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Abstract

The distance spectral gap of a connected graph is defined as the
difference between its first and second distance eigenvalues. In this
note, the unique n-vertex trees with minimal and maximal distance
spectral gaps, and the unique n-vertex unicyclic graph with minimal
distance spectral gap are determined.
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1 Introduction and preliminaries

We consider simple undirected graphs. Let G be a connected graph with
vertex set V(G) = {v1,...,v,}. For 1 < 4,5 < n, the distance hetween
vertices v; and v; in G, denoted by dg(vi,v;), is the length of a shortest
path connecting v; and v; in G. The distance matrix of G is the n x n
matrix D(G) = (di;), where di; = dg(vi,v;). Since D(G) is a symmetric
matrix, its eigenvalues are all real numbers. The distance eigenvalues of
G are the eigenvalues of D(G), denoted by A (G),...,A.(G), arranged in
non-increasing order. For 1 < k < n, Ax(G) is called the kth distance
eigenvalue of G.

The study of distance eigenvalues dates back to the classical work of
Graham and Pollack (6], Edelberg et al. [4] and Graham and Lovasz (5] in
1970s. The first distance eigenvalue (also known as the distance spectral
radius) has received much attention. Ruzieh and Powers [10] showed that
the path P, is the unique n-vertex connected graph with maximal first
distance eigenvalue, while the complete graph K, is the unique n-vertex
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connected graph with minimal first distance eigenvalue. Moreover, Ste-
vanovi¢ and Ilié [11] showed that the star S, is the unique n-vertex tree
with minimal first distance eigenvalue. Recently, the second distance eigen-
value has also received some attention. Xing and Zhou [13] characterized
all connected graphs with second distance eigenvalue in (—o0, —2 + v/2),
as well as all trees and unicyclic graphs whose second distance eigenvalues
belong to(—oo, —%) with exception of a particular type of unicyclic graphs.

It is known that the spectral gap of a graph is defined as the difference
between the largest and the second largest eigenvalues of its adjacency
matrix [7]. The distance spectral gap of a connected graph G, denoted
by {(G), is defined by the difference between its first and second distance
eigenvalues, i.e., A;(G) — A2(G). Since D(G) is irreducible and nonnegative,
by Perron-Frobenius theorem [9, p. 11], A;(G) is of multiplicity 1, which
implies that ((G) > 0.

In this note, we investigate the distance spectral gap of trees and uni-
cyclic graphs. We determine the unique n-vertex trees with minimal and
maximal distance spectral gaps, and the unique n-vertex unicyclic graph
with minimal distance spectral gap, respectively. We also propose a con-
jecture about the unicyclic graph with maximal distance spectral gap.

Throughout this article, the following notations and lemma are used

repeatedly.
For an n x n matrix M, let u;(M),..., u,(M) be the eigenvalues of M
(arranged in non-increasing order if ui1(M),..., u,(M) are all real num-

bers). Let A be an n X n symmetric matrix, and B an m x m princi-
pal submatrix of A. The interlacing theorem [8, pp. 185-186] states that
Un—m+i(A) < pi(B) < pi(A) for 1 <i<m.

Let G be a nontrivial connected graph, and H a nontrivial induced
subgraph of G. If H is connected and dg(u,v) = dg(u,v) for all {u,v} C
V(H), then write H 9 G. If H < G, then D(H) is a principal submatrix
of D(G), and thus

Lemma 1. Let G be a nontrivial connected graph, and H a nontrivial
induced subgraph of G with H < G. Then A2(G) > Ao(H).

Let I, be the n x n identity matrix, and J,,x» the m x n all-one matrix.
For convenience, let J, = J,x» and 1, = Jpx;.

2 The distance spectral gap of trees

Lemma 2. [13] Let T be a nontrivial tree. Then Ay(T) € (—o0, —3) if and
only if T = S, or P, for some n > 2, or one of the three graphs T1,T5,T3
shown in Figure 1. '
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T1 Tz T3
Figure 1: Graphs T3, T2 and T3 in Lemma 2.

