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Abstract

A simple graph G = (V, E) admits an H-covering if every edge in
E belongs at least to one subgraph of G isomorphic to a given graph
H. An (a,d)-H-antimagic labeling of G admitting an H-covering is
a bijective function f: VUE — {1,2,...,|V| + |E|} such that, for
all subgraphs H' of G isomorphic to H, the H'-weights, wts(H') =
2 vevinny F(V)+ 2 e gury f(e), constitute an arithmetic progression
with the initial term a and the common difference d. Such a labeling
is called super if f(V)={1,2,...,|V]}.

In this paper, we study the existence of super (a, d)- H-antimagic
labelings for graph operation G¥, where G is a (super) (b,d")-edge-
antimagic total graph and H is a connected graph of order at least 3.
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1 Introduction

We consider finite and simple graphs. Let the vertex and edge sets of a
graph G be denoted by V(G) and E(G), respectively. An edge-covering
of G is a family of subgraphs Hy, Hs, ..., H; such that each edge of E
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belongs to at least one of the subgraphs H;, i = 1,2,...,¢t. Then it is said
that G admits an (H,, Ha,. .., H;)-(edge) covering. If every subgraph H;
is isomorphic to a given graph H, then the graph G admits an H -covering.

Gutiérrez and Lladé [11] defined an H-magic labeling as follows. The
graph G admitting an H-covering is called H-magic if there exists a to-
tal labeling f : VUE — {1,2,...,|V]| + |E|} such that, for each sub-
graph H' isomorphic to H, 3_ ey (g f(v) + X .cp(ur) f(€) is constant.
When f(V) = {1,2,...,|V]}, we say that G is H-supermagic. The H-
(super)magic labelings are an extension of the edge-magic and super edge-
magic labelings introduced by Kotzig and Rosa [14] and Enomoto, Lladé,
Nakamigawa and Ringel [10], respectively. In [11], star-(super)magic and
path-(super)magic labelings of some connected graphs were considered and
proved that the path P, and the cycle C,, are Py-supermagic for some h.
Lladé and Moragas [16] studied the cycle-(super)magic behavior of sev-
eral classes of connected graphs. They proved that wheels, windmills,
books and prisms are Ch-magic for some h. Maryati, Salman, Baskoro,
Ryan and Miller {19] and also Salman, Ngurah and Izzati [21] proved
that certain families of trees are path-supermagic. Ngurah, Salman and
Susilowati [20] proved that chains, wheels, triangles, ladders and grids are
cycle-supermagic. Maryati, Salman and Baskoro [18] investigated the G-
supermagicness of a disjoint union of ¢ copies of a graph G and showed
that the disjoint union of any paths is c¢Py-supermagic for some c and h.

Simanjuntak, Miller and Bertault [22] introduced an (a, d)-edge-antima-
gic total ((a,d)-EAT) labeling of G which is defined as a bijective function
f:VUE - {1,2,...,|V]| +|E|} such that the set of edge-weights { f(u) +
f(uv)+ f(v) : wv € E(G)} is equal to the set {a,a+d,a+2d,...,a+(|E|—
1)d} for some positive integers a and d. An (a,d)-EAT labeling f is called
super if the vertex labels are the smallest possible labels. Several results
related to edge-antimagic total labelings are provided; see for example (8],
(17] and [23].

Combining the two previous labelings, Inayah, Salman and Simanjuntak
[12] introduced an (a, d)-H -antimagic labeling of a graph G admitting an H-
covering as a bijective function f : VUE — {1,2,...,|V| +|E|} such that
for all subgraphs H’ isomorphic to H, the H'-weights

wig(H)= Y f)+ Y fle)

veV(H’) e€E(H')

form an arithmetic progression a,a + d,a + 2d,...,a + (t — 1)d, where
a > 0 and d > 0 are two integers, and ¢ is the number of all subgraphs
of G isomorphic to H. Such a labeling is called super if the smallest pos-
sible labels appear on the vertices. A graph that admits a (super) (a, d)-
H-antimagic labeling is called (super) (a,d)-H-antimagic. In [13], super
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(a, d)- H-antimagic labelings for some shackles of a connected graph H are
investigated. In [7] was proved that wheels are cycle-antimagic. The ex-
istence of super (a, 1)-tree-antimagic labelings for disconnected graphs are
studied in [6].

The (super) (a, d)- H-antimagic labeling is related to a super d-antimagic
labeling of type (1, 1,0) of a plane graph that is the generalization of a face-
magic labeling introduced by Lih [15]. Further information on super d-
antimagic labelings can be found in {2, 5].

