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Abstract

This article proves that the square of a Halin graph G with
A = 5 has the chromatic number 6. This gives a positive
answer to an open problem in [Y. Wang, Distance two labelling
of Halin graphs, Ars Combin. 114 (2014), 331-343].
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1 Introduction

Let G be a simnple graph with vertex set V(G), edge set E(G), order |G|,
and maximuin degree A(G) (in short, A). For a vertex v € V(G), let Ng(v)
denote the set of neighbors of v. A vertex of degree & is called a k-verter.
The distance between two vertices u and v is the length of a shortest path
connecting them in G. The square G? of a graph G is the graph defined on
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the vertex set V(G) such that two vertices are adjacent in G2 if and only
if their distance is 1 or 2 in G. A k-coloring of a graph G is a mapping f
from V(G) to the set of colors {1,2,...,k} such that f(z) # f(y) for every
edge zy of G. The chromatic number x(G) of G is the smallest k such that
G has a k-coloring.

Wegner [14] proved that x(G?) < 8 for a planar graph G with A = 3
and conjectured that 8 can be reduced to 7. Moreover, he also proposed
the following conjecture.

Conjecture 1 For a planar graph G,

o | A4S, fA<A<T
x(G )5{ 13A/2] +1, fA>8.

This conjecture remains open. Van den Heuvel and McGuinness (3]
proved that x(G2) < 2A + 25 for any planar graph G. The best known
result so far is x(G2?) < [5A/3] + 78, due to Molloy and Salavatipour
[8]. Lih, Wang and Zhu (7] established the conjecture for a Kj-minor free
graph. It is shown [10,11] that every outerplanar graph G with A > 3 has
x(G?) < A+2, and x(G?) = A+1if A > 6. Wang and Lih [12] proved that
if G is planar graph without 3-cycles and 4-cycles, then x(G?) < A + 16.
Zhu et al. [15] extended this result by showing that if a planar graph G
contains no 4-cycles or no 5-cycles, then x(G?) < A + 7.

Let T be a tree with A > 3 and without 2-vertices. A 1-vertex of T is
called a leaf. A Halin graph is a plane graph G = TUC, where C is a cycle
connecting the leaves of T in the cyclic order determined by the planar
drawing of T. Vertices of C are called outer vertices of G and vertices in
V(G) \ V(C) are called inner vertices of G. Let Vin(G) denote the set of
inner vertices in G. A Halin graph G is called a wheel if |Vjy(G)| = 1. An
inner vertex is called a handle if it is adjacent to only one inner vertex. A
k-handle is a handle of degree k.

It is straightforward to see that Halin graphs are 3-connected plane
graphs. Some properties and parameters on Halin graphs have been exten-
sively investigated in [1,2,4-6,9].

Wang [13] showed that every Halin graph G with A > 6 has x(G?) =
A + 1, and proposed the following conjecture:

Conjecture 2 If G is a Halin graph with A = 5, then x(G?) = 6.

This paper gives a positive solution to Conjecture 2.
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2 Structural lemma

Suppose that G is a Halin graph. Since G is 3-connected, every edge e of G
is incident to exactly two faces f) and fz. Let m*(e) = max{dg(f1),dc(f2)}.

Lemma 1 Let G = TUC be a Halin graph with A < 5 that is not a wheel.
Then C contains a path P, = z125---T) such that one of the following
holds (see Fig. 1):

(B1) There ezist a k-handle u and a vertez v with Ng(u) = {v,21,...,
zx—1} and vz € E(G) such that eitherk =5, or 3 < k < 4 and dg(v) = 3.

(B2) k > 4 and there exist two handles u),us and a verter v with
Ng(ui) = {v,z1,...,2p} and Ng(uz) = {v,Tp41,...,2Tx}, where2 <p <
k-2.

(B3) There exist two handles uy,uz and a vertex v with No(u) =
{v,21,...,2p}, Ng(u2) = {v,Zpt2,..., Tk}, vZpy1 € E(G), where2 <p <
k — 3, such that either k > 6, or k =5 and dg(v) = 4.

