Note on the distance spectral gap of graphs #### Rundan Xing* School of Computer Science, Wuyi University, Jiangmen 529020, P.R. China #### Abstract The distance spectral gap of a connected graph is defined as the difference between its first and second distance eigenvalues. In this note, the unique *n*-vertex trees with minimal and maximal distance spectral gaps, and the unique *n*-vertex unicyclic graph with minimal distance spectral gap are determined. **Keywords:** distance matrix, distance eigenvalue, distance spectral gap, tree, unicyclic graph AMS classifications: 05C50, 15A18 #### 1 Introduction and preliminaries We consider simple undirected graphs. Let G be a connected graph with vertex set $V(G) = \{v_1, \ldots, v_n\}$. For $1 \leq i, j \leq n$, the distance between vertices v_i and v_j in G, denoted by $d_G(v_i, v_j)$, is the length of a shortest path connecting v_i and v_j in G. The distance matrix of G is the $n \times n$ matrix $D(G) = (d_{ij})$, where $d_{ij} = d_G(v_i, v_j)$. Since D(G) is a symmetric matrix, its eigenvalues are all real numbers. The distance eigenvalues of G are the eigenvalues of D(G), denoted by $\lambda_1(G), \ldots, \lambda_n(G)$, arranged in non-increasing order. For $1 \leq k \leq n$, $\lambda_k(G)$ is called the kth distance eigenvalue of G. The study of distance eigenvalues dates back to the classical work of Graham and Pollack [6], Edelberg et al. [4] and Graham and Lovász [5] in 1970s. The first distance eigenvalue (also known as the distance spectral radius) has received much attention. Ruzieh and Powers [10] showed that the path P_n is the unique n-vertex connected graph with maximal first distance eigenvalue, while the complete graph K_n is the unique n-vertex ^{*}Corresponding author. E-mail: rundanxing@126.com connected graph with minimal first distance eigenvalue. Moreover, Stevanović and Ilić [11] showed that the star S_n is the unique n-vertex tree with minimal first distance eigenvalue. Recently, the second distance eigenvalue has also received some attention. Xing and Zhou [13] characterized all connected graphs with second distance eigenvalue in $(-\infty, -2 + \sqrt{2})$, as well as all trees and unicyclic graphs whose second distance eigenvalues belong to $(-\infty, -\frac{1}{2})$ with exception of a particular type of unicyclic graphs. It is known that the spectral gap of a graph is defined as the difference between the largest and the second largest eigenvalues of its adjacency matrix [7]. The distance spectral gap of a connected graph G, denoted by $\zeta(G)$, is defined by the difference between its first and second distance eigenvalues, i.e., $\lambda_1(G) - \lambda_2(G)$. Since D(G) is irreducible and nonnegative, by Perron-Frobenius theorem [9, p. 11], $\lambda_1(G)$ is of multiplicity 1, which implies that $\zeta(G) > 0$. In this note, we investigate the distance spectral gap of trees and unicyclic graphs. We determine the unique *n*-vertex trees with minimal and maximal distance spectral gaps, and the unique *n*-vertex unicyclic graph with minimal distance spectral gap, respectively. We also propose a conjecture about the unicyclic graph with maximal distance spectral gap. Throughout this article, the following notations and lemma are used repeatedly. For an $n \times n$ matrix M, let $\mu_1(M), \ldots, \mu_n(M)$ be the eigenvalues of M (arranged in non-increasing order if $\mu_1(M), \ldots, \mu_n(M)$ are all real numbers). Let A be an $n \times n$ symmetric matrix, and B an $m \times m$ principal submatrix of A. The interlacing theorem [8, pp. 185–186] states that $\mu_{n-m+i}(A) \leq \mu_i(B) \leq \mu_i(A)$ for $1 \leq i \leq m$. Let G be a nontrivial connected graph, and H a nontrivial induced subgraph of G. If H is connected and $d_H(u,v)=d_G(u,v)$ for all $\{u,v\}\subseteq V(H)$, then write $H \subseteq G$. If $H \subseteq G$, then D(H) is a principal submatrix of D(G), and thus **Lemma 1.