The chromatic number of the square of a Halin graph with maximum degree five is six Yiqiao Wang* School of Management, Beijing University of Chinese Medicine, Beijing 100029, China Xiaoxue Hu, Weifan Wang [†] Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China #### Abstract This article proves that the square of a Halin graph G with $\Delta=5$ has the chromatic number 6. This gives a positive answer to an open problem in [Y. Wang, Distance two labelling of Halin graphs, Ars Combin. 114 (2014), 331-343]. **Keywords.** Halin graph; Square; Chromatic number; Maximum degree # 1 Introduction Let G be a simple graph with vertex set V(G), edge set E(G), order |G|, and maximum degree $\Delta(G)$ (in short, Δ). For a vertex $v \in V(G)$, let $N_G(v)$ denote the set of neighbors of v. A vertex of degree k is called a k-vertex. The distance between two vertices u and v is the length of a shortest path connecting them in G. The square G^2 of a graph G is the graph defined on ^{*}Corresponding author. Email: yqwang@bucm.edu.cn; Research supported by NSFC (No.11301035). [†]Research supported by NSFC (No. 11371128). the vertex set V(G) such that two vertices are adjacent in G^2 if and only if their distance is 1 or 2 in G. A k-coloring of a graph G is a mapping f from V(G) to the set of colors $\{1, 2, \ldots, k\}$ such that $f(x) \neq f(y)$ for every edge xy of G. The chromatic number $\chi(G)$ of G is the smallest k such that G has a k-coloring. Wegner [14] proved that $\chi(G^2) \leq 8$ for a planar graph G with $\Delta = 3$ and conjectured that 8 can be reduced to 7. Moreover, he also proposed the following conjecture. Conjecture 1 For a planar graph G, $$\chi(G^2) \leq \left\{ \begin{array}{ll} \Delta + 5, & \text{if } 4 \leq \Delta \leq 7; \\ \lfloor 3\Delta/2 \rfloor + 1, & \text{if } \Delta \geq 8. \end{array} \right.$$ This conjecture remains open. Van den Heuvel and McGuinness [3] proved that $\chi(G^2) \leq 2\Delta + 25$ for any planar graph G. The best known result so far is $\chi(G^2) \leq \lceil 5\Delta/3 \rceil + 78$, due to Molloy and Salavatipour [8]. Lih, Wang and Zhu [7] established the conjecture for a K_4 -minor free graph. It is shown [10,11] that every outerplanar graph G with G0 is planar graph without 3-cycles and 4-cycles, then $\chi(G^2) \leq \Delta + 16$. Zhu et al. [15] extended this result by showing that if a planar graph G contains no 4-cycles or no 5-cycles, then $\chi(G^2) \leq \Delta + 7$. Let T be a tree with $\Delta \geq 3$ and without 2-vertices. A 1-vertex of T is called a *leaf*. A *Halin graph* is a plane graph $G = T \cup C$, where C is a cycle connecting the leaves of T in the cyclic order determined by the planar drawing of T. Vertices of C are called *outer vertices* of C and vertices in $C(C) \setminus C(C)$ are called *inner vertices* of C. Let $C(C) \setminus C(C)$ denote the set of inner vertices in $C(C) \setminus C(C)$ are called *inner vertices* of $C(C) \setminus C(C)$ denote the set of inner vertices in $C(C) \setminus C(C)$ are called *a handle* if it is adjacent to only one inner vertex. A $C(C) \setminus C(C)$ are a handle of degree C(C). It is straightforward to see that Halin graphs are 3-connected plane graphs. Some properties and parameters on Halin graphs have been extensively investigated in [1, 2, 4-6, 9]. Wang [13] showed that every Halin graph G with $\Delta \geq 6$ has $\chi(G^2) = \Delta + 1$, and proposed the following conjecture: Conjecture 2 If G is a Halin graph with $\Delta = 5$, then $\chi(G^2) = 6$. This paper