(B4) 4 < k <5 and there ezist a handle u and a verter v with Ng(u) =
{v,z1,...,Zk-2} and vzi_y,vz € E(G).

(B5) k = 6 and there exist two 3-handles uy,us and a vertex v with
Ng(u) = {v,z2,z3}, Ng(uz) = {v,zs5,%6} and vz, vr4 € E(G).

(B6) k =5 and there erist a 4-handle u and a 4-vertez v with Ng(u) =
{v,z2,23,%4} and vz,vz5 € E(G).

(B7) k =5 and there ezist a 3-handle u and a 4-verter v with Ng(u) =
{v, 22,23} and Ng(v) = {u,w, 1,24} such that de(w,zs) < 2.

Proof. Since G is not a wheel, G contains at least two inner vertices.
If G has exactly two inner vertices, then (B1) or (B6) holds obviously.
So assume that G contains at least three inner vertices. Among all the
longest paths in the subgraph G — V(C), we choose a path Q = y12...yn
such that m*(y,y2) is as large as possible. Then n > 3, and both y; and
Yn are handles. Let ys, 21, 22, ..., 2z, denote the neighbors of yp in T in
clockwise direction, where 2 < m < 4, and y; = z for some 1 <! < m.
Thus each z; is either a handle or a leaf of T' by the definition of Q. If
there are two consecutive vertices in {ys, z1, 22, ..., 2m} that are handles,
then (B2) holds. Otherwise, suppose that no two consecutive vertices in
{vys,21,22,...,zm} are handles. If z; is a 5-handle for some 1 < 7 < m,
then (B1) holds since hoth z;_; and zi41 are leaves.

Assume that some z; is a 4-handle. Then z;_; and z;; are leaves of T (if
they exist). If either z;_s or z;; is a handle, then (B3) holds. Otherwise,
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both 2;_5 and z;; are leaves of T (if they exist). If dr(y2) = 3, then (B1)
holds. If dr(y2) = 5, then (B4) holds. If dp(y2) = 4, that is, m = 3, we
have two possibilities: when i = 2, (B6) holds; when i = 1 or i = 3, (B4)
holds.

Now assume that each z;, for 1 < i < m, is either a 3-handle or a leaf.
Note that y; is a 3-handle. If dp(y2) = 3, then (B1) holds. If dg(ys2) = 5,
then (B4) or (B5) holds. Hence assume that dg(y2) = 4, that is, m = 3. If
both z; and z3 are 3-handles, then (B3) holds. If exactly one of 21 and 23 is
a 3-handle, then (B4) holds. This leaves to the only possibility that z5 is a 3-
handle and z,, z3 are leaves, where y; = z5. Let fi = [ysy223s152-- - sp) and
fa = [2192y3tqte—y - - - 1] denote the incident faces of yoy3 in G. It is easy to
see that s5,%) € V(C), p,q > 1, and all s;’s and ¢;’s, for ¢,j > 2, are inner
vertices of G. This is because every inner face has exactly one cominon edge
with outer face. If min{p,q} < 2, then dg(ys,s1) < 2, or dg(ys,t1) < 2,
and hence (B7) holds. Otherwise, assume that p,q > 3. If p,q > 4, then
there is a path @1 = s253+- 5pYa -+ yn, or Q2 = tatz---teys: - yn with
length more than the length of @, a contradiction. Thus, we may assuine,
without loss of generality, that p = 3. It follows that Q' = sas3y3---yn is
also a longest path in G — V(C). However, m*(s2s3) > 6 > 4 = m*(y132),
contradicting the choice of Q. This completes the proof of the lemnma. O

X %2 N o

uy y

(B5) (B6) (BT)

Fig. 1: Reducible configurations in Lemma 1.
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3 Main result

Note that the graph Hp, depicted in Fig. 2, is a Halin graph with A = 4
and x(HZ) = 7 = |Ho|. In what follows, a k-coloring of G? is called a
square-k-coloring of G.