Let G be an arbitrary graph and H be a connected graph of order at
least 2. We define a graph operation G in the following way.

1. Denote the edges in G arbitrarily by e), e, ..., eg)
2. Take |E(G)| copies of H, say H1, Ha,...,H gy

3. In every H;, i = 1,2,...,|E(G)|, choose two different vertices, say
Ti, Yis

4. Replace every edge e; in E(G) by subgraph H; in such a way that its
end vertices and z;,y; € V(H;) are identified.

The resulting graph G¥ is of order (|V(H)| — 2)|E(G)| + |[V(G)| and size
|E(H)||E(G)|- Note that the graph G is not defined uniquely. It means
for graphs G and H there are many non-isomorphic graphs obtained by
using this construction.

In this paper we investigate the existence of super (e, d)-H-antimagic
labelings for G¥. We show connection between H-antimagic labelings and
edge-antimagic total labelings and describe a construction how to obtain
the H-antimagic graph from a smaller edge-antimagic total graph G.

2 Partitions with determined differences

For construction H-antimagic labelings of graphs we will use the parti-
tions of a set of integers with determined differences. This concept was
introduced in [1].

Let n, k,d and 7 be positive integers. We will consider the partition P,
of the set {1,2,...,kn} into n, n > 2, k-tuples such that the difference
between the sum of the numbers in the (i + 1)th k-tuple and the sum of
the numbers in the ith k-tuple is always equal to the constant d, where

= 1,2,...,n — 1. Thus these sums form an arithmetic sequence with
the difference d. By the symbol P[ ;(i) we denote the ith k-tuple in the
partition with the difference d, where i = 1,2,...,n.

Let }_Pp (i) be the sum of the numbers in ’Pk 2(%). Evidently, from

the definition, Z’Pk 4@+ 1) = 3 PL4(i) = d. It is obvious that if there
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exists a partition of the set {1,2,...,kn} with the difference d, there also
exists a partition with the difference —d. By the notation Pg (i) ® ¢ we
mean that we add the constant ¢ to every number in Pg ,(7).

If k = 1 then only the following partition of the set {1,2,...,n} is

possible
PrG)={i} for i=1,2,...,n

If k = 2 then we have several partitions of the set {1,2,...,2n}. Let us
define the partitions into 2-tuples in the following way:

Pro(t) = {i,2n+1 -1},
Z'P{;',o(i)=2n+1, for i=1,2,...,n.

Pyo(i) = {i,n+1},
> Py(i) =n+2, for i=1,2,...,n.

'P;A(i) = {2i - 1,2i},
> PRi)=4i-1, for i=1,2,...,n.
Moreover, for 3 <n =1 (mod 2)
Pgl(i)___{{'.‘jl+i-'2—l-,n-l'-1+"—;1-} for ’IEEI (mod 2),
' {in+2 + ) for i=0 (mod 2),
Zpﬁl(i) =n+ 1‘-‘{—1 +1i, for i=1,2,...,n.
Note that we are able to obtain the partitions into 2-tuples PZ,(i) and

P22(i) as PP, (i) U (P}, (i) @ n), where s,t = 1. We can use this idea to
construct the other partitions. More precisely,

Pra(i) =P, (i) U (Pr. () @ n),

where k = [+ m.
For example, we are able to obtain Pj (i) from the partitions P} (i),
s = x1 and PZ,(i), t = 0,%2,44 and also t = %1 for n odd. It means,
3.4 €xists for d = +1,43,45 and if n = 1 (mod 2) also for d = 0,+2.
Moreover, we are able to construct Pfq in the following way

Pro() = {3(i — 1) +1,3(: — 1) + 2,3(i — 1) + 3},
S Pre(i) =93, for i=1,2,...,a.

Thus P73, exists for d = £1, 43, 5, £9. Note that if n = 1 (mod 2) then
also the differences d = 0, =2 are realizable.
Summarizing the previous fact we get the following theorem.
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k d

for every n
moreover for n odd

1 +1
2 0,+2,+4
+1
3 41,43,+5,+9
0,+2
4 0,+2,+4,+6,+8,+10,+16
+1,+3, +5
5 +£1,+3,45, +7,49, £11, 13, £15, +17, £25
0, £2, +4, +6, +8, £10
6 0,42, +4,+6,+8,+10,+£12, +14, +16, +18, 420, +24, +26, +36
41,43, 45, £7, £9, +11, +15, +17
7 41,43, 45, 47,49, £11, +13, £15, 17, +19, +21, +23, +25, +27,
429, +35, +37, +49
0,+2, +4,+£6, +8, +£10, 12, £14, +16, +£18, +24, +26

Table 1: The feasible differences d for partition Pg 4, k < 7.