gives a positive solution to Conjecture 2. #### 2 Structural lemma Suppose that G is a Halin graph. Since G is 3-connected, every edge e of G is incident to exactly two faces f_1 and f_2 . Let $m^*(e) = \max\{d_G(f_1), d_G(f_2)\}$. **Lemma 1** Let $G = T \cup C$ be a Halin graph with $\Delta \leq 5$ that is not a wheel. Then C contains a path $P_k = x_1 x_2 \cdots x_k$ such that one of the following holds (see Fig. 1): - (B1) There exist a k-handle u and a vertex v with $N_G(u) = \{v, x_1, \ldots, x_{k-1}\}$ and $vx_k \in E(G)$ such that either k = 5, or $3 \le k \le 4$ and $d_G(v) = 3$. - (B2) $k \geq 4$ and there exist two handles u_1, u_2 and a vertex v with $N_G(u_1) = \{v, x_1, \ldots, x_p\}$ and $N_G(u_2) = \{v, x_{p+1}, \ldots, x_k\}$, where $2 \leq p \leq k-2$. - **(B3)** There exist two handles u_1, u_2 and a vertex v with $N_G(u_1) = \{v, x_1, \ldots, x_p\}$, $N_G(u_2) = \{v, x_{p+2}, \ldots, x_k\}$, $vx_{p+1} \in E(G)$, where $2 \le p \le k-3$, such that either $k \ge 6$, or k=5 and $d_G(v)=4$. - **(B4)** $4 \le k \le 5$ and there exist a handle u and a vertex v with $N_G(u) = \{v, x_1, \ldots, x_{k-2}\}$ and $vx_{k-1}, vx_k \in E(G)$. - (B5) k = 6 and there exist two 3-handles u_1, u_2 and a vertex v with $N_G(u_1) = \{v, x_2, x_3\}$, $N_G(u_2) = \{v, x_5, x_6\}$ and $vx_1, vx_4 \in E(G)$. - **(B6)** k = 5 and there exist a 4-handle u and a 4-vertex v with $N_G(u) = \{v, x_2, x_3, x_4\}$ and $vx_1, vx_5 \in E(G)$. - (B7) k = 5 and there exist a 3-handle u and a 4-vertex v with $N_G(u) = \{v, x_2, x_3\}$ and $N_G(v) = \{u, w, x_1, x_4\}$ such that $d_G(w, x_5) \leq 2$. **Proof.** Since G is not a wheel, G contains at least two inner vertices. If G has exactly two inner vertices, then (B1) or (B6) holds obviously. So assume that G contains at least three inner vertices. Among all the longest paths in the subgraph G - V(C), we choose a path $Q = y_1 y_2 \dots y_n$ such that $m^*(y_1 y_2)$ is as large as possible. Then $n \geq 3$, and both y_1 and y_n are handles. Let $y_3, z_1, z_2, \dots, z_m$ denote the neighbors of y_2 in T in clockwise direction, where $2 \leq m \leq 4$, and $y_1 = z_l$ for some $1 \leq l \leq m$. Thus each z_i is either a handle or a leaf of T by the definition of Q. If there are two consecutive vertices in $\{y_3, z_1, z_2, \dots, z_m\}$ that are handles, then (B2) holds. Otherwise, suppose that no two consecutive vertices in $\{y_3, z_1, z_2, \dots, z_m\}$ are handles. If z_i is a 5-handle for some $1 \leq i \leq m$, then (B1) holds since both z_{i-1} and z_{i+1} are leaves. Assume that some z_i is a 4-handle. Then z_{i-1} and z_{i+1} are leaves of T (if they exist). If either z_{i-2} or z_{i+2} is a handle, then (B3) holds. Otherwise, both z_{i-2} and z_{i+2} are leaves of T (if they exist). If $d_T(y_2) = 3$, then (B1) holds. If $d_T(y_2) = 5$, then (B4) holds. If $d_T(y_2) = 4$, that is, m = 3, we have two possibilities: when i = 2, (B6) holds; when i = 1 or i = 3, (B4) holds. Now assume that each z_i , for $1 \le i \le m$, is either a 3-handle or a leaf. Note that y_1 is a 3-handle. If $d_T(y_2) = 3$, then (B1) holds. If $d_G(y_2) = 5$, then (B4) or (B5) holds. Hence assume that $d_G(y_2) = 4$, that is, m = 3. If both z_1 and z_3 are 3-handles, then (B3) holds. If exactly one of z_1 and z_3 is a 3-handle, then (B4) holds. This leaves to the only possibility that z_2 is a 3handle and z_1, z_3 are leaves, where $y_1 = z_2$. Let $f_1 = [y_3y_2z_3s_1s_2\cdots s_p]$ and $f_2 = [z_1 y_2 y_3 t_q t_{q-1} \cdots t_1]$ denote the incident faces of $y_2 