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Abstract Let G be a graph of order n, the number of positive eigenvalues of
G is called the positive inertia index of G and denoted by p(G). The minimum
number of complete multipartite subgraphs in any complete multipartite graph
edge decomposition of graph G, in which the edge-induced subgraph of each edge
subset of the decomposition is a complete multipartite graph, is denoted by £(G).
In this paper, we prove £(G) > p(G) for any graph G. Especially, if £(G) = 2,
then p(G) = 2. We also characterize the graph G with p(G) =n — 2.
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1 Introduction

Throughout the paper, graphs are simple, i.e., without loops and multiple

edges. Let G = (V(G), E(G)) be a simple graph of order n with vertex set V(G) =
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{v1,v2,...,vn} and edge set E(G). The adjacency matrix A(G) = (@ij}nxn of G
is defined as follows: ai; = 1 if v; is adjacent to v;, and a;; = 0 otherwise. The
eigenvalues A1, Az, Az, -+, An of A are said to be the eigenvalues of the graph G
and to form the spectrum of this graph. The numbers of positive, negative and
zero eigenvalues in the spectrum of the graph G are called positive inertia index,
negative inertia index and nullity of the graph G, and are denoted by p(G), n(G)
and 7(G), respectively. Obviously p(G) + n(G) + n(G) = n. There are many
studies on nullity of graph (see{1,4-6,8-10,15]). However, the studies on positive
inertia index of graph are very few.

Let G be a graph, and G1,Gz,--- ,G be complete multipartite (bipartite)

subgraphs of G, such that

E(G)UE(G3)u- - VE(Gy) = E(G), E(G)NE(G;)=0 (4,5=1,2,--- ,ki#]j).
(1)
We call {G,,Ga,---,Gk} is a complete multipartite (bipartite) graph edge de-
composition of graph G. The minimum number of complete multipartite (bipar-
tite) subgraphs in a complete multipartite (bipartite) graph edge decomposition
of graph G is called the complete multipartite (bipartite) graph edge decomposi-
tion number of graph G and denoted by ¢(G) (bd(G), respectively). The number
bd(G) is also called the biclique decomposition number of graph G.
The well-known theorem of Graham and Pollak {7] (see also (3, 12-14,17))

asserts that biclique decomposition number is at least the maximum of p(G) and
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n(G), that is, bd(G) > maz{p(G),n(G)}. In this paper, we will generalize this
theorem, show that &(G) > p(G) for any graph G. Especially, if €(G) = 2,
then p(G) = 2. We also characterize the graphs G with p(G) = n — 2, where
n = {V(G)|.

Let G be a graph, U C V(G), the vertex-induced subgraph G[U] is the sub-
graph of G whose vertex set is U and whose edge set consists of all edges of G
which have both ends in U. G\ U denotes the graph G[V(G) \ U]. F C E(G),
the edge-induced subgraph G(F)] is the subgraph of G whose edge set is F’ and
whose vertex set consists of all ends of edges of F. Let G and H be two vertex
disjoint graphs, G U H denotes the union graph of G and H. A matching of G
is a collection of independent edges of G. The meaximum number of edges in
a matching of G is called the matching number of G and denoted by u(G). A
covering of G is a set of vertices which together meet all edges of the graph. The
minimum number of vertices in a covering of G is called the covering number of
G and denoted by B(G). u € V(G), dg(u) denotes the degree of vertex » in G.
Kn,Cy and Kaq.ng. m, denote the complete graph, the cycle and the complete

multipartite graph, respectively.
2 Some Lemmas

The following Lemma 2.1 is clear.

Lemma 2.1. p(GU H) = p(G) + p(H); e(GU H) = &(G) + e(H).
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Lemma 2.2({16]). A graph has exactly one positive eigenvalue if and only if
its non-isolated vertices form a complete multipartite graph. On the other words,
p(G) = 1 if and only if &(G) = 1.

Lemma 2.3([2,11]). (the Courant-Weyl inequalities) Let A1(X), A2(X), -,
An (XYM (X) 2 A2(X) = -+ 2 Aa(X)) be the eigenvalues of a real symmetric
matrix X. If A and B are real symmetric matrices of order n, and C = A + B.
Then

Ai+j+1(C) < Aig1(A) + Ajsa(B),
An=i=j(C) 2 An—i(A4) + An—;(B),
where 0 < 4,j,i+j+1<n.