H, H,

Fig. 2: Two Halin graphs Hp and H;.

Theorem 2 If G is a Halin graph with A <5 and G % Hy, then x(G?) <
6.

Proof. We prove the theorem by induction on the vertex number |G|. If
|G| < 6, then the result is trivial, since we may assign different colors to
the vertices of G. If |G| = 7, it is easy to confirm that G is isomorphic to
Hy. Let G = TUC be a Halin graph with |G| > 8. The fact that A < 5
implies that |Vio(G)| = 2. Thus, G is not a wheel. If |Vip(G)| < 3, all
Halin graphs (up to isomorphism) and their square-6-coloring are collected
in Appendix I. So assume that |Vi,(G)| > 4. By Lemina 1, there exists a
path P, = zy13 - - - 7 in C such that at least one of (B1) to (B7) holds. In
each case, we first construct a Halin graph H from G such that |H| < |G|
and A(H) < 5. If H $# Hp, then by the induction hypothesis, H has a
square-6-coloring f. Afterwards, we extend f into a square-6-coloring of
G. If H = Hj, then G will be a graph with a few vertices, and we can give
it a square-6-coloring.

In the sequel, let y € Ng(z1) \ {22}, z € Ne(zi) \ {zx-1}, Ne(y) =
{z1,91,92}, and Ng(z) = {z«,21,22}. Moreover, let § = {1,2,...,6}
denote a set of six colors. Set Y = {f(1), f(¥2)} and Z = {f(z1), f(22)}.
We reduce seven configurations (B1)-(B7) as follows:

Case (B1) There exist a k-handle u and a vertex v with Ng(u) =
{v,z1,...,zk-1} and vz € E(G) such that either k =5, 0or 3 < k < 4 and
de(v) = 3.
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Subcase (B1.1) k = 5.

Let H = G — {z1,22,23,24} + {uy,uzs}. Then |H| > |G| -4 > 4, and
[Vin(H)| = |Vin(G)| — 1 > 4 — 1 = 3 since the inner vertex, u, of G becomes
an outer vertex of H. Thus, H 2 H,. By the induction hypothesis, H
has a square-6-coloring f with the color set S. Without loss of generality,
assume that f(u) =1, f(v) =2, f(y) =3, and f(z5) = 4. To extend f to
the whole graph G, we consider two possibilities as follows: If Y # {5,6},
we color z; with a € {5,6}\Y, x2 with 4, x4 with b € {3,5,6} \ {f(z2),a},
and z3 with a color in {3,5,6} \ {a,b}. If Y = {5,6}, we color z; with 4,
zo with 5, x4 with a € {3,6} \ {f(z)}, and =3 with a color in {3,6} \ {a}.

Subcase (B1.2) 3 < k <4 and dg(v) = 3.

Let w denote the neighbor of v in G other than uw and z;. It is
easy to check that w # y and w # z since |Vin(G)| > 4. Let H =
G —{z1,za,...,zk,u} + {vy,vz}. If H 2 Hy, then the induction hypoth-
esis asserts that H has a square-6-coloring f using S such that f(v) =1,
f(w) =2, f(y) =3, and f(z) = 4. To extend f to the whole graph G, we
consider two cases as follows:

ek =4 IfY # {5,6}, we color z, with 2, u with 4, z; with a €
{5,6}\Y, x4 with b € {3,5,6} \ Z, and z3 with a color in {3, 5,6} \ {a, b}.
IfY = {5,6}, we color z; with 2, u with 4, z4 with a € {3,5,6}\ Z, 2
with b € {5,6} \ {a}, and z3 with a color in {3,5,6} \ {a,b}.

ok =3.1f2¢Y, we color z; with 2, u with 4, z3 with a € {3,5,6}\ Z,
and z3 with b € {5,6}\{a}. If 4 ¢ Y, we color z; with 4, 25 with 2, z3 with
a€ {3,5,6}\ Z, and u with a color in {5,6}\ {a}. If Y = {2,4}, we color
x2 with 2, u with 4, z3 with a € {3,5,6} \ Z, and z; with b € {5,6} \ {a}.

