The truncated determinants of combinatorial
rectangular arrays *

Xun-Tuan Sut

School of Managements, Qufu Normal University, Rizhao 276800, China

Abstract

There are many rectangular arrays whose nt* column is the n-
fold convolution of the 0t* column in combinatorics. For this type
of rectangular arrays, we prove a formula for evaluating the deter-
minant of certain submatrices, which was conjectured by Hoggatt
and Bicknell. Our result unifies the determinant evaluation of sub-
matrices of the rectangular arrays consisting of binomial coefficients,
multinomial coefficients, Fibonacci numbers, Catalan numbers, gen-
eralized Catalan and Motzkin numbers.
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1 Introduction

There have been extensive study and application of determinant evaluations
in combinatorics, algebra and mathematical physics. See [7, 8] and the
references therein. Our concern in this paper is the determinant evaluation
of submatrices of combinatorial rectangular arrays.

Let {z;}:>0 be a sequence of real numbers. The n-fold convolution of the
sequence {z;} with itself n times can be recursively defined by {y,(")}.-zo,
where y{™ = > a:jygf;l) and y{V = 2=, Tj%i—;- There are many combi-
natorial rectangular arrays whose n** column is the n-fold convolution of
the 0t* column (the leftmost column), which are also named convolution
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arrays (see [4, 6]). For example, Pascal rectangular array (the rectangular
array consisting of binomial coefficients) {13, A007318]

11 1 1 1
12 3 4 5
it g 1 3 6 10 15
: =14 10 20 35
J 1,520 1

5 15 35 70

is the convolution array for the sequence {1,1,1,...}.

Convolution arrays can be described in the context of Riordan ar-
ray. A (proper) Riordan array is an infinite lower triangular matrix with
the k** column generating function is d(t)h(t)* for k = 0,1,2,..., where
d(0) = 1 and h(0) is not equal to zero. Denote a Riordan array by
D = (duk)nkeN = (d(t), h(t)), where dnx = [t"]d(t)h(t)*. The Riordan
arrays satisfying h(t) = td(t) are called Bell-type arrays or renewal arrays
(see [2, 3, 12]). Clearly, convolution arrays are just Bell-type arrays written
in the rectangular form since the high convolution can be stated in terms
of the powers of a generating function.

In what follows, we consider the determinant of submatrices of con-
volution arrays. Let C = (ci;)ij>0 be a convolution array. Consider
two submatrices Mo(n,p) = (Cijlocicn—1, p-1<j<n+p—2 and Mi(n,p) =
(cij)1<ign, p—1<j<ntp—2. That is, Mo(n,p) (resp. M;(n,p)) is any n x n
submatrix of C containing consecutive rows and columns, with its first row
along the 0" row of C (resp. the 1°t row of C) and its first column along
the (p — 1)** column of C. Take Pascal rectangular array for example,

11 1 1 3 4 5 6
|23 4 s {6 1015 2
M(42)=1 3 5 10 15 |* M@= 10 20 35 56
4 10 20 35 15 35 70 126

Hoggatt and Bicknell et al [1, 5, 6, 9] showed that det(Mp(n,p)) = 1 and
det(M;(n,p)) = (P**~') for Pascal rectangular array and other combi-
natorial rectangular arrays which are included in Section 3 of this paper.
Furthermore, they conjectured that the previous determinant evaluation
can be generalized for an arbitrary convolution array (see (6, p.401}).

The object of this paper is to prove a unified formula for evaluating
the determinant of submatrices of convolution arrays, which confirms the
conjecture of Hoggatt and Bicknell. Given a sequence {1,a1,as, ...} whose
first term is assumed to be 1 for convenience, consider its corresponding
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convolution array

1 1 1 1
a; 2aq 3a, 4a,
a; 209 +a? 3ay + 3a? day + 6a?

az 2a3 4+ 2ai1a2 3as + 6a1a2 + a‘;’ da3 + 12a,a; + 4a3

Our main result is the following theorem.