Lemma 2.4([2,11]). (the Cauchy inequalities) Let A be Hermtian matrix
with eigenvalues Ay > A2 > - > A,, B be one of its principal submatrices and
B have eigenvalues p) > --- > pm. Then the inequalities An—m4i < s < Aii =
1,--,m) hold.

Lemma 2.5([2]). Let G be a tree. Then p(G) = u(G).

3 The relation between p(G) and ¢(G)

Theorem 3.1. Let G be a graph. Then &(G) > p(G).
Proof. We may ignore isolated vertices. Let €(G) = d, we use mathematical
induction on d. If d = 1, then the conclusion holds according to Lemma 2.2.

Suppose that there exists a partition

e1UeaU---Uea = E(G)1 €:NE; =0 (1'5.7= 1,2,--- rd»“#]) (1)
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of the set E(G) of edges of G and such that the subgraph G; of G, induced by ¢; is
a complete multipartite graph for eachi=1,2,--- ,d. Denote G[e2U- - -Ueq) = H.
Let X = V(G1)NV(H),Y = V(G1)\ X,Z = V(H)\ X, so the adjacency matrix
of graph G is

A BT 0 }

AG)=| B Ci+C; DT
0 D E

A BT Cy DT _
where [ B C ] = A(G)) and [ D E = A(H).
As G, is a complete multipartite graph, its vertex set naturally has a de-
composition, so the vertices of Y also has a decomposition induced by vertex
decomposition of G;. Take one vertex from each part of the decomposition of

Y, denote the set of these vertices by Y;. We can obtain a new vertex-induced

subgraph K = G[Y1 U X U Z], and the adjacency matrices of K is

A BT 0
AK)=| By ¢Ci1+C, DT |.
0 D E

Since the vertices of Y \ Y1 have the same adjacent relations with some vertex of
Y1, we can obtain p(G) = p(K).

Suppose z,y ¢ V(K), we construct a new graph M as follows: V(M) =
V(K) U {z,y}, E(M) = E(K) U {(z,)} U {(®,9)lo: € Y1 UX}U {(w,v)lv: €

Y1 U X}. Then the adjacency matrix of M is

o 1 i i 0

1 0 47 s 0
AM)=| 1 5 A BT 0 ,

J2 J2 B, Ci+C, DT

0 0 O D FE
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where j; and jo are vectors with dimension |Y1| and |X|, respectively, and the

components of j; and j2 are equal to 1. For convenient, denote

0 1 47
Az=|1 0 47|, Ba=[3j2 72 B ].

o A
Then
Az Bf 0
AM)y=]| B, Gi+Cx DT |,
0 D E
Az B'{ . . . . .
where B, C is a adjacency matrix of a complete multipartite graph. By

Ax BT

tri
the matrix [ B, C

] has only one positive eigenvalue; A2 is adjacency matrix
of M[Y1U {z,y}| (here M[Y1U {z,y}] is a complete graph whose order is not less
than 2), whose is invertible and has only one positive eigenvalue; and A(M) is
congruent to

A2 0 0
0 Ci—-B:A;'Bf+c, DT |,
0 D E

we know that Cy — B2 A7 ! BT is a negative semi-definite matrix, whose eigenvalues
Cc, DT )
D E

- BzA;xB; +C; DT

d—1, so p(M) < d, and according to Lemma 2.4, we have p(G) = p(K) < p(M) <

are less than zero. According to the induction hypothesis, we have p(

p(H) < d—1. By Lemma 2.3, we can obtain p([ =

d. O
Corollary 3.1. Let G be a graph with ¢(G) = 2. Then p(G) = 2.
proof. According to Theorem 3.1 and Lemma 2.2, the proof is clear. O
Remark 3.1. The inverse of Corollary 3.1 doesn’t hold. For the following
graph H(see Figure 1), we have p(H) = 2, but e(H) = 3.