Theorem 1. Let n,k,d and i be positive integers. There exists a partition

Pr 4 of the set {1,2,...,kn} inton, n > 2, k-tuples such that the difference

between the sum of the numbers in the (i + 1)th k-tuple and the sum of

the numbers in the ith k-tuple is d, i = 1,2,...,n —1 for d = k? or

d = s +t, where s and t are realizable differences in partitions P[', and
,',‘I't, k=1l+m.

Moreover, the corresponding ith k-tuple in the partition Pg, can be
obtained such that

Pere(@) ={k(G-1)+Lk(i—1)+2,...,k(i = 1) + k}

or

Prali) = Pl(i) U (Pr . (3) @ In)
where k = [ + m, respectively.
Let us note that each of the defined partition P} ; has the property that
> PLali) = Cia +di,

where C7, is a constant depending on the parameters k and d. Table 1
gives the values of feasible differences for partition Pg, for k < 7.
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It indicates that, for a given k, the number of feasible values of d is
quite big. However, for k£ > 6 not every number from the set +((k — 1)2 +
1), %((k-1)%-1),...,£1 for k odd (or +((k—1)2+1), £((k—1)*>~1),...,0
for k even) can be realizable as a difference d in the partition P ;. However,
it is a simple observation that for k > 6 all numbers from the set

+1,4+3,...,x(k + 14) for k odd
0,£2,...,+(k+14) for k even (1)

are feasible as a difference d in the partition P ;.

3 Counting the upper bound of the differ-
ence d

The next theorem gives the upper bound of the difference d if the graph
G*H is super (e, d)- H-antimagic.

Theorem 2. Let G be a (pg, gc)-graph and let H be a connected (py, qu)-
graph. If GH admits a super (a,d)-H-antimagic labeling and number of
subgraphs isomorphic to H in GH is qg then

pH(pc — 2)
-1
Proof. Let G be an arbitrary (pg,qc)-graph and let H be a connected

(pH,qu)-graph. Let G¥ contains exactly g¢ subgraphs isomorphic to H.
Let GH admits a super (a, d)- H-antimagic labeling f,

f:V(GHYUEWGH) - {1,2,...,p+ 4},

where p = |V(G¥)| = (pr — 2)g¢ + pe and ¢ = |E(G¥)| = gugc.

The smallest possible weight of a subgraph isomorphic to H can be
obtained when the smallest possible numbers are used to label its elements.
It means, when the numbers 1,2,...,py are used as the vertex labels and
the numbers p+ 1,p+2,...,p + qu are used as the edge labels. Thus

a2l+24---+pg+(@+1)+@+2)+---+(p+4qn)

_(pa+1)p (gu + 1)gn
=P ML (2)

The largest possible weight of a subgraph isomorphic to H can be realizable
if the largest possible numbers are used to label vertices as well the edges
of this subgraph. Thus

a+(gc-1)d<p+(-1)+---+(p—pa+1)
++a+(+eg-1)+-+(+q—qu +1)

d<p}+dk — 2+

" +pqn +

238



2p — 1 2p +2q —
_(2p m;+ Jou | (2P +2 2‘1H+1)‘IH. 3)

Combining Inequalities (2) and (3) and after some mathematical manipu-
lations we get the upper bound for the difference d in the following form.

pr(pG —2)
gc—1

d<pk+dk—2pu+
0

Remark 1. Note that if H contains no articulation then trivially GH
contains ezactly gz subgraphs isomorphic to H.

If G is a tree, i.e., pg = g¢ + 1, then from Theorem 2 it follows that
d<py +d%4 —pu.

Corollary 1. Let G be a tree of order pc and let H be a connected (px,qH)-
graph. If GH admits a super (a,d)-H-antimagic labeling then

d < p} +ak — pa.

Carlson [9] defines an amalgamation of graphs as follows. Let Gy, Ga2,
..., G\ be a finite collection of graphs and let each G; have a fixed vertex v;
called the terminal. The amalgamation Amal{G;,v;} is formed by taking
all the G;’s and identifying their terminals. By amal(H,k) we denote a
graph, where the amalgamation is constructed from k copies of connected
graph H.

If the graph G is isomorphic to a star K; ,, n > 2, then the graph
K#! is isomorphic to the amalgamation amal(H, n). Using Corollary 1 we
immediately obtain the following result.

