smallest value of h + k& + v over all such i,k and v. In the paper, a class
of especial primitive three-colored digraphs with n vertices , consisting of
one n-cycle and two (n — 1)-cycles, are considered. For the casea =c—1,
some primitive conditions, the tight upper bound on the exponents and the
characterization of extremal three-colored digraphs are given.
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1 Introduction

Let D be a digraph. A walk in D of length ! is a sequence
v1v2 - - - vjup41 Of vertices such that there is an arc in D from v; to v;41
fori=1,2,---,1. The walk is a path if the vertices vy, v, - - -, v, Vi41
are distinct. The walk is closed if v1 = v, and a cycle is a closed
walk in which vy, v9,- -+, v; are distinct. A three-colored digraph is a
digraph whose arcs are colored red, yellow and blue. We allow loops
and all of red arc, yellow arc or blue arc from ¢ to j for all pairs (3, j) of
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vertices. The three colored digraph D is strongly connected provided
for each pair (¢, j) of vertices there is a walk in D from ¢ to 5. Given
a walk w in D, r(w) (respectively, y(w) or b(w)) is the number of red
arcs (respectively,yellow arcs or blue arcs) of w, and the composition
of w is the vector (r(w), y(w), b(w)) or (r(w), y(w), b(w))T.

A three-colored digraph D is primitive if and only if there exist
nonnegative integers h, k and v with A + k + v > 0 such that for
each pair (7, j) of vertices there is an (h, k,v)-walk in D from i to j.
The exzponent of the primitive three-colored digraph D is defined to
be the smallest value of h + k + v over all such Ak, k and v, denoted
exp(D).

Let C = {v1,72,--,m} be the set of cycles of D. Set M is
the 3 x ! matrix whose ith column is the composition of v;. We call
M the cycle matriz of D. The content of M, denoted content(M),
is defined to be 0 if the rank of M is less than 3 and the greatest
common divisor of all 3 x 3 minors of M, otherwise.

Lemma 1([2]) Let D be a three-colored digraph having at least one
red arc, one yellow arc and one blue arc. Then D is primitive if and
only if D is strongly connected and content(M) = 1.

It is well known that there is a natural correspondence between
two-colored digraphs and nonnegative matrix pairs ([2]). The con-
cept of exponent of nonnegative matrix pair arises in the study of
finite Markov chains ([2,3]), and some results have already been ob-
tained ([1-7]). The nonnegative matrix cluster is the extension of
nonnegative matrix pairs. Also, there is a natural correspondence
between three-colored digraphs and nonnegative matrix cluster, and
some upper bound on the exponents of especial primitive three-
colored digraphs are given ([8-10]).

In this paper, for n > 3, we consider the class of three-colored
digraphs which have at least one red arc, one yellow arc and one blue
arc, and its uncolored digraph is given as in Fig.1.
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6 o—— ... n—3
Fig.1 Uncolored digraph of D

Clearly, D has one n-cycle and two (n — 1)-cycles. Without loss
of generality, we may assume ¢ > d, and the cycle matrix of D is

a c z
M= b d y (1)
n—a—b n—-1-c—d n—-1-z—y

for some nonnegative integers a, b, c,d, z,y.

From Fig.1, three cycles in D have the common path of length
(n—3) whichis3—+4—-25—:---=2n-1-=n.So

c—-1<a<c+2
d-1<b<d+2 ,
n—2—-c—d<n—-a-b<n+l-c—-d
and
c—2<zx<c+2
d-2<y<d+2 .
n—-3—-c—d<n-l-z—-y<n+l-c—d

2 The primitive conditions

In this section, we will find the primitive conditions of D. We
assume z = c+ K,y =d+ N(-2 < K <2,-2 < N £ 2). Since
n—3—c—d<n-l-z—y < n+l—c—d, wehave -2 < K+N <2.0f
course, K, N values are not the same, under different circumstances.
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In the paper, we only consider a = ¢ — 1. When @ = ¢ — 1, then
d<b<d+2