(In fact, the edges of H can’t be decomposed into union of two complete
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Figure 1: Graph H with p(H) = 2, but ¢(H) = 3.

multipartite graphs. If not, suppose edges of H can be decomposed into union of
two complete multipartite graphs H; and H3, then H; and H; are not complete
k(> 4)-partite graphs(otherwise, K4 is a subgraph of H). If H; is a complete
3-partite graph and each part contains only one vertex, then H; = K3, but the
edges in H, not in Hi, can’t form a complete multipartite graph; If H; is a
complete 3-partite graph and there is one part which contains more than two
vertices, then K1,1,2 is a subgraph of H, but there doesn’t exist such subgraph in
H; If H, is a complete 2-partite graph and there is one part which contains only
a vertex, then H, is a star graph, but the edges in H, not in Hi, can’t form a
complete multipartite graph; If H; is a complete 2-partite graph and each part
contains at least two vertices, if one part contains more than two vertices, then
K3 is a subgraph of H, but there doesn’t exist such subgraph in H. Hence
H) = K2, H2 = Ka.2, but |E(H,)| + |E(H2)| = 8, a contradiction.

We note that H is the union of three complete multipartite graphs signified
by thick, thin and middle-line in Figure 1, respectively. On the other hand, we

can easily obtain spectrum of H, sepc(H) = {3,1,0,0,-2,-2}.)
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Remark 3.2. From Table 1 of [2], we can easily prove that the equality in
Theorem 3.1 holds for all graphs whose the number of vertices are not greater
than 5. Graph H (in Figure 1) is the graph which has the least number of vertex
such that equality of Theorems 3.1 does’t hold.

Corollary 3.2. Let G be a graph. Then 8(G) > p(G).

proof. As the edges of G can be decomposed into 3(G) star graphs, and each
star graph is a complete multipartite graph, so 8(G) > &(G) 2 p(G). O

Corollary 3.3. Let G be a tree. Then p(G) = &(G).

proof. For tree G, we have ¢(G) = u(G). The conclusion is clear by Lemma
25. 0O

Let G\ = (X1, 1) and G2 = (X2, p2) be two graphs, the sum G1+G2 = (X, i)
of G1 and G2 is a graph, where X = X, x Xs. Let (z1,z2), (v1,%2) € X, the
vertices (x1,x2) and (y1,y2) are adjacent in the sum G; + G, if and only if
either x1 = y and (x2,y2) € p2 or (z1,41) € p1 and 22 = y2. Let = be odd,
we know, from (18], p(Cn + Clat1)n) = €(Cn + Claeqryn) = LT+ - 4
complete multipartite graph edge decomposition of Cs + Cis, which each edge-
induced subgraph is a star graph or a 4-cycle, is given by the following Figure
2, where black points denote the center of star graph, cycles denote 4-cycle of
decomposition. We can obtain a ring if we curl edges from up to down and from

left to right.
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Figure 2: Graph C5 + Ci5

4 Graph G with p(G) =n -2

In this section, we will characterize the graphs by using positive inertia index.
Obviously, if G is a nonempty graph with three vertices, then p(G) =1, If G is a
graph with n vertices, then there does not exist graph G with p(G) = n.

Lemma 4.1. Let G be a graph of order n. Then p(G) = n — 1 if and only if
n=2 G=K,.

proof. Suppose that p(G) = n — 1, by Corollary 3.2, we have 3(G) > n — 1.
This implies that G is a complete graph. Furthermore, p(G) = 1 by Lemma 2.2.

Hence n =2 and G = K2. O

-4

~ 4
“ ¢
a

Ft Fz F:

Figure 3: The graph G with four vertices and p(G) = 2

Lemma 4.2([2]). (1)Let G be a graph with four vertices. Then p(G) = 2 if

and only if G € {F, F2, F3}.

263



(2)Let G be a graph with five vertices. Then p(G) = 3 if and only if G = Cs.

Lemma 4.3. There doesn’t exist graph G of order 6 with £(G) = 4.

proof. Suppose that there exist a graph G of order 6 with £(G) = 4, then
G has no isolated vertex and isn’t a complete graph (if G is a complete graph,
then £(G) = 1, a contradiction. If G has an isolated vertex w, then 8(G\ {w}) >
e(G\ {w}) = &(G) = 4, this implies that G \ {w} is a complete graph. so
€(G) = (G \ {w}) = 1, a contradiction). Let u,v be two non-adjacent vertices

of graph G, then G\ {u,v} is a graph of order 4 with p(G \ {u,v})

2 (if
p(G\ {%,v}) < 1, then (G \ {1,v}) < 1 by Remark 3.2, thus ¢(G) < 3, a
contradiction. If p(G \ {u,v}) = 3, then &(G \ {u,v}) = 3, thus G\ {u,v} is a
complete graph, so €(G) < €(G \ {u,v}) +2 = 1+ 2 = 3, a contradiction). By
Lemma 4.2 (1), we consider the following two cases.