Corollary 2. Let H be a connected (pu,qm)-graph. If the amalgamation
amal(H,n) admits a super (a,d)-H-antimagic labeling and number of sub-
graphs isomorphic to H in amal(H,n) is n then

d < p} + g} — pH.

A shackle of G),Ga,...,Gk, denoted by shack(G,,G2,...,Gk), is a
graph constructed from non-trivial connected graphs G, Ga,..., Gk such
that for every 1 < 4,5 < k with i — j| > 2, G; and G; have no common
vertex, and for every 1 < i < k—1, G; and Gy share exactly one common
vertex, called a linkage vertexr, where the k — 1 linkage vertices are all
distinct. In the case when all G;’s are isomorphic to a connected graph H,
we call the resulting graph as a shackle of H denoted by shack(H, k).

If the graph G is isomorphic to a path P,, n > 2, then the graph PH
is isomorphic to the shackle shack(H,n — 1) and by Corollary 1 the upper
bound for the difference d is as follows.
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Corollary 3. Let H be a connected (py,qu)-greph. If shack(H,n — 1)
admits a super (a,d)-H-antimagic labeling and number of subgraphs iso-
morphic to H in shack(H,n — 1) isn —1 then

d<p}+ak—pu

Note that this upper bound was proved by Lemma 6 in [13].
On the other hand if the graph H is isomorphic to K5 then from The-
orem 2 it follows.

Corollary 4. If H is isomorphic to Ky and G¥ admits a super (a,d)-EAT
labeling then
2pc — 4

d<1+ .
gc —1

This upper bound for the difference d was proved in (3].

4 Main result

In this section we show connection between H-antimagic labelings and edge-
antimagic total labelings. We describe a construction how to obtain the
H-antimagic graph from a smaller edge-antimagic total graph G. Note that
if H= K, then GH¥ 2 G and the result trivially holds.

The following theorem gives the main result.

Theorem 3. Let G be a (b,d*)-EAT graph and H be a connected graph
of order at least 3. If GH contains exactly qc subgraphs isomorphic to H
then GH is super (a,d)-H-antimagic and d = d* + d,, + d., where d, and
de are feasible values of differences in the partitions ’P;g__&d" and 'P;;"'de,
respectively.

Proof. Let g be a (b, d*)-EAT labeling of G. The set of all edge-weights of
the edges of G under the labeling g is

{wty(e) : e € E(G)} = {b,b+d",...,b+ (gc — 1)d*}.

Denote the edges of G by the symbols e;, ey, ..., €4 such that

wtg(es) = b+ (i — 1)d,

where i = 1,2,...,q¢.

Let H be a connected (py, gu)-graph, py > 3.

Let GH contains exactly gg subgraphs isomorphic to H, say Hy, Ho, ...,
Hg;, where the subgraph H; replaces the edge e; in G, i =1,2,...,q¢.

Construct a total labeling f, f : V(GH)U E(GH) — {1,2,...,9c(pu +
g — 2) + pg} in the following way:



o f(v) = g(v), if there exist integers ¢, s, 1 <t < s < g¢ such that
ve V(H,)NV(H,).

e As py > 3 then there exists a vertex z, € V(H;) and z # v. Then
fori=1,2,...,q¢ let
f(z) = g(es).

e Fori=1,2,...,q¢c let

{(fy) :ye V(Hi),y#vand y#z} =PI_,, (4) ® (pc + gc)-

e Fori=1,2,...,qc let
{f(e) : e € E(H:)} = Pg5 4.(i) ® ((pr — 2)ac + Pc),
where d,, depends on py and d. depends on gqg.

It is not difficult to check that the vertices are labeled with the smallest

possible numbers 1,2,..., (pg — 2)g¢ + PG-
Moreover, for the weight of the subgraph H;, i = 1,2,...,q¢, we obtain

wtp(H)= Y. flwy+ Y. fle)

ueV(H;) ec E(H;)
Yo f@+f@+ Y f@+ Y fle)
c‘-te”Ee(iG) uveV(Hi)\{v,z} ecE(H;)
= > o) +gle)+), (7"’“'_3 4,(8) @ (pc + qa))
e.“éﬁée(ic)

+ ¥ (Piga) @ (@ =216 +50))
=(b + (i - 1)d") + (ng —34, T dvi+ (pr —3)(pc + qc:)))

(C"Gd + dui + qs1 ((par — 2)¢IG+PG))

=C3% 34, +CI 4 +b—d" + (py - 3)(pc +gc)
+ qu ((pr — 2)gc + pc) + (d* + dy + de)i.