Theorem 1. Let C = (cij)i,j>0 be the convolution array for the sequence
{1,a;,az,...}. Let Mo(n,p) = (¢ij)ogi<n—1, p-1<j<n+p-2 and Mi(n,p) =
(eij)1gisn, p-18jsn+p—2- Then

(i) det(Mo(n,p)) = a1 (3);
(ii) det(My(n,p)) = (P*""V)a, ("),

In Section 2, we give the proof of Theorem 1 by using the difference
operator, which is more natural and general than the proof given by Hoggatt
and Bicknell for the determinant evaluation relating to specific convolution
arrays. In Section 3, we apply Theorem 1 to evaluate the determinants of
submatrices of some well-known combinatorial rectangular arrays,

2 Proof of Theorem 1

Let c;; be the (i, j)-entry of C (the entry in the i** row and j** column of
C). Clearly, the j** column generating function is given by

Zcijti =(1+at + agt? + - ')j+l.

i>0

Then
Cyy = 1,

i+ 1
o = (e

j+1 j+1
- (e

j+1 j+1 J+1
c3j = ( 1 )0,3-}-( 9 )20.10-2+( 3 a?,

, 11 41 11
cy; = (J-:l)a4+(‘1; )(2&1&34‘&%)4—(]; )30.?&24'(’71- )a‘,’
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In general, for i > 1,

+1 ! )
- Bt
(i)
i
+1
Z (] ) al)a'27 )v
k=1
where
C;k(al,az, ) = Z kl k! ..-afi,

7 (i)

w(i) is a partition of the set {1,2,...,i} and k = ky + ka2 + -+ + k; (see,
e.g., [11}). In the rest of this paper, denote that & = &x(a1,as,...) for
brevity. Specifically, &; = a} and Giic1=(i— 1)a§’2a2 fori>1.

For any function f : Z — C, the backward difference operator is
defined by Af(m) = f(m) — f(m — 1) and the d** difference operator by
Adf(m) = A(A% ! f(m)). By induction on d, we have

d
8%f(m) = 31 () Hm = ). (1)

k=0

~(7)=(%2) @

Combining (1) and (2), we get the following identity.

S (f) () = (78

Another lemma will be needed for the proof of Theorem 1.

S 1)"“'( )(” +:'1)=6n,o,

1=0

If f(m) = (7), then

Lemma 1.

Lemma 2.

where 6,0 is the Kronecker symbol which is 1 if n =0 and 0 otherwise.
Proof. Using the trick of generating functions, i.e.,

] = 6n,01
t

1
1+ u)Piu=

i+ or |
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we obtain n
B2 ) =
< n—1 i
=0
Since (—1)~* = (—1)* and (~1)"8p,0 = In,0, the desired identity follows. [
We are now in a position to prove Theorem 1. Throughout the proof,

“the k** column” of My(n,p) or Mi1(n,p) is the column having the gener-
ating function (1 + ayt + agt? + ... )*+L,

The proof of Theorem 1. (i) We will transform Mpy(n,p) into a lower tri-
angular matrix by performing a sequence of the difference operations on its
rows. At first, subtract the (5 — 1)** column from the j** column succes-
sively, where j = p,p+1,...,p+n— 2. It is just a difference operator on
each row. Consequently, the i** row of the resulting matrix translates into

(Ci,p—l) Ci,p — Ci,p—1,Ci,p+1 — Ci,ps- -+, Ci,p4n—-2 — ci,p+n-—3)-

Next, for the resulting matrix, we proceed to subtract the (j — 1)**
column from the j¢* column successively, where j = p+1,p+2,...,p+n—2.
The it* row turns to be

(Cip=11Ci,p—Ci,p—1, Ci,p+1+Ci,p—1~2Ci,ps - + + s Ci,ppn—2+Ci prn—a—2Ci,p4n-3)-

Generally, in the d*” step, we subtract the (j —1)** column from the j**
column successively, where j =p+d—1,p+d,...,p+n — 2. Continuing
the similar difference process, the it* row is finally transformed to be

ji—-p+1 .