H_ % X 2 ! _%a & 2 N_X%oy X 2 ¢ y !
W W ! w,
v /w v : 2
%31
$
¥ P y t ¥ p A z »

Fig. 3: H = Hp in Subcase (B1.2).

Now assume that H = Hy. It is not difficult to inspect that G is one of
the graphs H,-Hg, as shown in Fig. 3. We construct a square-6-coloring f
for each H; for i =2,3,...,6.
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Let G = H,. If k = 3, we color {v,p} with 1, {¢,z1} with 2, {s,z3}
with 3, {w,z,} with 4, {y, 2z} with 5, and u with 6. If k = 4, we color {v,p}
with 1, {t,z;} with 2, {s,z4} with 3, {w,z,} with 4, {y,z3} with 5, and
{u, 2} with 6.

Let G = Hj3. If k = 3, we color {v,p} with 1, {s,z2} with 2, {z,z;}
with 3, {y,z3} with 4, {t,u} with 5, and w with 6. If £ = 4, we color {v, p}
with 1, {s,z3} with 2, {z,z,:} with 3, {y,z4} with 4, {t,u} with 5, and
{w, zo} with 6.

Let G = Hy. If k = 3, we color {v,p} with 1, {¢,z3} with 2, {z,21}
with 3, {w, 2} with 4, {s,u} with 5, and y with 6. If £ = 4, we color {v, p}
with 1, {¢,z4} with 2, {z,z,} with 3, {w,z;} with 4, {s,u} with 5, and
{y,za} with 6.

Let G = Hs. If k = 3, we color {v,p} with 1, {t,u} with 2, {y,z3} with
3, {w, zy} with 4, {z,z;} with 5, and s with 6. If k = 4, we color {v,p}
with 1, {t,u} with 2, {y,z4} with 3, {w,z} with 4, {z,z,} with 5, and
{s,z3} with 6.

Let G = Hg. If k = 3, we color {v, p} with 1, {¢,z3} with 2, {y, 2z} with
3, {s,z1} with 4, {w,z2} with 5, and u with 6. If £ = 4, we color {v,p}
with 1, {t,z4} with 2, {y,z3} with 3, {s,z,} with 4, {w,z2} with 5, and
{u, 2z} with 6.

Case (B2) k > 4 and there exist two handles u1,us and a vertex v with
Ng(u1) = {v,z1,...,7,} and Ng(u2) = {v,Zp41,..., 2k}, where 2 < p <
k—2.

Subcase (B2.1) k > 5.

Fig. 4: H = Hp in Subcase (B2.1).

By symmetry, we assume that p > [k/2]. Note that k < 8 and uy,u3,v
are inner vertices. Let H = G — {z1,%2,...,2x} + {yu1,v1ug, usz}. If
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H % Hj, then the induction hypothesis asserts that H has a square-6-
coloring f using S such that f(v) = 1, f(y) = 2, f(w1) = 3, f(us2) = 4,
and f(z) € {2,5}. To extend f to the whole graph G, we first recolor u,
with 4, ug with 3, then color z; with 3 and z; with 4. If k£ = 8, we color
{z2, x5} with 5, {z3,z¢} with 2, and {x4,z7} with 6. If k = 7, we color
{z2, x5} with 5, {z3,z¢} with 6, and x4 with 2. If k = 6, we color {z2, x5}
with 6, z3 with 2, and =, with 5. If k = 5, we color > with 5, z3 with 2,
and x4 with 6.

If H = Hy, then it is easy to check that G is H7, Hg or Hy, as shown
in Fig. 4.