This concludes the proof.

The largest feasible value of the difference d for a super (a,d)-H-anti-
magic labeling of G¥ is given by the following Corollary.
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Corollary 5. Let G be a (super) (b,d*)-EAT graph and H be a connected
graph of order at least 3. If GH contains ezactly qc subgraphs isomorphic
to H then G¥ is super (a,d” + (py — 3)® + ¢} )-H-antimagic graph.

Proof. From Theorem 1 it follows that the largest possible value of the
difference in the partition P35 _, , is (prr — 3)* and the largest possible
value of the difference in the partition ng, 4, is q%. According to Theorem
3 the result follows.

Next corollary gives the formula for another feasible differences of d as
a function of py and qy.

Corollary 6. Let G be a (super) (b,d*)-EAT graph and H be a connected
graph of order at least 3. If G¥ contains ezactly qg subgraphs isomorphic
to H then GH is super (a,d)-H-antimagic, where

d=d"+(pg —3—t)>+(qgu —s)? £t xs

for everyt=0,1,...,pg —3 and s=0,1,...,qy.

5 Special families of graphs

In this section we consider two special families of graphs, namely amalga-
mation of graphs and shackle of graphs.

If the graph G = K o, n > 2, then the graph K{f is known as amal-
gamation of H. According to Corollary 2, if K fn admits a super (a,d)-H-
antimagic labeling and number of subgraphs isomorphic to H in K f,, isn
then d < p}; + g% — py.

In [23] is proved the following result.

Theorem 4 ([23]). The star Kin, n > 2, admits a super (a,d)-EAT
labeling for d = 0,1, 2.

Theorem 5. Let H be a connected (py,qp)-graph, pg > 9 and let n be
an integer, n > 2. If K {,’n contains ezactly n subgraphs isomorphic to H
then K{{ admits a super (a,d)-H-antimagic labeling for

0<d<py+qn+27.

Proof. Tt follows from Theorem 3, Theorem 4 and Expression (1) for par-
tition of numbers.

Note that Theorem 3 gives much more feasible values of the difference
d for super (a,d)-H-antimagic labeling of K{/,. Furthermore there exist
several feasible differences d which is not possible to obtain from the proof
of Theorem 3. For these values of difference d we propose the following.
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Open Problem 1. Determine for which values of differencesd, 0 < d <
P4 + g4 — pu, not covered by Theorem 3, there ezxists a super (a,d)-H-
antimagic labeling of K in

As we mentioned before, if the graph G & P,,, n > 2, then the graph
PH is known as shackle of H. According to Corollary 3, if PH admits a
super (a,d)- H-antimagic labeling and number of subgraphs isomorphic to
Hin PH isn—1then d < p% + 4% —pu.

For edge-antimagicness of paths in [4] is proved the following.
Theorem 6 ([4]). The path P,, n > 2, admits a super (a,d)-EAT labeling
if and only ifd =0,1,2,3.

Then we get.

Theorem 7. Let H be a connected (pu,qy)-graph, py > 9 and let n be
an integer, n > 3. If PH contains ezactly n — 1 subgraphs isomorphic to H
then PH admits a super (a,d)-H -antimagic labeling for

0<d<py+qu+28.

Proof. Using Theorem 3, Theorem 6 and Expression (1) for partition of
numbers we immediately obtain that 0 < d < py + qu + 28. 3

By the same way as for amalgamation we can formulate analogous open
problem for shackle of H.
Open Problem 2. Determine for which values of differences d, 0 < d <
P4 + 4% — pH, not covered by Theorem 3, there exists a super (a,d)-H-
antimagic labeling of PH.

Inayah, Simanjuntak, Salman and Syuhada [13] studied the existence
of H-antimagic labeling of shackle of H by using a different method. Their
different approach gives different sets of differences obtained by desired
constructions.

6 Conclusion

In this paper, we examined the existence of super (a,d)-H-antimagic la-
belings for graph operation G¥, where G is a (b, d*)-edge-antimagic total
graph and H is a connected graph of order at least 3. We have found
super (a,d)-H-antimagic labelings for all differences d = d* + dy + d.,
where d* is the feasible value of difference in super edge-antimagic graph
G and d, (respectively, d.) are fea51ble values of differences in the parti-
tions P7o_5 ; (respectively, oo 4.). Additionally, we showed that for a
connected (py,qm)-graph H the graph K{! (respectively, PH) admits a
super (a, d)- H-antimagic labeling for every difference 0 <d<py-+qgp+27
(respectively, 0 < d < py + qu + 28).
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