** Let G be a nontrivial connected graph, and H a nontrivial induced subgraph of G with $H \subseteq G$. Then $\lambda_2(G) \ge \lambda_2(H)$. Let I_n be the $n \times n$ identity matrix, and $J_{m \times n}$ the $m \times n$ all-one matrix. For convenience, let $J_n = J_{n \times n}$ and $\mathbf{1}_n = J_{n \times 1}$. ### 2 The distance spectral gap of trees **Lemma 2.** [13] Let T be a nontrivial tree. Then $\lambda_2(T) \in (-\infty, -\frac{1}{2})$ if and only if $T \cong S_n$ or P_n for some $n \geq 2$, or one of the three graphs T_1, T_2, T_3 shown in Figure 1. Figure 1: Graphs T_1 , T_2 and T_3 in Lemma 2. **Lemma 3.** [3] For $n \ge 2$, $\lambda_{1,2}(S_n) = n - 2 \pm \sqrt{n^2 - 3n + 3}$. For $n \geq 4$, let D_n be the *n*-vertex tree obtained by attaching a pendant vertex to a pendant vertex of S_{n-1} . **Lemma 4.** [12] Let T be an n-vertex tree different from S_n , where $n \geq 4$. Then $\lambda_1(T) \geq \lambda_1(D_n)$ with equality if and only if $T \cong D_n$. Lemma 5. For $n \ge 5$, $\lambda_1(D_n) > 2\sqrt{n^2 - 3n + 3}$. *Proof.* If n = 5, 6, 7, 8, then by direct check, the result follows easily. Suppose that n > 9. Let $v_1v_2v_3v_4$ be a diametrical path of D_n , where v_2 is of degree 2 in D_n , and let v_5, \ldots, v_n be the pendant neighbors of v_3 different from v_4 in D_n . Then $$D(D_n) + 2I_n = \begin{pmatrix} 2 & 1 & 2 & 31_{n-3}^{\top} \\ 1 & 2 & 1 & 21_{n-3}^{\top} \\ 2 & 1 & 2 & 1_{n-3}^{\top} \\ 31_{n-3} & 21_{n-3} & 1_{n-3} & 2J_{n-3} \end{pmatrix}.$$ Since the eigenvalues of $D(D_n)$ are $\lambda_1(D_n), \ldots, \lambda_n(D_n)$, the eigenvalues of $D(D_n) + 2I_n$ are given by $\lambda_1(D_n) + 2, \ldots, \lambda_n(D_n) + 2$, arranged in non-increasing order. It is easily seen that $D(D_n) + 2I_n$ is of rank 4, which implies that 0 is an eigenvalue of $D(D_n) + 2I_n$ with multiplicity n-4. It is also easily seen that the above partition for $D(D_n) + 2I_n$ is equitable, and thus the eigenvalues of its quotient matrix B are also the eigenvalues of $D(D_n) + 2I_n$ [2, pp. 24-25], where $$B = \begin{pmatrix} 2 & 1 & 2 & 3(n-3) \\ 1 & 2 & 1 & 2(n-3) \\ 2 & 1 & 2 & n-3 \\ 3 & 2 & 1 & 2(n-3) \end{pmatrix}.$$ Let $f(\lambda)$ be the characteristic polynomial of B. Then we have $$f(\lambda) = \lambda^4 - 2n\lambda^3 - 2(n-6)\lambda^2 + 16(n-3)\lambda - 12n + 36.$$ Obviously, $\lambda_1(D_n) + 2 = \mu_1(B)$ is the largest root of $f(\lambda) = 0$. By direct calculation, we have $f(2n) = -4(n-1)(2n^2 - 18n + 9) < 0$, which, together with the fact that $f(\lambda) \ge 0$ for $\lambda \ge \mu_1(B) = \lambda_1(D_n) + 2$, implies that $\lambda_1(D_n) + 2 > 2n$, i.e., $\lambda_1(D_n) > 2n - 2$. Since $2\sqrt{n^2 - 3n + 3} < 2\sqrt{n^2 - 2n + 2} = 2n - 2$, the result follows. **Theorem 1.** Let T be a tree on $n \ge 2$ vertices. Then $$\zeta(S_n) \le \zeta(T) \le \zeta(P_n)$$ with left equality if and only if $T \cong S_n$, and right equality if and only if $T \cong P_n$. *Proof.