Let G = Hy. We first color {t,us} with 1, w with 2, {z,u,} with 3, y
with 4, and v with 5. If k = 8, we color 21, z5,...,25 with 2,6,1,4,6, 3,2, 4,
respectively. If &k = 7, we color z,,x,...,27 with 6,1,4,2,3, 6,4, respec-
tively. If ¥ = 6, then 3 < p < 4, we color zy, 72, ...,z¢ With 6,1,4,2,6, 4, re-
spectively. If k = 5, then p = 3, and we color 11, z9,...,z5 with 6,1,2,4,6,
respectively. If k = 4, we color z,, z2, x3, 24 with 6,2, 4, 6, respectively.

Let G = Hg. We first color {y,u:} with 1, w with 2, {t,uz} with 3, 2
with 4, and v with 5. If k = 8, we color z),x3,...,zs with 2,6,3,2,6,4,2,1,
respectively. If k = 7, we color z,,z,,...,z7 with 2,6,3,2,4,6,2, respec-
tively. If k = 6, then 3 < p < 4, we color 21, z2,...,T¢ With 6,3,2,4,6, 1, re-
spectively. If k£ = 5, then p = 3, and we color z;,z,,...,zs with 6,3,2,6, 1,
respectively. If k = 4, we color x,, z2,z3, x4 with 4, 6,2, 1, respectively.

Let G = Hy. We first color {y,uz} with 1, w with 2, v with 3, {z,u}
with 4, {z,,zx} with 5, and ¢ with 6. If k = 8, we color z3, z3,...,z7 With
6,1,2,6,4,2, respectively. If k = 7, we color z3,z3,...,Te with 6,1,2,4,6,
respectively. If k = 6, we color z2, 13,14, T5 with 6, 1,2, 6, respectively. If
k = 5, we color zq, 3,24 with 6,1, 2, respectively. If k = 4, we color z,
with 6 and z3 with 2.

Subcase (B2.2) k£ = 4, implying p = 2.

(B2.2.1) Assume that dg(v) = 3. Let w denote the neighbor of v
other than u; and up. Since |Vi(G)| > 4, we see that w is an inner
vertex. Let H = G — {z1, 22, 3, T4, u1, u2} + {vy,vz}. If H ¥ Hp, then by
the induction hypothesis, H has a square-6-coloring f using S such that
fv) =1, flw) = 2, f(y) = 3, and f(z) = 4. If Y # {5,6}, we color
Ty, u2 with a € {5,6} \'Y, z, with 4, u; with b € {5,6} \ {a}, z4 with
c€{2,3,5,6}\(ZU {a}), and z3 with a color in {2,3}\ {c}. If Y = {5, 6},
we color z, with 2, zo with 4, up with 3, x4 with a € {2,5,6} \ Z, z3 with
b€ {5,6} \ {a}, and u; with a color in {5,6} \ {b}.
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Fig. 5. H = Hp in Subcase (B2.2.1).

If H = Hy, then G is one of Hyg, H11, Hy2, and the corresponding
square-6-colorings are given, as shown in Fig.5. Note that the number
lying aside a vertex represents its color.

Fig. 6: H = Hyp in Subcase (B2.2.2).

(B2.2.2) Suppose that dg(v) > 4. Let H = G — {z1, 72,23, %4, %1} +
{yua, zup}. If H % Hj, then H has a square-6-coloring f using S such that
¥,2,v,ug have distinct colors. We color u; with a color a € S that differs
from the colors of vertices in Ng(v) U {v}. Moreover, if a = f(y), then
a # f(z), we switch the colors of u; and u;. Thus, we can assume that
f(u1) =6, f(uz) =1, and f(v) = 2. Since 1 ¢ Y, we color r; with 1.
If f(z) # 6, we color zo with f(z), 4 with b € {3,4,5,6} \ (ZU {f(2)}),
and z3 with a color in {3,4,5} \ {b, f(2)}. If f(z) = 6, we color z4 with
c € {3,4,5}\ Z, z2 with d € {3,4,5}\ {¢, f(¥)}, and z3 with a color in
{3,4,5}\ {c,d}.

