The characterization of graph by positive inertia index *

Haicheng Ma^{a,b,*}, Wenhua Yang^b, Xiafei Meng^b, Shenggang Li^{b,*}

- a. Department of Mathematics, Qinghai Nationalities University, Xining, Qinghai 810007, P.R. China
- b. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, P.R. China

Abstract Let G be a graph of order n, the number of positive eigenvalues of G is called the positive inertia index of G and denoted by p(G). The minimum number of complete multipartite subgraphs in any complete multipartite graph edge decomposition of graph G, in which the edge-induced subgraph of each edge subset of the decomposition is a complete multipartite graph, is denoted by $\varepsilon(G)$. In this paper, we prove $\varepsilon(G) \geq p(G)$ for any graph G. Especially, if $\varepsilon(G) = 2$, then p(G) = 2. We also characterize the graph G with p(G) = n - 2.

Keywords Positive inertia index; Edge decomposition; Matching number; Covering number

1 Introduction

Throughout the paper, graphs are simple, i.e., without loops and multiple edges. Let G = (V(G), E(G)) be a simple graph of order n with vertex set V(G) = 0

^{*}This work is supported by National Natural Science Foundation of China(11561056, 11661066), National Natural Science Foundation of Qinghai Provence(2016-ZJ-914), and Scientific Research Fund of Qinghai University for Nationalities(2015G02).

^{*}Corresponding author. E-mail: qhmymhc@163.com (H.-C. Ma), shenggangli@yahoo.com.cn (S.-G. Li)

 $\{v_1, v_2, ..., v_n\}$ and edge set E(G). The adjacency matrix $A(G) = (a_{ij})_{n \times n}$ of G is defined as follows: $a_{ij} = 1$ if v_i is adjacent to v_j , and $a_{ij} = 0$ otherwise. The eigenvalues $\lambda_1, \lambda_2, \lambda_3, \cdots, \lambda_n$ of A are said to be the eigenvalues of the graph G and to form the spectrum of this graph. The numbers of positive, negative and zero eigenvalues in the spectrum of the graph G are called positive inertia index, negative inertia index and nullity of the graph G, and are denoted by p(G), n(G) and q(G), respectively. Obviously p(G) + n(G) + q(G) = n. There are many studies on nullity of graph (see[1,4-6,8-10,15]). However, the studies on positive inertia index of graph are very few.

Let G be a graph, and G_1, G_2, \dots, G_k be complete multipartite (bipartite) subgraphs of G, such that

$$E(G_1) \cup E(G_2) \cup \cdots \cup E(G_k) = E(G), \quad E(G_i) \cap E(G_j) = \emptyset \quad (i, j = 1, 2, \cdots, k, i \neq j).$$

$$(1)$$

We call $\{G_1, G_2, \dots, G_k\}$ is a complete multipartite (bipartite) graph edge decomposition of graph G. The minimum number of complete multipartite (bipartite) subgraphs in a complete multipartite (bipartite) graph edge decomposition of graph G is called the complete multipartite (bipartite) graph edge decomposition number of graph G and denoted by $\varepsilon(G)$ (bd(G), respectively). The number bd(G) is also called the biclique decomposition number of graph G.

The well-known theorem of Graham and Pollak [7] (see also [3, 12-14,17]) asserts that biclique decomposition number is at least the maximum of p(G) and

n(G), that is, $bd(G) \geq max\{p(G), n(G)\}$. In this paper, we will generalize this theorem, show that $\varepsilon(G) \geq p(G)$ for any graph G. Especially, if $\varepsilon(G) = 2$, then p(G) = 2. We also characterize the graphs G with p(G) = n - 2, where n = |V(G)|.

Let G be a graph, $U \subseteq V(G)$, the vertex-induced subgraph G[U] is the subgraph of G whose vertex set is U and whose edge set consists of all edges of G which have both ends in U. $G \setminus U$ denotes the graph $G[V(G) \setminus U]$. $F \subseteq E(G)$, the edge-induced subgraph G[F] is the subgraph of G whose edge set is F and whose vertex set consists of all ends of edges of F. Let G and H be two vertex disjoint graphs, $G \cup H$ denotes the union graph of G and H. A matching of G is a collection of independent edges of G. The maximum number of edges in a matching of G is called the matching number of G and denoted by $\mu(G)$. A covering of G is a set of vertices which together meet all edges of the graph. The minimum number of vertices in a covering of G is called the covering number of G and denoted by $\beta(G)$. $u \in V(G)$, $d_G(u)$ denotes the degree of vertex u in G. K_n, C_n and K_{n_1, n_2, \dots, n_r} denote the complete graph, the cycle and the complete multipartite graph, respectively.