Lemma 3. [3] Forn > 2, A\ 2(Sp) =n—2++vn2 —3n+3.

For n > 4, let D,, be the n-vertex tree obtained by attaching a pendant
vertex to a pendant vertex of S,_i.

Lemma 4. [12] Let T be an n-vertez tree different from S, where n > 4.
Then A\ (T) 2 A (Dn) with equality if and only if T = D,,.
Lemma 5. Forn >5, \{(D,) > 2v/n?2 —3n+3.

Proof. If n = 5,6,7,8, then hy direct check, the result follows easily. Sup-

pose that n > 9.
Let vyvgv3v4 be a diametrical path of D,,, where vy is of degree 2 in Dy,

and let vs,...,v, be the pendant neighbors of v; different from vy in D,.
Then
2 1 2 311,
_ 1 2 1 21l .
D(D,)+2I, = 9 1 9 11

31,3 21p-3 1,3 2Jn_3

Since the eigenvalues of D(D,,) are A1(D,),. .., An(Dyr), the eigenvalues of
D(Dp) + 21, are given by Ai(Dp) +2,...,An(Dn) + 2, arranged in non-
increasing order. It is easily seen that D(D,) + 2I,, is of rank 4, which
implies that 0 is an eigenvalue of D(D,) + 2I,, with multiplicity n — 4. It
is also easily seen that the above partition for D(D,) + 21, is equitable,
and thus the eigenvalues of its quotient matrix B are also the eigenvalues
of D(D,) + 21, (2, pp. 24-25), where

2 1 2 3(n-3)

121 2n-3)
B=19 192 n-3
3 2 1 2n-3)

Let f()) be the characteristic polynomial of B. Then we have

FA) = 2% = 2n23 — 2(n — 6)A% + 16(n — 3)A — 12n + 36.
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Obviously, A1(D,) + 2 = p1(B) is the largest root of f(A) = 0. By direct
calculation, we have f(2n) = —4(n — 1)(2n? — 18n + 9) < 0, which, to-
gether with the fact that f(A) > 0 for A > p1(B) = A1(Dn) + 2, implies
that A\;(D,) +2 > 2n, ie., \(Dn) > 2n — 2. Since 2vn?2 -3n+3 <
2v/n2 — 2n + 2 = 2n — 2, the result follows. O

Theorem 1. Let T be a tree on n > 2 vertices. Then

((Sn) S T) < ¢(Pr)

with left equality if and only if T = S,, and right equality if and only if
T=P,.

Proof. The cases n = 2,3 are trivial. If n = 4, then T & S, or P4, and
by direct check, ¢(S;) = 2v7 < ¢(P;) = 4 4+ v/10 — /2, which implies the
desired result.

If T = Th, T, or T3, then by direct calculation, we have ¢ (Sjv(r)) <
¢(T) < ¢ (Bvry)-

Suppose in the following that n > 5, and that T % S,,, P,, Th, T3 and
T3. It is sufficient to show that ((S,) < {(T) < ¢{(Pr).

It is known that Ay (T") < A1(P,) [10]. By Lemma 2, we have Ay(T) >
A2(Pr). Thus, {(T) = M(T) — 22(T) < M(P) — M (Pp) =¢(Pr)-

It is also known that A\o(T") < 0 [6]. By Lemma 3, A\1(Sn) — A2(Sp) =
2v/n? —3n + 3. Then

C(T) - C(Sn)

M(T) = A2(T) = (M1(Sn) — A2(Sn))
A(T) - 2v/n2 —3n + 3.

By Lemmas 4 and 5, A (T) > A (Dn) > 2v/n?2 —-3n+3. Thus ¢(T) >
¢(Sn). o

v

3 The distance spectral gap of unicyclic graph-
S

For an n-vertex connected graph G, let o(G) = %1: D(G)1,,. Obviously,
o(G) is just the sum of distances between all unordered pairs of vertices in
G, which is known as the transmission (or the Wiener index) of G.