If H = Hy, then G is one of H,3, H14, H15 whose square-6-colorings are
given in Fig. 6.

Case (B3) There exist two handles u;,u2 and a vertex v with Ng(u1) =
{v,z1,...,2p}, Na(u2) = {v,Zps2,..., Tk}, VTpy1 € E(G), where2<p <
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k — 3, such that either k£ > 6, or k£ =5 and dg(v) = 4.

By Case (Bl), we may assume that 2 < [(k - 1)/2] < p < 3. This
implies that 5 < k < 7. Let H = G — {zy,%2,...,Zx} + {yu1, urug, uzz}.
If H 2 Hp, then H has a square-6-coloring f using S such that f(v) = 1,
f(u1) =2, f(ug) =3, and f(y) = 4. In the following, let My(v) denote the
set of colors assigned to the neighbors of v other than u;, and uy in H. In
G, we recolor u; with 3 and uy with 2, and color z; with 2, zx with 3, and
Tps+1 with a color 8 € {4,5,6}\ M¢(v). Then we consider the following two
cases by symmetry.

X1 Xp Xpa Jpa Xy X Xp  Kpa fpa x,
Ch U u Huy
¥ v v
u u
w z ¥ w z
I.Ilﬁ ’-117

Fig. : H = Hp in Case (B3).

e f(z) =4 Let B € {4,5}. If k =7 and 8 = 4, we color {z2,z5}
with 5, and {x3,z¢} with 6. If K = 7 and B = 5, we switch the colors
of u; and x4, then we color {z2,z¢} with 6, 23 with 4, and z5 with 5.
If k = 6, we color {z2,z5} with a € {5,6} \ {8} and z3 with a color in
{4,5,6} \ {a,8}. If k = 5, then dg(v) = 4 by the definition of (B3). Let
w € Ng(v) \ {u1,u2,z3}. If B = 4, we color z; with 5 and x4 with 6. Thus
assume that 8 = 5. If f(w) = 4, we recolor u; with 6, and color z, with 3
and 4 with 6. If f(w) # 4, we recolor z3 with 4 and then reduce the proof
to the previous case.

e f(z) =5. Let B € {4,5,6}. If k =7 and B = 4, we color {z2, 5} with
5, and {z3,7¢} with 6. If k = 7 and 8 = 5, we color {z2,z¢} with 6, and
{z3,z5} with 4. If k = 7 and B = 6, we color {x;, 75} with 5, and z3, ¢
with 4. If k = 6 and B # 6, we color {z3,z5} with 6 and z3 with a color
in {4,5} \ {B8}. If k = 6 and B = 6, we switch the colors of u; and x4, and
color z3 with 6, 3 with 5, and z5 with 4. If X = 5 and 8 = 6, we color z»
with 5 and =4 with 4. If k = 5 and 8 = 5, we color z; with 6 and x4 with
4. If k =5 and 8 = 4, we color z2 with 5 and z4 with 6.

If H = Hy, then G is Hy6 or Hy7, as shown in Fig. 7.

226



Let G = Hys. We first color {z,u1} with 1, {w,us} with 2, u with 3,
v with 4, y with 5, and z,, with 6. If £k = 5, then p = 2 and we color
T1,T3,Z4,T5 With 3,2,3,5, respectively. Assume that k = 6. If p = 3,
we color z;,Z2,%3,Zs5,Z¢ With 6,3,2,1,5, respectively. If p = 2, we color
Z1,T3,T4,Ts,Te wWith 3,2,1,5,6, respectively. Assume that k=7. Ifp =3,
then we color z,, 2, 3, Ts, e, T7 With 6,3,2,1, 3, 6, respectively. If p = 2,
then we color 1,9, x4, Ts, Tg, z7 With 3,2,1,5,3, 6, respectively.