Theorem 1 Digraph D is primitive if and only if

(ad—bc)(n—1-z—y)+(cy—dz)(n—a—b)+(bz—ay)(n—1—c—d) = £1.
(2)
Proof From (1), |[M| = (ad —bc)(n—1—z —y) + (cy — dz)(n —
a—b)+ (bxr —ay)(n—1—c—d). By Lemma 1, D is primitive if and
only if content(M) = 1, that is, |M| = +1. Then the theorem holds.
Theorem 2 Let a = ¢ —1, and b = d. Then D is primitive if and
only if
d=1,K=-1,N=0
Proof Because a = ¢c—1,b =dz = c+ K,y = d+ N(-2 <
K<2-2<N<2-2<K+N <2)andc > d, from (2),
|M| = (n+c¢—1)N —dK. By Lemma 1, D is primitive if and only if
content(M) = 1, that is, (n+c—1)N = dK +1. Different situations
below are discussed.

(a)If N = -2, then —2(n+c—1) = dK £ 1. Obviously, —2(n +
c—-1)<-6,dK +1 > —1. Contradiction.

(b)If N = —1, then —(n + ¢ —1) = dK £ 1. Obviously, —(n +
c—1) < -3,dK +1 > —1. Contradiction.

(c)If N = 0, then dK = 1. Obviously, d = 1,K = +1. But
when N = 0,d = 1, K = 1, the number of red arcs on the n-cycle is
two less than the number of red arcs on the (n — 1)-cycle. Contra-
diction. So if N=0,thend=1,K = —1.

(A)JIf N=1or N =2, then (n+c—1) =dK=+1lor2(n+c—1) =
dK £ 1. Obviously, the left of the equation is more than the right of
the equation. Contradiction.

Theorem 3 Let a = c— 1, and b = d + 1. Then D is primitive if
and only if
c=N=1,d=0,K=-1.

Proof Becausea=c—-1,b=d+1l,z=c+ K,y=d+ N(-2 <
K<2-2<N<2-2<K+N < 2)andc > d, from (2),
IM|=(n+c—1)N+(n-d—-1)K. By Lemma 1, D is primitive if
and only if content(M) = 1, that is, (n+c—1)N = —(n—d-1)K£1.
Different situations below are discussed.
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(a)If N = -2, then —2(n+c—1) = —(n—d-1)K +1. Obviously,
-2(n+c—-1)<-6,—(n—d—-1)K +1> -1. Contradiction.

(b)If N = -1, then —(n+c—1) = —(n—d—1)K £1. Obviously,
when K = 1,c = 1,d = 0, the left of the equation is equal to the
right of the equation. But y = d — 1, that is y = —1. Contradiction.

(c)If N =0, then 0 = —(n—d — 1)K £ 1. Obviously, —(n —d —
1)K £+ 1 # 0. Contradiction.

(QIf N =1, then (n+c—1)=—(n—d - 1)K £ 1. Obviously,
K = —-1,c=1,d = 0, the left of the equation is equal to the right of
the equation.

(e)If N =2, then 2(n+c¢—1) = —(n—d - 1)K £ 1. Obviously,
2(n+c—1)>6,—(n—d-1)K £1 < 1. Contradiction.

Theorem 4 Let a = c— 1, and b = d + 2. Then D is primitive if
and only if

c+d=n—-2,K=-1,N=1.

Proof Becausea=c—1,b=d+2,z2=c+K,y=d+ N(-2<
K<2-2<N<2-2<K+N <2)andc > d, from (2),
M| =(n+c¢c—1)N+(2n—d-2)K. By Lemma 1, D is primitive if
and only if content(M) = 1, that is, (n+c—1)N = —(2n—d—2)K £1.
Different situations below are discussed.

(a)If N = -2, then -2(n+c—-1) = —-(2n—d-2)K £ 1.
Obviously,-2(n+c¢—-1) < —6,—(2n —d —2)K + 1 > —1. Contra-
diction.