y_3$ in G. It is easy to see that $s_1, t_1 \in V(C)$, $p, q \ge 1$, and all s_i 's and t_j 's, for $i, j \ge 2$, are inner vertices of G. This is because every inner face has exactly one common edge with outer face. If $\min\{p,q\} \leq 2$, then $d_G(y_3,s_1) \leq 2$, or $d_G(y_3,t_1) \leq 2$, and hence (B7) holds. Otherwise, assume that $p,q \geq 3$. If $p,q \geq 4$, then there is a path $Q_1 = s_2 s_3 \cdots s_p y_3 \cdots y_n$, or $Q_2 = t_2 t_3 \cdots t_q y_3 \cdots y_n$ with length more than the length of Q, a contradiction. Thus, we may assume, without loss of generality, that p=3. It follows that $Q'=s_2s_3y_3\cdots y_n$ is also a longest path in G - V(C). However, $m^*(s_2s_3) \ge 6 > 4 = m^*(y_1y_2)$, contradicting the choice of Q. This completes the proof of the lemma. \square Fig. 1: Reducible configurations in Lemma 1. #### 3 Main result Note that the graph H_0 , depicted in Fig. 2, is a Halin graph with $\Delta = 4$ and $\chi(H_0^2) = 7 = |H_0|$. In what follows, a k-coloring of G^2 is called a square-k-coloring of G. Fig. 2: Two Halin graphs H_0 and H_1 . **Theorem 2** If G is a Halin graph with $\Delta \leq 5$ and $G \ncong H_0$, then $\chi(G^2) \leq 6$. **Proof.** We prove the theorem by induction on the vertex number |G|. If $|G| \leq 6$, then the result is trivial, since we may assign different colors to the vertices of G. If |G| = 7, it is easy to confirm that G is isomorphic to H_0 . Let $G = T \cup C$ be a Halin graph with $|G| \geq 8$. The fact that $\Delta \leq 5$ implies that $|V_{\rm in}(G)| \geq 2$. Thus, G is not a wheel. If $|V_{\rm in}(G)| \leq 3$, all Halin graphs (up to isomorphism) and their square-6-coloring are collected in Appendix I. So assume that $|V_{\rm in}(G)| \geq 4$. By Lemma 1, there exists a path $P_k = x_1x_2\cdots x_k$ in C such that at least one of (B1) to (B7) holds. In each case, we first construct a Halin graph H from G such that |H| < |G| and $\Delta(H) \leq 5$. If $H \not\cong H_0$, then by the induction hypothesis, H has a square-6-coloring f. Afterwards, we extend f into a square-6-coloring of G. If $H \cong H_0$, then G will be a graph with a few vertices, and we can give it a square-6-coloring. In the sequel, let $y \in N_C(x_1) \setminus \{x_2\}$, $z \in N_C(x_k) \setminus \{x_{k-1}\}$, $N_G(y) = \{x_1, y_1, y_2\}$, and $N_G(z) = \{x_k, z_1, z_2\}$. Moreover, let $S = \{1, 2, ..., 6\}$ denote a set of six colors. Set $Y = \{f(y_1), f(y_2)\}$ and $Z = \{f(z_1), f(z_2)\}$. We reduce seven configurations (B1)-(B7) as follows: Case (B1) There exist a k-handle u and a vertex v with $N_G(u) = \{v, x_1, \ldots, x_{k-1}\}$ and $vx_k \in E(G)$ such that either k = 5, or $3 \le k \le 4$ and $d_G(v) = 3$. #### Subcase (B1.1) k = 5. Let $H=G-\{x_1,x_2,x_3,x_4\}+\{uy,ux_5\}$. Then $|H|\geq |G|-4\geq 4$, and $|V_{\rm in}(H)|=|V_{\rm in}(G)|-1\geq 4-1=3$ since the inner vertex, u, of G becomes an outer vertex of H. Thus, $H\ncong H_0$. By the induction hypothesis, H has a square-6-coloring f with the color set G. Without loss of generality, assume that f(u)=1, f(v)=2, f(y)=3, and $f(x_5)=4$. To extend f to the whole graph G, we consider two possibilities as follows: If $Y\ne\{5,6\}$, we color x_1 with $a\in\{5,6\}\setminus Y$, x_2 with $a\in\{3,5,6\}\setminus\{f(z),a\}$, and $a\in\{3,5,6\}\setminus\{a,b\}$. If $f=\{5,6\}$, we color $f=\{3,6\}\setminus\{a\}$, with $f=\{3,6\}\setminus\{a\}$, and $f=\{3,6\}\setminus\{a\}$, and $f=\{3,6\}\setminus\{a\}$. **Subcase (B1.2)** $3 \le k \le 4$ and $d_G(v) = 3$. Let w denote the neighbor of v in