Case 1. If G\ {u,v} = F,V(F1) = {1,2,3,4} (see Figure 4). Without loss
of generality to assume that dg(u) > de(v). If dg(u) = 4, then the edges of G
can be decomposed into a Ki,1,2 and two star graphs. If dg(u) = 3, then the
edges of G can be decomposed into a K1,3,2 and two star graphs or a K22 and
two star graphs. If dg(u) = 2 and u is adjacent to vertices 1 and 4 at the same
time, (1) if dg(v) = 2, then the edges of G can be decomposed into a K3 and two
star graphs or a K22 and two star graphs; (2) if de(v) = 1, then the edges of G
can be decomposed into three star graphs. If dg(u) = 2 and u is not adjacent to
vertices 1 and 4 at the same time, then the edges of G can be decomposed into

a K3 and two star graphs or a K22 and two star graphs. If dg(u) = 1,then the
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edges of G can be decomposed into three star graphs. Therefore, €(G) < 3, this
is a contradiction.

Case 2. Similar to the proof of case 1, if G\ {u, v} & F> or F3, then ¢(G) < 3,
this is a contradiction. O

Lemma 4.4. There doesn’t exist graph G of order 7 with £(G) = 5.

proof. Suppose that there exist a graph G of order 7 with ¢(G) = 5, then G
is not a complete graph and has no isolated vertex. Let u, v be two non-adjacent
vertices of graph G, then G\ {u,v} is a graph of order 5 with p(G \ {u,v}) =3
(if p(GC \ {u,v}) < 2, then (G \ {u,v}) < 2 by Remark 3.2, thus ¢(G) < 4, a
contradiction. If p(G \ {u,v}) = 4, then &(G \ {u,v}) = 4, thus G\ {u,v} is a
complete graph, so £(G) < e(G \ {u,v}) + 2 =1+ 2 = 3, a contradiction). By
Lemma 4.2(2), we have G \ {u,v} = Cs. Without loss of generality to assume
that dg(x) > dg(v). If dg(u) > 4, then the edges of G can be decomposed
into a K1,1,2 and three star graphs. If do(u) = 3, then the edges of G can be
decomposed into a K1,1,2 and three star graphs or a K22 and three star graphs.
If dg(u) = 2, then the edges of G can be decomposed into a K3 and three star
graphs or a K22 and three star graphs. If dg(u) = 1, then the edges of G can be
decomposed into four star graphs. Therefore, £(G) < 4, this is a contradiction.
]

Theorem 4.1. Let G be a graph of order n. Then p(G) = n — 2 if and only
if

1 n=2 G2K,;
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2)n=3,G= K UKz, Ki2or Ks;

Yyn=4,G= F,For F;

4)n=5 G=Cs.

proof. By Lemma 4.1 and Lemma 4.2, we only need to show that there
doesn’t exist graph G with p(G) = n — 2 when n > 6.

Suppose that there exists a graph G with p(G) = n — 2 (here n > 6). By
Theorem 2.1, we have (G) > p(G). Hence e(G) =n—1orn—2.

(1) If (G) = n— 1, then B(G) = n—1 and G is a complete graph. Therefore,
e(G) = 1. However, n > 6, this is a contradiction.

(2) We will show that there doesn’t exist a graph G such that ¢(G) = n —
2 when n > 6. By using nathematical induction on n. The conclusion holds
according to Lemma 4.3 and Lemma 4.4 when n = 6 or 7. Now, let G be a graph
with n(> 8) vertices and €(G) = n — 2, then G is not a complete graph and has
no isolated vertex. Furthermore, let u,v are two non-adjacent vertices of graph
G, then (G \ {¢, v}) < n—3 (if not, we know that G\ {u,v} is a complete graph.
Therefore, £(G) < 3. However, (G) = n — 2 > 6, which is a contradiction),
and e(G \ {u,v}) 2 n—4 (if not, €(G) < n—2). Soe(G\ {u,v}) =n—-4=
IV(G\ {u,v})] — 2. According to the induction hypothesis, there doesn’t exist

such graph G\ {u,v}. D
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