(b)If N = —1, then —(n+c—1) = —(2n—d-2)K +1. Obviously,
when K = 1,¢ + d = n — 2,the left of the equation is equal to the
right of the equation. But when N = -1, K =1,c+d =n — 2, the
number of red arcs on the n-cycle is two less than the number of red
arcs on the (n — 1)-cycle. Contradiction.

(c)If N =0, then 0 = —(2n — d — 2)K £ 1. Obviously, —(2n —
d—-2)K +£1 # 0. Contradiction.

(d)If N =1, then (n+c¢—1) = —(2n - d — 2)K £+ 1. Obviously,
K = —-1,c+d = n—2, the left of the equation is equal to the right
of the equation.

(e)If N = 2, then 2(n+c¢—1) = —(2n—d - 2)K £ 1. Obvi-
ously, the left of the equation is more than the right of the equation.
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Contradiction.

3 The tight upper bound on the exponents
whena=c—1

In this section, we will give the tight upper bound on the ex-
ponents when a = ¢ — 1. By Theorem 2, we assume that the cycle
matrix of D has the form (1), where n > 3,¢ > d and a,b,¢,d, z,y
are nonnegative integers.

Theorem 5 Leta=¢c—1,b=d=1, K =—-1,N =0and D be
primitive. Then

exp(D) < 2n? +2cn — 4n — 2¢ + 2 < 4n% — 101 + 6.

Proof For any pair (7,7) of vertices of D, let p;; be the shortest
path in D from ¢ to j, and denote r(pi;) = 7, y(pi;) = y and b(p;;) =
b. We consider the walk that starts at vertex 2, follows p;; to vertex j
and along the way goes p; times around the n-cycle, py times around
one (n — 1)-cycle, and p3 times around the other (n — 1)-cycle.

Ifd=1,K=-1,N =0, then |[M| = 1. The cycle matrix is
c—-1 c c—1

M= 1 1 1

n—¢c n—2—-c¢c n—1-—c¢

Takingpy =n—-1-r+(n—-2)y—b, po=c—r+(c—1)y and
p3=n—2+c+2r—(n+c—2)y+b, we see that

T c—1 c c—1
y|(+m 1 + p2 1 + p3 1
b n—c n—2—c¢ n—1-—c¢

224+ 2en—2n—4c+3
= 2n+2¢—3
2n? —-2c2 —4n+2

From Fig.1, note that 0 <r < ¢, 0<y<2,and0<b<n—c.
Ifr4+4b<n-1,theny>0. Ifr=c,theny>0,>0. Ify =1,
then r > 0,b > 0; if y = 2, the way goes around one (n — 1)-cycle
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one time at least. Clearly, it is easy to see that p; > 0,02 > 0 and
p3 > 0. This gives

exp(D) < 22 +2n—2n—4dc+3+2n+2c—3+2n% -2 —dn+2
=2n? 4+ 2cn — 4n — 2c + 2.
Denote f(c) = 2n%+2cn—4n—2c+2. Clearly, f'(e) =2n-22>0,

and f(c) is an increasing function of c. Since 1 < ¢ < n -2, we have
that

exp(D) < f(n—2) = 2n?+2(n—2)n—4dn—2(n—2)+2 = 4n%-10n+6.

Theorem 6 Let a =d =0,b=c=N =1,K = -1 and D be

primitive. Then
exp(D) < 2n? - 2n.

Proof For any pair (¢,5) of vertices of D, let p;; be the shortest
path in D from i to j, and denote 7(pi;) = r, y(pi;) = y and b(pi;) =
b. We consider the walk that starts at vertex 7, follows p;; to vertex j
and along the way goes p; times around the n-cycle, po times around
one (n — 1)-cycle, and p3 times around the other (n — 1)-cycle.