G other than u and x_k . It is easy to check that $w \neq y$ and $w \neq z$ since $|V_{\rm in}(G)| \geq 4$. Let $H = G - \{x_1, x_2, \ldots, x_k, u\} + \{vy, vz\}$. If $H \ncong H_0$, then the induction hypothesis asserts that H has a square-6-coloring f using S such that f(v) = 1, f(w) = 2, f(y) = 3, and f(z) = 4. To extend f to the whole graph G, we consider two cases as follows: - k = 4. If $Y \neq \{5,6\}$, we color x_2 with 2, u with 4, x_1 with $a \in \{5,6\} \setminus Y$, x_4 with $b \in \{3,5,6\} \setminus Z$, and x_3 with a color in $\{3,5,6\} \setminus \{a,b\}$. If $Y = \{5,6\}$, we color x_1 with 2, u with 4, x_4 with $a \in \{3,5,6\} \setminus Z$, x_2 with $b \in \{5,6\} \setminus \{a\}$, and x_3 with a color in $\{3,5,6\} \setminus \{a,b\}$. - k = 3. If $2 \notin Y$, we color x_1 with 2, u with 4, x_3 with $a \in \{3, 5, 6\} \setminus Z$, and x_2 with $b \in \{5, 6\} \setminus \{a\}$. If $4 \notin Y$, we color x_1 with 4, x_2 with 2, x_3 with $a \in \{3, 5, 6\} \setminus Z$, and u with a color in $\{5, 6\} \setminus \{a\}$. If $Y = \{2, 4\}$, we color x_2 with 2, u with 4, x_3 with $a \in \{3, 5, 6\} \setminus Z$, and x_1 with $b \in \{5, 6\} \setminus \{a\}$. Fig. 3: $H \cong H_0$ in Subcase (B1.2). Now assume that $H \cong H_0$. It is not difficult to inspect that G is one of the graphs H_2 - H_6 , as shown in Fig. 3. We construct a square-6-coloring f for each H_i for $i = 2, 3, \ldots, 6$. Let $G = H_2$. If k = 3, we color $\{v, p\}$ with 1, $\{t, x_1\}$ with 2, $\{s, x_3\}$ with 3, $\{w, x_2\}$ with 4, $\{y, z\}$ with 5, and u with 6. If k = 4, we color $\{v, p\}$ with 1, $\{t, x_1\}$ with 2, $\{s, x_4\}$ with 3, $\{w, x_2\}$ with 4, $\{y, x_3\}$ with 5, and $\{u, z\}$ with 6. Let $G = H_3$. If k = 3, we color $\{v, p\}$ with 1, $\{s, x_2\}$ with 2, $\{z, x_1\}$ with 3, $\{y, x_3\}$ with 4, $\{t, u\}$ with 5, and w with 6. If k = 4, we color $\{v, p\}$ with 1, $\{s, x_3\}$ with 2, $\{z, x_1\}$ with 3, $\{y, x_4\}$ with 4, $\{t, u\}$ with 5, and $\{w, x_2\}$ with 6. Let $G = H_4$. If k = 3, we color $\{v, p\}$ with 1, $\{t, x_3\}$ with 2, $\{z, x_1\}$ with 3, $\{w, x_2\}$ with 4, $\{s, u\}$ with 5, and y with 6. If k = 4, we color $\{v, p\}$ with 1, $\{t, x_4\}$ with 2, $\{z, x_1\}$ with 3, $\{w, x_2\}$ with 4, $\{s, u\}$ with 5, and $\{y, x_3\}$ with 6. Let $G = H_5$. If k = 3, we color $\{v, p\}$ with 1, $\{t, u\}$ with 2, $\{y, x_3\}$ with 3, $\{w, x_2\}$ with 4, $\{z, x_1\}$ with 5, and s with 6. If k = 4, we color $\{v, p\}$ with 1, $\{t, u\}$ with 2, $\{y, x_4\}$ with 3, $\{w, x_2\}$ with 4, $\{z, x_1\}$ with 5, and $\{s, x_3\}$ with 6. Let $G = H_6$. If k = 3, we color $\{v, p\}$ with 1, $\{t, x_3\}$ with 2, $\{y, z\}$ with 3, $\{s, x_1\}$ with 4, $\{w, x_2\}$ with 5, and u with 6. If k = 4, we color $\{v, p\}$ with 1, $\{t, x_4\}$ with 2, $\{y, x_3\}$ with 3, $\{s, x_1\}$ with 4, $\{w, x_2\}$ with 5, and $\{u, z\}$ with 6. Case (B2) $k \geq 4$ and there exist two handles u_1, u_2 and a vertex v with $N_G(u_1) = \{v, x_1, \ldots, x_p\}$ and $N_G(u_2) = \{v, x_{p+1}, \ldots, x_k\}$, where $2 \leq p \leq k-2$. Subcase (B2.1) $k \geq 5$. Fig. 4: $H \cong H_0$ in Subcase (B2.1). By symmetry, we assume that $p \ge \lceil k/2 \rceil$. Note that $k \le 8$ and u_1, u_2, v are inner vertices. Let $H = G - \{x_1, x_2, \dots, x_k\} + \{yu_1, u_1u_2, u_2z\}$. If $H \not\cong H_0$, then the induction hypothesis asserts that H has a square-6-coloring f using S such that f(v) = 1, f(y) = 2, $f(u_1) = 3$, $f(u_2) = 4$, and $f(z) \in \{2,5\}$. To extend f to the whole