Let G = Hy7. We first color u with 1, {y, ua} with 2, {z,u;} with 3, w
with 4, v with 5, and z,4, with 6. If k = 5, then p = 3, we recolor w with 6,
and color color x,, x4, z4, x5 With 4,2, 3, 4, respectively. If £ = 6, then p =
3, we recolor 4 with 4 and y with 6, and then color z,,z9, 3, 5, ¢ With
2,1,6,1,6, respectively. If k = 7, then p = 3, we color zi, z2,z3, Ts5, Ts, T7
with 6, 4,2, 3, 4, 6, respectively.

Case (B4) 4 < k < 5 and there exist a handle u and a vertex v with
Ng(u) = {v,z1,...,2k—2} and vei_1,vzr € E(G).

Since |Vin(G)| > 4, it is easy to see that dg(v) > 4. We discuss two
possibilities helow.

Subcase (B4.1) dg(v) =4, and let w € Ng(v) \ {u, Zx-1,Zx }.

(4.1.1) Assume that k = 5. Let H = G — {x),Z3,x3,u} + yr4. Then
H is a Halin graph with |Vj,(H)| = |Via(G)| = 1 > 3 and |H| < |G|. Thus,
H ¢ Hy. Let f be a square-6-coloring f of H such that f(z4) = 1, f(v) =2,
f(y) =3, and f(z5) = 4. In G, we color x; with 1, zo with 4, z3 with 3,
and u with a color in {5,6} \ {f(w)}.

(4.1.2) Assume that k = 4. Let H = G — {z, 22, z3, T4, u} + {yv, 2v}.
Then H is a Halin graph with |Vip(H)| = |[Via(G)] — 2 2 2 and |H| <
|G|. If H ¢ Hp, then H has a square-6-coloring f using S such that
fw) =1, f(w) =2, f(y) =3, and f(z) = 4. In G, we first color x4 with
a € {3,5,6}\Z. fY = {5,6}, then we color z; with 4, o with 2, u
with b € {5,6} \ {a}, and z3 with a color in {3,5,6} \ {a,b}. Otherwise,
Y # {5,6}, we color z; with ¢ € {5,6}\Y, say ¢ = 5, then color z, with
2, u with 4, z3 with {3,6} \ {a}.

If H = Hg, then G is one of His-H22 whose square-6-colorings are
established in Fig. 8.

Subcase (B4.2) dg(v) = 5.

Let H = G — {z1,%2,...,Zk} + {yu,uz}. Then H is a Halin graph
with |[Vin(H)| = |Via(G)] =1 > 3 and |H| < |G|. Thus, H ¥ Hy. By
the induction hypothesis, H has a square-6-coloring f such that f(v) =1,
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f(u) =2, f(y) =3, and f(2) = 4. After erasing the color of u, we color
{z1,2¢} with 2. Let M;(v) denote the subset of colors assigned to the
neighbors of v in H other than u. Then |My(v)| = 2. If 3 ¢ My(v), we
color xx—; with 3, u with a color a € {4,5,6} \ My(v), and properly color
Z2,...,Tk—2 With the colors in {4,5,6} \ {a}. So assume that 3 € M;(v).
If 4 ¢ Ms(v), we color u with 4, zx_, with a color a € {5,6} \ My(v),
and then properly color x3,...,Zx_2 with the colors in {3,5,6} \ {a}. If
4 € M¢(v), then we color u with 5, 2, with 4, z4_; with 6, and moreover
z3 with 3 if k = 5.

x| X2 X X2 x| M X dl

6 2 3 3
3 u u x u
X3 : X3 y X3 4
V) V| X
T, p P - A 3 N
& w
W a2 2w 62 w 4 3
6 5
2
) y
¢ 3 1 : 12 6
Hg Hy, H,, Hy,

Fig. 8: H = Hop in Subcase (B4.1.2).

Case (B5) k = 6 and there exist two 3-handles u,, u and a vertex v with
Ng(uy) = {v, z2,x3}, Ng(uz2) = {v, 25,26} and vz,,vz4 € E(G).