Ifa=d=0,b=c= N =1,K = -1, then |M| = 1. The cycle
matrix is

0 1 0
M= 1 0 1
n—-1 n—-2 n-2

Taking oy =n—-1+(n—-2)r+(n—2)y—b, pp=1-7 and
p3=n—1—(n—2)r—(n—1)y+b, we see that

T 0 1 0 1
y |+m 1 +p2 0 +p3 1 = 2n —2
b n—1 n—2 n—2 Mm% —4n+1

From Fig.1, note that 0 <r<1,0<y<2and0<b<n—-1.
The one yellow arc must be n = 1 or 1 — 2 or 2 — 3 on the n-cycle.
Consider the following four cases:

(a)Ifb=n~-1, thenr >0,y > 0.
(b)Ifr=1,y=0,0orr=0,y =1, then b > 0.
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(c¢) If r =1,y = 1, in this condition, the red arc and the yellow
arc must be on two different cycles, and the walk must go around
one (n — 1)-cycle one time at least, then p3 > 0.

(d) If r = 1,y = 2, in this condition, the red arc and two yellow
arcs must be on three different cycles, and the walk must go around
the n-cycle one time and one (n — 1)-cycle one time at least, then
p3 = 0. Clearly, it is easy to see that p; > 0, po > 0,and p3 > 0.
This gives

exp(D) < 1+2n—2+2n% —4dn+1=2n%—2n.

Theorem 7Leta=c—-1,b=d+2,c+d=n-2,K=~-1,N =1,
and D be primitive . Then

exp(D) < 2n? + 2cn — 4n — 2c+ 2 < 4n? — 10n + 6.

Proof For any pair (i,5) of vertices of D, let p;; be the shortest
path in D from i to j, and denote r(p;;) = r, y(p;;) = y and b(pi;) =
b. We consider the walk that starts at vertex ¢, follows p;; to vertex j
and along the way goes p; times around the n-cycle, ps times around
one (n — 1)-cycle, and p3 times around the other (n — 1)-cycle.

Ifc+d=n—-2,K=—-1,N =1, then |M| = —1. The cycle
matrix is

c—1 c c—1
M=fin—-c¢c n—-2—-¢c n—-1-c¢
1 1 1

Taking py=n—-1—r—y+(n-2)b, po=c—r+(c—1)band
pp=n—2+4+c+2r+y—(n+c—2)b, we see that

T c—-1 c c—1
y|t+tm|n—c|+m|[n—2—c|+ps| n-1—c¢
b 1 1 1

2¢2 +2cn—2n—4c+3
2n2 —2¢2 —4n+2
2n+2c—3

Form Fig.1, notethat 0 < r <c¢0<y<n—-cand0<b <2
Ifr+y<n—1,thenb>0. Ifr=c, theny>0,6>0. Ifb=1,
then r > 0,y > 0; if b = 2, the way goes around the (n — 1)-cycle
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one time at least. Clearly, it is easy to see that p; > 0,02 > 0,and
p3 2 0. This gives
exp(D) <22 +2cn—2n—de+3+2n2 -2 —4n+ 2+ 2n+2c—3
=2n2 + 2cn —4n — 2c + 2.
Denote f(c) = 2n2+ 2cn — 4n —2c+2, then f'(c) = 2n—2 > 0.
Clearly, and f(c) is an increasing function of c¢. Since 1 <c<n—2,
we have that

exp(D) < f(n—2) = 2n2+2(n—2)n—4n—2(n—2)+2 = 4n%—10n+6.

4 The extremal three-colored digraphs of D

In this section, we obtain the characterization of the three-
colored digraphs of D.
Theorem 8let a=c—-1,b=d=1, K = -1,N =0 and D be
primitive. Then
exp(D) = 2n? + 2cn — 4n — 2c + 2

if and only if the number of red arcs and blue arcs in the path
394—o.--9 n—-1->narec—landn—-c-2,and

(1)n > 2isred,n > 1 — 2 are blue, 1 —» 3 and 2 — 3 are
yellow; or

(2) 1 - 3isred,1 -+ 2 — 3 are blue, n =+ 1 and n — 2 are
yellow.

Proof Combining Theorem 5, we need to prove exp(D) > 2n? +
2cn - 4n - 2c + 2.