For n > 3, let S;t be the n-vertex unicyclic graph obtained by adding
an edge to the star S,.

Lemma 6. [14] Let G be a unicyclic graph on n > 6 vertices different from
S}t. Then o(G) > n% —n—4> a(S}).

Lemma 7. Forn > 9, we have \;(5}) <2n—-1—-+/3 - L3
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Proof. Label by vy,...,v, the vertices of S}, where v, is the vertex of
maximal degree, vy and vs are the vertices of degree 2, and vy,...,v, are

the pendant vertices. Then

2 1 1 ) L
1 2 1 217

1oz 21p-3 21,3 2J,-3

whose eigenvalues are given by A\ (S;) + 2,...,A.(S;Y) + 2. By similar
analysis as in the proof of Lemma 5, the eigenvalues of D(S;})+ 2/, consist
of 0 with multiplicity n — 4, and u;(B), pa(B), uz(B) and p4(B), where

211 n-3
1 2(n-3)
2 2(n-3)
2 2(n-3)

B =

— -
N = DN

By direct calculation, the characteristic polynomial of B is det(Aly — B) =
(A = 1)f(), where f(A) = A3 — (2n — 1)A2 + (n + 1)A + 3n — 9. Thus,
the characteristic polynomial of D(S;) + 21, is equal to A" ~4(\ — 1) f(A).
Since S; is of diameter 2, we have P3 d S}, and then by Lemma 1,
MSH)+2 2> M(SH)+2 2 X(P3)+2 =3-+3 > 1, implying that
A1(S7) +2 = p1(B) is the largest root of the equation f(A) = 0. By direct
calculation, we have

8
nsf(2n+l—\/_—;)

= (10 — 4v3)n® — (13V3 + 6)n* + (553 — 98)n® + (64V/3 + 136)n?
+(256 — 192v/3)n — 512
= (10 — 4V3)(n — 9)° + (444 — 193V/3)(n — 9)*
+(7786 — 3653V/3)(n — 9)° + (67474 — 33929V/3)(n — 9)?
+(289444 — 154803v/3)(n — 9) + 492490 — 277938V/3
> 0,
ie., f(2n+1-+v3-2) > 0, which, together with the facts that f(2) =

—(3n —5) < 0 and f(1) = 2n — 6 > 0, implies that u;(B) = \i(SF)+2 €
(2,2n+1—-v3-8),ie, M(SH) e (0,2n-1-+v3-8). O
Theorem 2. Let G be a unicyclic graph on n > 3 vertices. Then

¢(G) 2 ¢(SY)

with equality if and only if G = S;F.

251



Proof. The case n = 3 is trivial. Let G be an n-vertex unicyclic graph
different from S, where n > 4. It is sufficient to show that ¢(G) > ¢{(S;}).

It is known that A\2(G) < 0 [1]. By Rayleigh-Ritz theorem [8, p. 176]
and Lemma 6, we have

1, D(G)n _20(G) , 2An*—n—-4) _, , 8
', — o = n n’

M(G) =m(D(G)) 2

and thus
A(G) — 2(G) — (M(Sh) — 22(SH))
> n—-2- % = A1(SH) + 2a(SH).

¢(G) - ¢(S7)

For n = 4,5,6,7,8, by direct check, we have 2n—2— 2 —X,(S})+X2(S7) >
0, which implies the desired result. Suppose that n > 9. Since S} is of
diameter 2, we have by Lemma 1 that A\2(S;) > Ay(P3) = 1 — /3, which,
together with Lemma 7, implies that

2n-2-%-,\I(S,:f)+Az(S:)22n—1—¢§—%—)~1(52’)>°-

Thus the result follows. O

Let P, = v;...v,. Let P} be the n-vertex unicyclic graph obtained
from P, by adding an edge between v; and v3. Yu et al. [15] showed that
P is the unique graph with maximal first distance eigenvalue among n-
vertex unicyclic graphs. Now we conjecture that for a unicyclic graph G on
n > 3 vertices,

(@) <P

with equality if and only if G = P}.
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