—-p+1 :
(Z(—U"(J Z )ci,j—k)’ j=p-1,...,p+n-2
k=0

i

Denote the final matrix by Mg (n,p). We claim that Mg (n,p) is a lower
triangular matrix. Indeed, the 0" row of Mg (n,p) is trivially {1,0,...,0}.
By the expression for ¢;;, we have

L li+1—k
Cij—k = Z (‘7 ¢ )é}'e,

=1

where ¢ > 1. Then the (3, j)-entry (1 < ¢ < n — 1) of Mg(n,p) is further
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simplified to

j=p+1 .
- 1
> (-1 (J Z+ )ci,j—k

k=0
j=p+1 ; /i
_ wfi—-p+1 JH1-k\_
- Y ()2
k=0 £=1
i j=-p+1 . .
—-p+1\[(i+1-k
= ey ()0
=1 k=0
2 (e-s )
= . Cie,
=1 e_]+p_1

where the last equality follows from Lemma 1. Specifically, for j—i =p—1,

1
7\,
2 (f—j+p— 1>c‘e

=1

Cii

a},
which means that the entries on the main diagonal of Mg(n,p) are ai
(1 €i < n—1). Moreover, all the entries above the main diagonal are zero

1
since lzl (e—; P,_1)Gie=0for j —i>p—1 We summarize that Mg(n,p)

is a lower triangular matrix with the diagonal entries @} (0 <i < n —1).
Thus, det(Mo(n,p)) = det(Mg(n,p)) = al(;).
(ii) First we apply the similar difference operators on the rows of

Mj(n,p) as in the proof of Theorem 1(i). Denote the resulting matrix
by M{(n,p). Clearly, the (3, j)-entry (1 < i < n) of M7 (n,p) is given by

20yl @

£=1

Note that the entries on the main diagonal of M} (n, p) are pai+(i—1)ai~%a2
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(1<i<n)becauseforj—i=p—2,

i R p )é','e
—j3+p-1

=1

= Z': (Z p 1)5:’!
£=1 -1 +
PCii + Ci i1

pa'i +(i— l)a‘i‘zaz.

The entries on the superdiagonal of My (n,p) (the diagonal immediately
above the main diagonal) are a} (1 <i<n—1) sincefor j—i=p—1,

: P _
Z<€—j+p—1)c“

=1

L/ p
= (7))
=1
Cii

ai.

i
The entries above the superdiagonal are zero since ezl ( l-—j-fp—l)aie =0 for

j—i1>p-1.

Next we will triangularize M (n,p) by eliminating the entries on its
superdiagonal. From the expression (3), we observe that the entries in
the same row of M;(n,p) share the common terms &;.. Then we use the
elementary column operations for the columns of M7 (n, p) from left to right
to eliminate the terms &;;, successively until the entries on the superdiagonal
turn to be zero. To illustrate, take

pay a) o}
M;(3,p)=( paz+(3)a} az+pa} a )

Pa3+2(’2’)0102+(§)0? aa+2palaz+(§)a:l‘ 2a1a2+pa}

for example. Multiplying the (p — 1)** column by —% and adding it to the
p** column, we have

pa 0 0
( pare (2)e? -2 (5l 2 ) |

past2(Pares+(Del  2p-S(arar+{(D)-3@)ot  2mrar+pal

Next, multiplying the p** column by —-p_—}(;j and adding it to the (p+1)*"
2

P
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column, we obtain the lower triangular matrix

(=2 =]

pai 0
paz+(5)e} [p~3(9)]al

metruert(@al Ao bt (-1 |-

-y
1
skt

).
H
Thus,

det(My(3,p)) = det(M;(3,p))

_ py _1/p P
- ()1 6)-
(37)
= 3 1
where we write p = ('l’) for some p. Meanwhile, we get
P\ _1/(pP\| 142
() -3G)]
p+1
- (1)

g

det(My(2,p))

In a similar way,

det(M1(4,p))

_

—~—~
-
~—

—~
)
S
|
=gl
11
ST T TR S

- #[0-30110- =38 |05 |

Sl
N |
|

(1

Noting that )
(D _p+i-d
P+t— ) 7 ’

it follows from the ratios ﬁ%’%‘% (i =12,3,4) that

({)-56)-2

(11:) _ (’z’);(’é’) _pt2
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1

In what follows, we will prove Theorem 1(ii) by generalizing the identi-

ties above.
We proceed by induction on the order n of M;(n,p). It is trivial that
det(M,(1,p)) = pa;. Assume that Theorem 1(11) holds for the integers

less than n, namely, det(M, (i,p)) = **i YHay (%) and det(M,(i — 1,p)) =
(”f_ijz)ag’), 2 < i < n — 1. Equivalently,

(p) _ (’2’)'%& _p+3
et2 4

L

det(M,(i,p)) = ajdet(Mi(i—1,p)), 2<i<n—1.