Suppose that h,k,v are nonnegative integers such that for all
pairs (%, j) of vertices there is an (h, k, v)-walk from 7 to j. By con-
sidering ¢ = j = n, we see that there exist nonnegative integers u;,us
and ug with

h Ul
k| =M| u
v us

Taking 7 and j to be the initial and terminal vertices of the
yellow arc on the n-cycle or (n — 1)-cycle, then there is a unique
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path from ¢ to j, and this path has composition (0, 1,0). Hence

h
Mz=| k-1
v

has a nonnegative integer solution. Necessarily,

h U1 0
=M1 k-1|=|u |-M1|1
v ug 0
uy —(n-2)
=|lu |- =(c=-1) | 20.
u3 n—2+c¢

So ug > n— 2+ ¢. Next take 7 and j to be the terminal and initial
vertices of the yellow arc on the n-cycle or (n—1)-cycle, then there is a
unique path for each cycle from 7 to j, and this path has composition
(¢-1,0,n—c),or (¢,0,n—2—c),or (¢c—1,0,n—1—c). Hence

h=(c-1)
Mz = k ,
v—(n—c)
or ) .
h—c
Mz = k
| v=(n—-2-¢) |
or
h—(c-1)
Mz = k
| v—(n—1-¢) |
has a nonnegative integer solution. Necessarily,
h—(c-1) uy c—1
z=M"1 k =|lu|-M1| 0
v—(n—c¢) us n—c
Uy n—1
= ug - c—1 >0,
us3 —(n—-2+4¢)
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or

h—c uy c
z=M"1 k = u |-M!? 0
v—-(n—2-¢) u3 n—2-c
u1 n—2
=] u | — c >0,
u3 -(n—2+¢)
or
h—(c-1) U c—1
z=M"! k =|u | -M! 0
v—(n—1-c¢) u3 n—-1-c¢
uy n—2
=] ug | — c—1 >0
u3 —(n-3+¢)
Sou; >n—1,us > c. Thus
Ul n—1
h+k+v=[1 1 l]M ) Z[n n—1 n—l] C
u3 n—2+c¢

=2n2+2cn-4n—2c+2.

Theorem 9 Let a =d =0,b=c=N =1,K = -1 and D be
primitive. Then
exp(D) = 2n® - 2n

if and only if

(1)3—>4— .- = n—1—2 are blue and consecutive, 1 — 3
is red, 2 — 3 is yellow, and n — 2 is blue; or

(2) 1 = 2 - --- = n are blue and consecutive, n — 2 is red,
n — 1 is yellow, and 1 — 3 is blue; or

(3y2—=3—> - > n — 1 are blue and consecutive, n — 2
(respectively 1 — 3) is red, 1 — 3 (respectively n — 2) and 1 — 2
are yellow.
Proof Combining Theorem 6, we need to prove exp(D) > 2n2—2n.
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Suppose that h, k,v are nonnegative integers such that for all
pairs (%, j) of vertices there is an (h, k, v)-walk from 7 to j. By con-
sidering ¢ = j = n, we see that there exist nonnegative integers u,us
and ug with

uy
=M/| ug
us

< >

Taking 7 and j to be the initial and terminal vertices of the
yellow arc on the n-cycle or (n — 1)-cycle, then there is a unique
path from ¢ to j, and this path has composition (0, 1,0). Hence

h
Mz=1| k-1

v

has a nonnegative integer solution. Necessarily,

h uy 0
z=M1{k-1|=|u|-M1|1
v us 0
() —(n-2)
= | ug | — 0 >0
us n-—1

Soug>n-—1.

Next take ¢ and j to be the terminal and initial vertices of the
yellow arc on the n-cycle or (n—1)-cycle, then there is a unique path
for each cycle from i to j, and this path composition (0,0,n — 1) or
(0,0,n — 2). Hence

or
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has a nonnegative integer solution. Necessarily,

h (7 0
z=M"! k =|u [-M1| 0
v—(n-1) | ug n-1
uj [ n—1
= U - 0 207
us _—(n—l)
or }
h Uy 0
z=M"! k =lu |-M1| 0
v—(n—2) ug n—2
uy [ n-—2
= U9 - 0 ZO
ug | —(n-2)
Souy >2n-—1.