* The cases n=2,3 are trivial. If n=4, then $T\cong S_4$ or P_4 , and by direct check, $\zeta(S_4)=2\sqrt{7}<\zeta(P_4)=4+\sqrt{10}-\sqrt{2}$, which implies the desired result. If $T \cong T_1$, T_2 or T_3 , then by direct calculation, we have $\zeta(S_{|V(T)|}) < \zeta(T) < \zeta(P_{|V(T)|})$. Suppose in the following that $n \geq 5$, and that $T \ncong S_n$, P_n , T_1 , T_2 and T_3 . It is sufficient to show that $\zeta(S_n) < \zeta(T) < \zeta(P_n)$. It is known that $\lambda_1(T) < \lambda_1(P_n)$ [10]. By Lemma 2, we have $\lambda_2(T) > \lambda_2(P_n)$. Thus, $\zeta(T) = \lambda_1(T) - \lambda_2(T) < \lambda_1(P_n) - \lambda_2(P_n) = \zeta(P_n)$. It is also known that $\lambda_2(T) \leq 0$ [6]. By Lemma 3, $\lambda_1(S_n) - \lambda_2(S_n) = 2\sqrt{n^2 - 3n + 3}$. Then $$\zeta(T) - \zeta(S_n) = \lambda_1(T) - \lambda_2(T) - (\lambda_1(S_n) - \lambda_2(S_n))$$ $$\geq \lambda_1(T) - 2\sqrt{n^2 - 3n + 3}.$$ By Lemmas 4 and 5, $\lambda_1(T) \geq \lambda_1(D_n) > 2\sqrt{n^2 - 3n + 3}$. Thus $\zeta(T) > \zeta(S_n)$. # 3 The distance spectral gap of unicyclic graphs For an *n*-vertex connected graph G, let $\sigma(G) = \frac{1}{2} \mathbf{1}_n^{\mathsf{T}} D(G) \mathbf{1}_n$. Obviously, $\sigma(G)$ is just the sum of distances between all unordered pairs of vertices in G, which is known as the transmission (or the Wiener index) of G. For $n \geq 3$, let S_n^+ be the *n*-vertex unicyclic graph obtained by adding an edge to the star S_n . **Lemma 6.** [14] Let G be a unicyclic graph on $n \ge 6$ vertices different from S_n^+ . Then $\sigma(G) \ge n^2 - n - 4 > \sigma(S_n^+)$. **Lemma 7.** For $n \ge 9$, we have $\lambda_1(S_n^+) < 2n - 1 - \sqrt{3} - \frac{8}{n}$. *Proof.* Label by v_1, \ldots, v_n the vertices of S_n^+ , where v_1 is the vertex of maximal degree, v_2 and v_3 are the vertices of degree 2, and v_4, \ldots, v_n are the pendant vertices. Then $$D(S_n^+) + 2I_n = \begin{pmatrix} 2 & 1 & 1 & \mathbf{1}_{n-3}^\top \\ 1 & 2 & 1 & 2\mathbf{1}_{n-3}^\top \\ 1 & 1 & 2 & 2\mathbf{1}_{n-3}^\top \\ \mathbf{1}_{n-3} & 2\mathbf{1}_{n-3} & 2\mathbf{1}_{n-3} & 2\mathbf{1}_{n-3} \end{pmatrix},$$ whose eigenvalues are given by $\lambda_1(S_n^+) + 2, \ldots, \lambda_n(S_n^+) + 2$. By similar analysis as in the proof of Lemma 5, the eigenvalues of $D(S_n^+) + 2I_n$ consist of 0 with multiplicity n-4, and $\mu_1(B), \mu_2(B), \mu_3(B)$ and $\mu_4(B)$, where $$B = \begin{pmatrix} 2 & 1 & 1 & n-3 \\ 1 & 2 & 1 & 2(n-3) \\ 1 & 1 & 2 & 2(n-3) \\ 1 & 2 & 2 & 2(n-3) \end{pmatrix}.$$ By direct calculation, the characteristic polynomial of B is $\det(\lambda I_4 - B) = (\lambda - 1)f(\lambda)$, where $f(\lambda) = \lambda^3 - (2n - 1)\lambda^2 + (n + 1)\lambda + 3n - 9$. Thus, the characteristic polynomial of $D(S_n^+) + 2I_n$ is equal to $\lambda^{n-4}(\lambda - 1)f(\lambda)$. Since S_n^+ is of diameter 2, we have $P_3 \leq S_n^+$, and then by Lemma 1, $\lambda_1(S_n^+) + 2 \geq \lambda_2(S_n^+) + 2 \geq \lambda_2(P_3) + 2 = 3 - \sqrt{3} > 1$, implying that $\lambda_1(S_n^+) + 2 = \mu_1(B)$ is the largest root of the equation $f(\lambda) = 0$. By direct calculation, we have $$n^{3}f\left(2n+1-\sqrt{3}-\frac{8}{n}\right)$$ $$= (10-4\sqrt{3})n^{5}-(13\sqrt{3}+6)n^{4}+(55\sqrt{3}-98)n^{3}+(64\sqrt{3}+136)n^{2}$$ $$+(256-192\sqrt{3})n-512$$ $$= (10-4\sqrt{3})(n-9)^{5}+(444-193\sqrt{3})(n-9)^{4}$$ $$+(7786-3653\sqrt{3})(n-9)^{3}+(67474-33929\sqrt{3})(n-9)^{2}$$ $$+(289444-154803\sqrt{3})(n-9)+492490-277938\sqrt{3}$$ > 0. i.e., $f\left(2n+1-\sqrt{3}-\frac{8}{n}\right)>0$, which, together with the facts that f(2)=-(3n-5)<0 and f(1)=2n-6>0, implies that $\mu_1(B)=\lambda_1(S_n^+)+2\in (2,2n+1-\sqrt{3}-\frac{8}{n})$, i.e., $\lambda_1(S_n^+)\in (0,2n-1-\sqrt{3}-\frac{8}{n})$. **Theorem 2.** Let G be a unicyclic graph on $n \geq 3$ vertices. Then $$\zeta(G) \ge \zeta(S_n^+)$$ with equality if and only if $G \cong S_n^+$. *Proof.