2 Some Lemmas

The following Lemma 2.1 is clear.

Lemma 2.1.
$$p(G \cup H) = p(G) + p(H)$$
; $\varepsilon(G \cup H) = \varepsilon(G) + \varepsilon(H)$.

Lemma 2.2([16]). A graph has exactly one positive eigenvalue if and only if its non-isolated vertices form a complete multipartite graph. On the other words, p(G) = 1 if and only if $\varepsilon(G) = 1$.

Lemma 2.3([2,11]). (the Courant-Weyl inequalities) Let $\lambda_1(X), \lambda_2(X), \cdots$, $\lambda_n(X)(\lambda_1(X) \geq \lambda_2(X) \geq \cdots \geq \lambda_n(X))$ be the eigenvalues of a real symmetric matrix X. If A and B are real symmetric matrices of order n, and C = A + B. Then

$$\lambda_{i+j+1}(C) \leq \lambda_{i+1}(A) + \lambda_{j+1}(B),$$

$$\lambda_{n-i-j}(C) \ge \lambda_{n-i}(A) + \lambda_{n-j}(B),$$

where $0 \le i, j, i + j + 1 \le n$.

Lemma 2.4([2,11]). (the Cauchy inequalities) Let A be Hermtian matrix with eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$, B be one of its principal submatrices and B have eigenvalues $\mu_1 \geq \cdots \geq \mu_m$. Then the inequalities $\lambda_{n-m+i} \leq \mu_i \leq \lambda_i (i=1,\cdots,m)$ hold.

Lemma 2.5([2]). Let G be a tree. Then $p(G) = \mu(G)$.

3 The relation between p(G) and $\varepsilon(G)$

Theorem 3.1. Let G be a graph. Then $\varepsilon(G) \geq p(G)$.

Proof. We may ignore isolated vertices. Let $\varepsilon(G) = d$, we use mathematical induction on d. If d = 1, then the conclusion holds according to Lemma 2.2. Suppose that there exists a partition

$$\varepsilon_1 \cup \varepsilon_2 \cup \cdots \cup \varepsilon_d = E(G), \quad \varepsilon_i \cap \varepsilon_j = \emptyset \quad (i, j = 1, 2, \cdots, d, i \neq j)$$
 (1)

of the set E(G) of edges of G and such that the subgraph G_i of G, induced by ε_i is a complete multipartite graph for each $i=1,2,\cdots,d$. Denote $G[\varepsilon_2\cup\cdots\cup\varepsilon_d]=H$. Let $X=V(G_1)\cap V(H), Y=V(G_1)\setminus X, Z=V(H)\setminus X$, so the adjacency matrix of graph G is

$$A(G) = \begin{bmatrix} A & B^T & 0 \\ B & C_1 + C_2 & D^T \\ 0 & D & E \end{bmatrix},$$

where
$$\begin{bmatrix} A & B^T \\ B & C_1 \end{bmatrix} = A(G_1)$$
 and $\begin{bmatrix} C_2 & D^T \\ D & E \end{bmatrix} = A(H)$.

As G_1 is a complete multipartite graph, its vertex set naturally has a decomposition, so the vertices of Y also has a decomposition induced by vertex decomposition of G_1 . Take one vertex from each part of the decomposition of Y, denote the set of these vertices by Y_1 . We can obtain a new vertex-induced subgraph $K = G[Y_1 \cup X \cup Z]$, and the adjacency matrices of K is

$$A(K) = \begin{bmatrix} A_1 & B_1^T & 0 \\ B_1 & C_1 + C_2 & D^T \\ 0 & D & E \end{bmatrix}.$$

Since the vertices of $Y \setminus Y_1$ have the same adjacent relations with some vertex of Y_1 , we can obtain p(G) = p(K).