graph G, we first recolor u_1 with 4, u_2 with 3, then color x_1 with 3 and x_k with 4. If k = 8, we color $\{x_2, x_5\}$ with 5, $\{x_3, x_6\}$ with 2, and $\{x_4, x_7\}$ with 2. If k = 7, we color $\{x_2, x_5\}$ with 2, 20 with 21, 22 with 23, 23 with 24, and 24 with 25. If 25, we color 27 with 29, and 29 with 29, and 29 with 29, and 29 with 29, and 29 with 29. If $H \cong H_0$, then it is easy to check that G is H_7 , H_8 or H_9 , as shown in Fig. 4. Let $G = H_7$. We first color $\{t, u_2\}$ with 1, w with 2, $\{z, u_1\}$ with 3, y with 4, and v with 5. If k = 8, we color x_1, x_2, \ldots, x_8 with 2, 6, 1, 4, 6, 3, 2, 4, respectively. If k = 7, we color x_1, x_2, \ldots, x_7 with 6, 1, 4, 2, 3, 6, 4, respectively. If k = 6, then $3 \le p \le 4$, we color x_1, x_2, \ldots, x_6 with 6, 1, 4, 2, 6, 4, respectively. If k = 5, then p = 3, and we color x_1, x_2, \ldots, x_5 with 6, 1, 2, 4, 6, respectively. If k = 4, we color x_1, x_2, x_3, x_4 with 6, 2, 4, 6, respectively. Let $G = H_8$. We first color $\{y, u_1\}$ with 1, w with 2, $\{t, u_2\}$ with 3, z with 4, and v with 5. If k = 8, we color x_1, x_2, \ldots, x_8 with 2, 6, 3, 2, 6, 4, 2, 1, respectively. If k = 7, we color x_1, x_2, \ldots, x_7 with 2, 6, 3, 2, 4, 6, 2, respectively. If k = 6, then $3 \le p \le 4$, we color x_1, x_2, \ldots, x_6 with 6, 3, 2, 4, 6, 1, respectively. If k = 5, then p = 3, and we color x_1, x_2, \ldots, x_5 with 6, 3, 2, 6, 1, respectively. If k = 4, we color x_1, x_2, x_3, x_4 with 4, 6, 2, 1, respectively. Let $G = H_9$. We first color $\{y, u_2\}$ with 1, w with 2, v with 3, $\{z, u_1\}$ with 4, $\{x_1, x_k\}$ with 5, and t with 6. If k = 8, we color x_2, x_3, \ldots, x_7 with 6, 1, 2, 6, 4, 2, respectively. If k = 7, we color x_2, x_3, \ldots, x_6 with 6, 1, 2, 4, 6, respectively. If k = 6, we color x_2, x_3, x_4, x_5 with 6, 1, 2, 6, respectively. If k = 5, we color x_2, x_3, x_4 with 6, 1, 2, respectively. If k = 4, we color x_2 with 6 and x_3 with 2. Subcase (B2.2) k = 4, implying p = 2. (B2.2.1) Assume that $d_G(v)=3$. Let w denote the neighbor of v other than u_1 and u_2 . Since $|V_{\rm in}(G)|\geq 4$, we see that w is an inner vertex. Let $H=G-\{x_1,x_2,x_3,x_4,u_1,u_2\}+\{vy,vz\}$. If $H\not\cong H_0$, then by the induction hypothesis, H has a square-6-coloring f using S such that f(v)=1, f(w)=2, f(y)=3, and f(z)=4. If $Y\neq\{5,6\}$, we color x_1,u_2 with $a\in\{5,6\}\setminus Y$, x_2 with 4, u_1 with $b\in\{5,6\}\setminus \{a\}$, x_4 with $c\in\{2,3,5,6\}\setminus (Z\cup\{a\})$, and x_3 with a color in $\{2,3\}\setminus \{c\}$. If $Y=\{5,6\}$, we color x_1 with x_2 with x_3 with x_4 wit Fig. 5: $H \cong H_0$ in Subcase (B2.2.1). If $H \cong H_0$, then G is one of H_{10} , H_{11} , H_{12} , and the corresponding square-6-colorings are given, as shown in Fig. 5. Note that the number lying aside a vertex represents its color. Fig. 6: $H \cong H_0$ in Subcase (B2.2.2). (B2.2.2) Suppose that $d_G(v) \geq 4$. Let $H = G - \{x_1, x_2, x_3, x_4, u_1\} + \{yu_2, zu_2\}$. If $H \ncong H_0$, then H has a square-6-coloring f using S such that y, z, v, u_2 have distinct colors. We color u_1 with a color $a \in S$ that differs from the colors of vertices in $N_H(v) \cup \{v\}$. Moreover, if a = f(y), then $a \neq f(z)$, we switch the colors of u_1 and u_2 . Thus, we can assume that $f(u_1) = 6$, $f(u_2) = 1$, and f(v) = 2. Since $1 \notin Y$, we color x_1 with 1. If $f(z) \neq 6$, we color x_2 with f(z), x_4 with $b \in \{3, 4, 5, 6\} \setminus (Z \cup \{f(z)\})$, and x_3 with a color in $\{3, 