Consider the case for n. Our aim is to prove

det(My(n, p)) = ’ﬁ%——

a? det{(M,(n — 1,p).

By the induction hypothesis and the triangularizing process for M7 (3, p)
(2 <i<n-1), it suffices to show that

n—1

After the reduction,

() C2)-E)C0) () -C707)
ie.,
()OI Q) )

The identity above follows immediately from Lemma 2. This completes the
proof of the theorem. O

3 Applications

In this section, we give an application of Theorem 1 to get some results on
the determinant evaluation for certain well-known combinatorial rectangu-
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lar arrays. Fibonacci rectangular array [13, A037027]

1 1 1 1
2 3 4 5
5 9 14 20
10 22 40 65
20 51 105 190

O QO DN = =

is the convolution array for the well-known Fibonacci sequence {13, AG00045].

Corollary 1 ([6, Theorem 5.1]). For Fibonacci rectangular array, we have
det(Mo(n,p)) = 1 and det(Mi(n,p)) = (P*771).

Obviously, Theorem 1 holds for Pascal rectangular array. More general,
Theorem 1 is also valid for the rectangular array of multinomial coefficients.
To see this, consider the triangle of trinomial coefficients (13, A027907]
written in the top-justified form

11111 1
1 2 3 4 5
1 3 6 10 15
2 7 16 30
1 6

19 45

with the j®® column generating function: (1 +t + t2)? (j > 0). Clearly,
the array above except the 0 column can be viewed as a convolution
array for the finite sequence (1,1,1) since the j** column is (5 — 1)-fold
convolution of the 1°* column (j > 2). Note that the j* column generating
function of the rectangular array for the general m-multinomial coefficient
is(I+t+t2+...4tm-1y,

Corollary 2 ([1, Theorem 3.1 and Theorem 3.2]). For the triangle of multi-
nomial coefficients written in the top-justified form except the leftmost col-
umn, det(Mo(n,p)) = 1 and det(My(n,p)) = (**771).

He [2] gave a generalization of Catalan and Motzkin triangles associated
with two parameters c and r based on the sequence characterization of Bell-
type arrays. The two triangles written in the rectangular form are just two
convolution arrays. More precisely, the convolution array of (¢, r)-Catalan
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numbers is

1 1 1
c 2c 3c
c+er 3c? + 2cr 6c? + 3cr S

3 +3c2r +cer?2 4c® + 8¢ + 2cr?  10c3 + 15¢3r + 3er?

with the 0** column generating function

der(t) = 1—(c—r)t—+/1 —23t(c+r)t+ (c _r)ztz.

The convolution array of (¢, r)-Motzkin numbers

1 1 1
c 2c 3c
c+er 3¢2 +2er 6¢2+3cr ,

2
+
S +3c?r 4c® +8c%*r  10c® + 4e?r + 11c?r

with the 0** column generating function

—ct — /1 —2ct+c(c — 4r)t?
2crt? )

Jc'r(t) = !

Corollary 3. For the convolution array of (c,r)-Catalan or (c,r)-Motzkin
numbers, det(Mo(n,p)) = ¢(3) and det(M;(n,p)) = (”*:‘I)c(";l).

Catalan triangle [13, A039598] written in the rectangular form

1 1 1 1

2 4 6 8

5 14 27 4
1

4 48 110 208

is the convolution array with the 0¢* column generating function: %@E.

Corollary 4 (conjectured by Miana and Romero [10]). The n X n leading
principal minor of Catalan triangle in the rectangular form equals to 2(3).
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