Taking ¢ and j to be the initial and terminal vertices of the red
arc on the (n — 1)-cycle, then there is a unique path from ¢ to j, and
this path has composition (1,0,0). Hence

h-1
Mz = k

v

has a nonnegative integer solution. Necessarily,

h—-1 uy 1
z=M"1| k =|lu |-M1]0
v us 0
Uy —(n—2)
= | ug | — 1 >0
U3 n—2

Soug > 1,uz3 >n—2.
Next take ¢ and j to be the terminal and initial vertices of the
red arc on the (n — 1)-cycle, then there is a unique path from ¢ to j,
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and this path has composition (0,0,n — 2). Hence

h
Mz= k
v—(n-—2)
has a nonnegative integer solution. Necessarily,
h Uy 0
z=M"! k = u [-M? 0
v—(n-2) u3 (n-2)
uy n—2
= | up | — 0 > 0.
ug —-(n—-2)

Sowu; > n—2. Values of u;,u3 is compared,thus u; > n—1,u3 > n—1,
and

U] n—1

h+k+v=[1 1 1]M up Z[n n—-1 n-1] 1
ug n—1
=2n2 - 2n.

Theorem 10 Leta=c—-1,b=d+2,c+d=n—-2,K =—-1,N =1,
and D be primitive. Then

exp(D) = 2n? + 2cn — 4n — 2c + 2
if and only if the number of red arcs and yellow arcs in the path
3—24—>.-->n—-1—-narec—1landn—c—2, and

(Iyn > 2isred,n > 1 — 2 are yellow, 1 — 3 and 2 — 3 are
blue; or

(2)1 —+3isred,1 > 2 — 3 are yellow, n =+ 1 and n — 2 are
blue.

Proof Combining Theorem 7, we need to prove exp(D) > 2n? +
2cn — 4n — 2c + 2.

Suppose that h, k,v are nonnegative integers such that for all
pairs (3, j) of vertices there is an (h, k,v)-walk from ¢ to j. By con-
sidering ¢ = j = n, we see that there exist nonnegative integers u;,
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ug and uz with

Taking 7 and j to be the initial and terminal vertices of the blue
arc on the n-cycle or (n — 1)-cycle,then there is a unique path from
i to 7, and this path has composition (0,0,1). Hence

h
Mz= k
v—1
has a nonnegative integer solution. Necessarily,
h ul 0
=M1 k |=|uw|-MT]|O
v—1 u3 1
U1 —(n-2)
=f{u |- —(c=1) | >20.
U3 n—2+c¢

So ug > n — 2+ c. Next take ¢ and j to be the terminal and initial
vertices of the blue arc on the n-cycle or (n—1)-cycle, then thereis a
unique path for each cycle from < to j, and this path has composition
(c-1,n—¢0)0r (c,n~2~¢0)0r (c—1,n—1—¢,0). Hence

h—(c—-1)
Mz=|k-(n-¢) |,
v
or
h—c
Mz=|k—-(n-2-¢) |,
v
or
h—(c—1)
Mz=|k-(n—-1-¢)
v
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has a nonnegative integer solution. Necessarily,

h—(c-1) Uy c—1
z=M“1|:k—(n—c)}= [uz}—M”l[n—c}
v ug 0

Uy n—2
=] u | — c 20,
us —(n—2+c)
or
h—={(c-1) uy c—1
z=M1| k—(n=1-¢) |=|u |-M 1| n-1-¢
v u3 0
u1 n—2
= | u | — c-1 >0.
u3 —(n—3+¢)
Sou; >n—1,us > c. Thus
Uy n—1
h+k+’u=[1 1 1]M U9 Z[n n—1 n—l] c
us n—-2+c

=2n% + 2cn —4n — 2c + 2.
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