4, 5\} \setminus \{b, f(z)\}$. If f(z) = 6, we color x_4 with $c \in \{3, 4, 5\} \setminus \{c, d\}$. If $H \cong H_0$, then G is one of H_{13} , H_{14} , H_{15} whose square-6-colorings are given in Fig. 6. Case (B3) There exist two handles u_1, u_2 and a vertex v with $N_G(u_1) = \{v, x_1, \ldots, x_p\}$, $N_G(u_2) = \{v, x_{p+2}, \ldots, x_k\}$, $vx_{p+1} \in E(G)$, where $2 \le p \le 1$ k-3, such that either $k \geq 6$, or k=5 and $d_G(v)=4$. By Case (B1), we may assume that $2 \leq \lceil (k-1)/2 \rceil \leq p \leq 3$. This implies that $5 \leq k \leq 7$. Let $H = G - \{x_1, x_2, \dots, x_k\} + \{yu_1, u_1u_2, u_2z\}$. If $H \ncong H_0$, then H has a square-6-coloring f using S such that f(v) = 1, $f(u_1) = 2$, $f(u_2) = 3$, and f(y) = 4. In the following, let $M_f(v)$ denote the set of colors assigned to the neighbors of v other than u_1 and u_2 in H. In G, we recolor u_1 with 3 and u_2 with 2, and color x_1 with 2, x_k with 3, and x_{p+1} with a color $\beta \in \{4,5,6\} \setminus M_f(v)$. Then we consider the following two cases by symmetry. Fig. 7: $H \cong H_0$ in Case (B3). - f(z)=4. Let $\beta\in\{4,5\}$. If k=7 and $\beta=4$, we color $\{x_2,x_5\}$ with 5, and $\{x_3,x_6\}$ with 6. If k=7 and $\beta=5$, we switch the colors of u_1 and u_4 , then we color $\{x_2,x_6\}$ with 6, u_4 with 4, and u_4 with 5. If u_4 is 4, we color $\{x_2,x_5\}$ with u_4 is 4, u_4 is 5, 6, which u_4 is 5, 6, which u_4 is 6, u_4 is 6. If u_4 is 6, u_4 is 6. If u_4 is 6, we color u_4 is 6. If u_4 is 6. If u_4 is 6, and color u_4 is 6. If u_4 is 6. If u_4 is 6, we recolor u_4 with 6, and color u_4 with 6. If u_4 is 6, we recolor u_4 with 4 and then reduce the proof to the previous case. - f(z) = 5. Let $\beta \in \{4,5,6\}$. If k = 7 and $\beta = 4$, we color $\{x_2, x_5\}$ with 5, and $\{x_3, x_6\}$ with 6. If k = 7 and $\beta = 5$, we color $\{x_2, x_6\}$ with 6, and $\{x_3, x_5\}$ with 4. If k = 7 and $\beta = 6$, we color $\{x_2, x_5\}$ with 5, and x_3, x_6 with 4. If k = 6 and $\beta \neq 6$, we color $\{x_2, x_5\}$ with 6 and x_3 with a color in $\{4, 5\} \setminus \{\beta\}$. If k = 6 and $\beta = 6$, we switch the colors of u_2 and x_4 , and color x_2 with 6, x_3 with 5, and x_5 with 4. If k = 5 and $\beta = 6$, we color x_2 with 5 and x_4 with 4. If k = 5 and $\beta = 5$, we color x_2 with 6 and x_4 with 4. If k = 5 and $\beta = 4$, we color x_2 with 5 and x_4 with 6. If $H \cong H_0$, then G is H_{16} or H_{17} , as shown in Fig. 7. Let $G = H_{16}$. We first color $\{z, u_1\}$ with 1, $\{w, u_2\}$ with 2, u with 3, v with 4, y with 5, and x_{p+1} with 6. If k=5, then p=2 and we color x_1, x_2, x_4, x_5 with 3, 2, 3, 5, respectively. Assume that k=6. If p=3, we color x_1, x_2, x_3, x_5, x_6 with 6, 3, 2, 1, 5, respectively. If p=2, we color x_1, x_2, x_4, x_5, x_6 with 3, 2, 1, 5, 6, respectively. Assume that k=7. If p=3, then we color $x_1, x_2, x_3, x_5, x_6, x_7$ with 6, 3, 2, 1, 3, 6, respectively. If p=2, then we color $x_1, x_2, x_4, x_5, x_6, x_7$ with 3, 2, 1, 5, 3, 6, respectively. Let $G = H_{17}$. We first color u with 1, $\{y, u_2\}$ with 2, $\{z, u_1\}$ with 3, w with 4, v with 5, and x_{p+1} with 6. If k = 5, then p = 3, we recolor w with 6, and color color x_1, x_2, x_4, x_5 with 4, 2, 3, 4, respectively. If k = 6, then p = 3, we recolor x_4 with 4 and y with 6, and then color x_1, x_2, x_3, x_5, x_6 with 2, 1, 6, 1, 6, respectively. If k = 7, then p = 3, we color $x_1, x_2, x_3, x_5, x_6, x_7$ with 6, 4, 2, 3, 4, 6, respectively. Case (B4) $4 \le k \le 5$ and there