Since |Vin(G| = 4, dg(v) = 5. Let w € Ng(v) \ {z1,z4,u1,u2}. Let
H =G - {z1,z2,...,%6,u1,u2} + {yv,vz}. Then H is a Halin graph with
[Vin(H)| = |Vin(G)|—2 2 2 and |H| < |G|. If H % Hy, then H has a square-
6-coloring f such that f(v) =1, f(w) =2, f(y) =3, and f(z) = 4. In G,
we first color {z2,z5} with 2. If Y # {5,6}, then we further color x, with
a € {5,6}\Y, z6 with b € {3,5,6} \ Z, {z3,uz} with c € {3,5,6} \ {a, b},
and u; with a color in {3,5,6} \ {a,c}, z4 with 4. If Y = {5,6}, we color
z) with 4, g with a € {3,5,6} \ Z, {z3,uz} with b € {3,5,6} \ {a}, 24
with ¢ € {3,5,6} \ {a, b}, and u; with a color in {3,5,6} \ {b,c}.

If H = Hy, then G is one of Ha3-Ha7 whose square-6-colorings are given
in Fig.9.

Case (B6) k = 5 and there exist a 4-handle v and a 4-vertex v with
Neg(u) = {v, T2, z3,24} and vzy,vzs € E(G).

Let w € Ng(v) \ {u,z1,zs}. Let H = G — {x3,%3,24,u} + z125. Then
H is a Halin graph with |Vio(H)| = |Vin(G)| = 1 2 3 and |H| < |G|. Thus,
H % Hy. Let f be a square-6-coloring of H with f(v) = 1, f(z1) = 2,
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f(zs) =3, and f(w) = 4. In G, we color z3 with 3, z4 with 2, z3 with 4,
and u with 5.

Xy Xy Xy Xs Xo X3 X3 X¢ X5 X X2 X3 Xa X3 Xe X2 Xy Xy X¢ Xo X2 X3 X4 X5 X
3 12 4 5 2 5 P 3 s 9 4 3
4 3 a4
" 2 u (33 w ty " 2 u ty
X ¢
B 1 s v fig Did J s v s v
2
T2 [ 4 z )] w 2 Ip kg ow 42z
(]
2 4
1 5
1 3 4 i z Yy
Hy Hy, Hys Hyg Hy

Fig. 9: H = Hy in Case (B5).

Case (B7) k = 5 and there exist a 3-handle u and a 4-vertex v with
Ng(u) = {v, 2,73} and Ng(v) = {u,w, 1,24} such that dg(w, zs) < 2.

Let H = G — {u,z3,z3} + 2124. Since |Vio(H)| = |Vin(G)| -1 = 3
and |H| < |G|, we see that H % Hp. Hence H has a square-6-coloring f
using S such that f(v) = 1, f(w) = 2, f(z1) = 3, and f(z4) = 4. Since
dg(w, z5) < 2, we derive that f(zs) # 2. In G, we color z3 with 2, 2 with
a € {56}\ {f(v)}, and u with a color in {5,6} \ {a}. O

Corollary 3 If G is a Halin graph with A = 5, then x(G?) = 6.

We see fromn Theorem 2 that a Halin graph G with A = 3 has 4 <
x(G?) < 6. If |G| > 6 and A = 3, then x(G?) > 5 as G contains a 5-cycle.
This implies that x(G?) = 4 if and only if G = K. Note that there exist
3-regular Halin graphs G such that x(G?) = 6. Such an example is the
graph H;, depicted in Fig.2. Theorem 2 also implies that a Halin graph
G with A = 4 has 5 < x(G?) < 7; and x(G?) = 7 if and only if G = H,.
Therefore, it is interesting to characterize Halin graphs with 3 < A < 4
according to the chromatic number of their squares being 5 or 6.
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Appendix I

<3

< |Vin(G)

A<5and?2

Fig. 10: All Halin graphs G with |G| > 8,

and their square-6-colorings.
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