* The case n=3 is trivial. Let G be an n-vertex unicyclic graph different from S_n^+ , where $n \geq 4$. It is sufficient to show that $\zeta(G) > \zeta(S_n^+)$. It is known that $\lambda_2(G) \leq 0$ [1]. By Rayleigh-Ritz theorem [8, p. 176] and Lemma 6, we have $$\lambda_1(G) = \mu_1(D(G)) \ge \frac{\mathbf{1}_n^\top D(G) \mathbf{1}_n}{\mathbf{1}_n^\top \mathbf{1}_n} = \frac{2\sigma(G)}{n} \ge \frac{2(n^2 - n - 4)}{n} = 2n - 2 - \frac{8}{n},$$ and thus $$\zeta(G) - \zeta(S_n^+) = \lambda_1(G) - \lambda_2(G) - (\lambda_1(S_n^+) - \lambda_2(S_n^+)) \\ \ge 2n - 2 - \frac{8}{n} - \lambda_1(S_n^+) + \lambda_2(S_n^+).$$ For n=4,5,6,7,8, by direct check, we have $2n-2-\frac{8}{n}-\lambda_1(S_n^+)+\lambda_2(S_n^+)>0$, which implies the desired result. Suppose that $n\geq 9$. Since S_n^+ is of diameter 2, we have by Lemma 1 that $\lambda_2(S_n^+)\geq \lambda_2(P_3)=1-\sqrt{3}$, which, together with Lemma 7, implies that $$2n-2-\frac{8}{n}-\lambda_1(S_n^+)+\lambda_2(S_n^+)\geq 2n-1-\sqrt{3}-\frac{8}{n}-\lambda_1(S_n^+)>0.$$ Thus the result follows. Let $P_n = v_1 \dots v_n$. Let P_n^+ be the *n*-vertex unicyclic graph obtained from P_n by adding an edge between v_1 and v_3 . Yu et al. [15] showed that P_n^+ is the unique graph with maximal first distance eigenvalue among *n*-vertex unicyclic graphs. Now we conjecture that for a unicyclic graph G on $n \geq 3$ vertices, $$\zeta(G) \le \zeta(P_n^+)$$ with equality if and only if $G \cong P_n^+$. Acknowledgement. This work was supported by the Guangdong Provincial Natural Science Foundation of China (No. 2014A030310413), the Science Foundation for Young Teachers of Wuyi University (No. 2014zk05), and the Key Project of Department of Education of Guangdong Province (No. 2014KZDXM055). #### References - [1] R. Bapat, S.J. Kirkland, M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005) 193-209. - [2] A.E. Brouwer, W.H. Haemers, Spectra of graphs, Springer, New York, 2012. - [3] D.M. Cvetković, M. Doob, I. Gutman, A. Torgašev, Recent Results in the Theory of Graph Spectra, North-Holland, Amsterdam, 1988. - [4] M. Edelberg, M.R. Garey, R.L. Graham, On the distance matrix of a tree, Discrete Math. 14 (1976) 23-39. - [5] R.L. Graham, L. Lovász, Distance matrix polynomials of trees, Adv. Math. 29 (1978) 60–88. - [6] R.L. Graham, H.O. Pollack, On the addressing problem for loop switching, Bell System Tech. J. 50 (1971) 2495–2519. - [7] L. Hoory, N. Linial, A. Wigderson, Expander graphs and their applications, Bull. Amer. Math. Soc. (N.S.) 43 (2006) 439-561. - [8] R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1990. - [9] H. Minc, Nonnegative Matrices, John and Sons Inc., New York, 1988. - [10] S.N. Ruzieh, D.L. Powers, The distance spectrum of the path P_n and the first distance eigenvector of connected graphs, Linear and Multilinear Algebra 28 (1990) 75-81. - [11] D. Stevanović, A. Ilić, Distance spectral radius of trees with fixed maximal degree, Electron. J. Linear Algebra 20 (2010) 168-179. - [12] Y. Wang, B. Zhou, On distance spectral radius of graphs, Linear Algebra Appl. 438 (2013) 3490-3503. - B. Zhou. On largest dis-[13] R. Xing, the second eigenvalue, Algebra, tance Linear and Multilinear http://dx.doi.org/10.1080/03081087.2015.1127317. - [14] R. Xing, B. Zhou, J. Li, On the distance signless Laplacian spectral radius of graphs, Linear and Multilinear Algebra, 62 (2014) 1377-1387. - [15] G. Yu, Y. Wu, Y. Zhang, J. Shu, Some graft transformations and its application on a distance spectrum, Discrete Math. 311 (2011) 2117– 2123.