exist a handle u and a vertex v with $N_G(u) = \{v, x_1, \dots, x_{k-2}\}$ and $vx_{k-1}, vx_k \in E(G)$. Since $|V_{\rm in}(G)| \geq 4$, it is easy to see that $d_G(v) \geq 4$. We discuss two possibilities below. Subcase (B4.1) $d_G(v) = 4$, and let $w \in N_G(v) \setminus \{u, x_{k-1}, x_k\}$. (4.1.1) Assume that k = 5. Let $H = G - \{x_1, x_2, x_3, u\} + yx_4$. Then H is a Halin graph with $|V_{\text{in}}(H)| = |V_{\text{in}}(G)| - 1 \ge 3$ and |H| < |G|. Thus, $H \not\cong H_0$. Let f be a square-6-coloring f of H such that $f(x_4) = 1$, f(v) = 2, f(y) = 3, and $f(x_5) = 4$. In G, we color x_1 with 1, x_2 with 4, x_3 with 3, and u with a color in $\{5,6\} \setminus \{f(w)\}$. (4.1.2) Assume that k=4. Let $H=G-\{x_1,x_2,x_3,x_4,u\}+\{yv,zv\}$. Then H is a Halin graph with $|V_{\rm in}(H)|=|V_{\rm in}(G)|-2\geq 2$ and |H|<|G|. If $H\not\cong H_0$, then H has a square-6-coloring f using S such that f(v)=1, f(w)=2, f(y)=3, and f(z)=4. In G, we first color x_4 with $a\in\{3,5,6\}\setminus Z$. If $Y=\{5,6\}$, then we color x_1 with 4, x_2 with 2, 20 with 21 with 22 with 23. Otherwise, 23 we color 24 with 25 we color 27 with 28 we color 29 with If $H \cong H_0$, then G is one of H_{18} - H_{22} whose square-6-colorings are established in Fig. 8. Subcase (B4.2) $d_G(v) = 5$. Let $H=G-\{x_1,x_2,\ldots,x_k\}+\{yu,uz\}$. Then H is a Halin graph with $|V_{\rm in}(H)|=|V_{\rm in}(G)|-1\geq 3$ and |H|<|G|. Thus, $H\not\cong H_0$. By the induction hypothesis, H has a square-6-coloring f such that f(v)=1, f(u)=2, f(y)=3, and f(z)=4. After erasing the color of u, we color $\{x_1,x_k\}$ with 2. Let $M_f(v)$ denote the subset of colors assigned to the neighbors of v in H other than u. Then $|M_f(v)|=2$. If $3 \notin M_f(v)$, we color x_{k-1} with 3, u with a color $a \in \{4,5,6\} \setminus M_f(v)$, and properly color x_2,\ldots,x_{k-2} with the colors in $\{4,5,6\} \setminus \{a\}$. So assume that $3 \in M_f(v)$. If $4 \notin M_f(v)$, we color u with 4, x_{k-1} with a color $a \in \{5,6\} \setminus M_f(v)$, and then properly color x_2,\ldots,x_{k-2} with the colors in $\{3,5,6\} \setminus \{a\}$. If $4 \in M_f(v)$, then we color u with 5, x_2 with 4, x_{k-1} with 6, and moreover x_3 with 3 if k=5. Fig. 8: $H \cong H_0$ in Subcase (B4.1.2). Case (B5) k = 6 and there exist two 3-handles u_1, u_2 and a vertex v with $N_G(u_1) = \{v, x_2, x_3\}, N_G(u_2) = \{v, x_5, x_6\}$ and $vx_1, vx_4 \in E(G)$. Since $|V_{\rm in}(G_{\parallel} \geq 4, d_G(v))| = 5$. Let $w \in N_G(v) \setminus \{x_1, x_4, u_1, u_2\}$. Let $H = G - \{x_1, x_2, \dots, x_6, u_1, u_2\} + \{yv, vz\}$. Then H is a Halin graph with $|V_{\rm in}(H)| = |V_{\rm in}(G)| - 2 \geq 2$ and |H| < |G|. If $H \ncong H_0$, then H has a square-6-coloring f such that f(v) = 1, f(w) = 2, f(y) = 3, and f(z) = 4. In G, we first color $\{x_2, x_5\}$ with 2. If $Y \neq \{5, 6\}$, then we further color x_1 with $a \in \{5, 6\} \setminus Y$, x_6 with $b \in \{3, 5, 6\} \setminus Z$, $\{x_3, u_2\}$ with $c \in \{3, 5, 6\} \setminus \{a, b\}$, and u_1 with a color in $\{3, 5, 6\} \setminus \{a, c\}$, x_4 with $b \in \{3, 5, 6\} \setminus \{a, c\}$, x_4 with $b \in \{3, 5, 6\} \setminus \{a, c\}$, x_4 with $b \in \{3, 5, 6\} \setminus \{a, c\}$, and $b \in \{3, 5, 6\} \setminus \{a, c\}$. If $H \cong H_0$, then G is one of H_{23} - H_{27} whose square-6-colorings are given in Fig. 9. Case (B6) k = 5 and there exist a 4-handle u and a 4-vertex v with $N_G(u) = \{v, x_2, x_3, x_4\}$ and $vx_1, vx_5 \in E(G)$. Let $w \in N_G(v) \setminus \{u, x_1, x_5\}$. Let $H = G - \{x_2, x_3, x_4, u\} + x_1x_5$. Then H is a Halin graph with $|V_{\rm in}(H)| = |V_{\rm in}(G)| - 1 \ge 3$ and |H| < |G|. Thus, $H \ncong H_0$. Let f be a square-6-coloring of H with f(v) = 1, $f(x_1) = 2$, $f(x_5) = 3$, and f(w) = 4. In G, we color x_2 with 3, x_4 with 2, x_3 with 4, and u with 5. Fig. 9: $H \cong H_0$ in Case (B5). Case (B7) k = 5 and there exist a 3-handle u and a 4-vertex v with $N_G(u) = \{v, x_2, x_3\}$ and $N_G(v) = \{u, w, x_1, x_4\}$ such that $d_G(w, x_5) \le 2$. Let $H = G - \{u, x_2, x_3\} + x_1x_4$. Since $|V_{\rm in}(H)| = |V_{\rm in}(G)| - 1 \ge 3$ and |H| < |G|, we see that $H \not\cong H_0$. Hence H has a square-6-coloring f using S such that f(v) = 1, f(w) = 2, $f(x_1) = 3$, and $f(x_4) = 4$. Since $d_G(w, x_5) \le 2$, we derive that $f(x_5) \ne 2$. In G, we color x_3 with $x_4 \in \{5, 6\} \setminus \{f(y)\}$, and $x_4 \in \{5, 6\} \setminus \{a\}$. Corollary 3 If G is a Halin graph with $\Delta = 5$, then $\chi(G^2) = 6$. We see from Theorem 2 that a Halin graph G with $\Delta=3$ has $4\leq \chi(G^2)\leq 6$. If $|G|\geq 6$ and $\Delta=3$, then $\chi(G^2)\geq 5$ as G contains a 5-cycle. This implies that $\chi(G^2)=4$ if and only if $G\cong K_4$. Note that there exist 3-regular Halin graphs G such that $\chi(G^2)=6$. Such an example is the graph H_1 , depicted in Fig. 2. Theorem 2 also implies that a Halin graph G with $\Delta=4$ has $5\leq \chi(G^2)\leq 7$; and $\chi(G^2)=7$ if and only if $G\cong H_0$. Therefore, it is interesting to characterize Halin graphs with $1\leq 1\leq 1$ 0. Therefore, it is interesting to characterize Halin graphs with $1\leq 1\leq 1$ 1. ## References - [1] J. A. Bondy, L. Lovász, Length of cycles in Halin graphs, J. Graph Theory 8 (1985) 397-410. - [2] M. Chen, W. Wang, The 2-dipath chromatic number of Halin graphs, Inform. Process. Lett. 99 (2006) 47-53. - [3] J. van den Heuvel, S. McGuinness, Coloring the square of a planar graph, J. Graph Theory 42 (2003) 110-124. - [4] H.-H. Lai, K.-W. Lih, Acyclic list edge coloring of graphs, J. Graph Theory 72 (2013) 247-266. - [5] H.-H. Lai, K.-W. Lih, P.-Y. Tsai, The strong chromatic index of Halin graphs, Discrete Math. 312 (2012) 1536-1541. - [6] P. C. B. Lam, Z. Zhang, The vertex-face total chromatic number of Halin graphs, Networks 30 (1997) 167-170. - [7] K.-W. Lih, W. Wang, X. Zhu, Coloring the square of a K₄-minor free graph, Discrete Math. 269 (2003) 303-309. - [8] M. Molloy, M. R. Salavatipour, A bound on the chromatic number of the square of a planar graph, J. Combin. Theory Ser. B 94 (2005) 189-213. - [9] P. F. Stadler, Minimum cycle bases of Halin graphs, J. Graph Theory 43 (2003) 150-155. - [10] W. Wang, K.-W. Lih, Note on coloring the square of an outerplanar graph, Ars Combin. 86 (2008) 89-95. - [11] W. Wang, X. Luo, Some results on distance two labelling of outerplanar graphs, Acta Math. Appl. Sin. Engl. Ser. 25 (2009) 21-32. - [12] W. Wang, K.-W. Lih, Labelling planar graphs with conditions on girth and distance two, SIAM J. Discrete Math. 17 (2004) 264-275. - [13] Y. Wang, Distance two labelling of Halin graphs, Ars Combin. 114 (2014) 331-343. - [14] G. Wegner, Graphs with given diameter and a coloring problem, preprint, University of Dortmund, 1977. - [15] H. Zhu, X. Lu, C. Wang, M. Chen, Labeling planar graphs without 4,5-cycles with a condition on distance two, SIAM J. Discrete Math. 26 (2012) 52-64. ### Appendix I Fig. 10: All Halin graphs G with $|G| \ge 8$, $\Delta \le 5$ and $2 \le |V_{\rm in}(G)| \le 3$ and their square-6-colorings.