Suppose $x,y\notin V(K)$, we construct a new graph M as follows: $V(M)=V(K)\cup\{x,y\}, E(M)=E(K)\cup\{(x,y)\}\cup\{(x,v_i)|v_i\in Y_1\cup X\}\cup\{(y,v_i)|v_i\in Y_1\cup X\}$. Then the adjacency matrix of M is

$$A(M) = \begin{bmatrix} 0 & 1 & j_1^T & j_2^T & 0 \\ 1 & 0 & j_1^T & j_2^T & 0 \\ j_1 & j_1 & A_1 & B_1^T & 0 \\ j_2 & j_2 & B_1 & C_1 + C_2 & D^T \\ 0 & 0 & 0 & D & E \end{bmatrix},$$

where j_1 and j_2 are vectors with dimension $|Y_1|$ and |X|, respectively, and the components of j_1 and j_2 are equal to 1. For convenient, denote

$$A_2 = \begin{bmatrix} 0 & 1 & j_1^T \\ 1 & 0 & j_1^T \\ j_1 & j_1 & A_1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} j_2 & j_2 & B_1 \end{bmatrix}.$$

Then

$$A(M) = \left[\begin{array}{ccc} A_2 & B_2^T & 0 \\ B_2 & C_1 + C_2 & D^T \\ 0 & D & E \end{array} \right],$$

where $\begin{bmatrix} A_2 & B_2^T \\ B_2 & C_1 \end{bmatrix}$ is a adjacency matrix of a complete multipartite graph. By the matrix $\begin{bmatrix} A_2 & B_2^T \\ B_2 & C_1 \end{bmatrix}$ has only one positive eigenvalue; A_2 is adjacency matrix of $M[Y_1 \cup \{x,y\}]$ (here $M[Y_1 \cup \{x,y\}]$ is a complete graph whose order is not less than 2), whose is invertible and has only one positive eigenvalue; and A(M) is congruent to

$$\begin{bmatrix} A_2 & 0 & 0 \\ 0 & C_1 - B_2 A_2^{-1} B_2^T + C_2 & D^T \\ 0 & D & E \end{bmatrix},$$

we know that $C_1 - B_2 A_2^{-1} B_2^T$ is a negative semi-definite matrix, whose eigenvalues are less than zero. According to the induction hypothesis, we have $p(\begin{bmatrix} C_2 & D^T \\ D & E \end{bmatrix}) = p(H) \le d-1$. By Lemma 2.3, we can obtain $p(\begin{bmatrix} C_1 - B_2 A_2^{-1} B_2^T + C_2 & D^T \\ D & E \end{bmatrix}) \le d-1$, so $p(M) \le d$, and according to Lemma 2.4, we have $p(G) = p(K) \le p(M) \le d$. \square

Corollary 3.1. Let G be a graph with $\varepsilon(G) = 2$. Then p(G) = 2.

proof. According to Theorem 3.1 and Lemma 2.2, the proof is clear.

Remark 3.1. The inverse of Corollary 3.1 doesn't hold. For the following graph H(see Figure 1), we have p(H)=2, but $\varepsilon(H)=3$.

(In fact, the edges of H can't be decomposed into union of two complete

Figure 1: Graph H with p(H) = 2, but $\varepsilon(H) = 3$.

multipartite graphs. If not, suppose edges of H can be decomposed into union of two complete multipartite graphs H_1 and H_2 , then H_1 and H_2 are not complete $k(\geq 4)$ -partite graphs(otherwise, K_4 is a subgraph of H). If H_1 is a complete 3-partite graph and each part contains only one vertex, then $H_1 = K_3$, but the edges in H, not in H_1 , can't form a complete multipartite graph; If H_1 is a complete 3-partite graph and there is one part which contains more than two vertices, then $K_{1,1,2}$ is a subgraph of H, but there doesn't exist such subgraph in H; If H_1 is a complete 2-partite graph and there is one part which contains only a vertex, then H_1 is a star graph, but the edges in H, not in H_1 , can't form a complete multipartite graph; If H_1 is a complete 2-partite graph and each part contains at least two vertices, if one part contains more than two vertices, then $K_{2,3}$ is a subgraph of H, but there doesn't exist such subgraph in H. Hence $H_1 = K_{2,2}$, $H_2 = K_{2,2}$, but $|E(H_1)| + |E(H_2)| = 8$, a contradiction.

We note that H is the union of three complete multipartite graphs signified by thick, thin and middle-line in Figure 1, respectively. On the other hand, we can easily obtain spectrum of H, $sepc(H) = \{3, 1, 0, 0, -2, -2\}$.)

Remark 3.2. From Table 1 of [2], we can easily prove that the equality in Theorem 3.1 holds for all graphs whose the number of vertices are not greater than 5. Graph H (in Figure 1) is the graph which has the least number of vertex such that equality of Theorems 3.1 does't hold.

Corollary 3.2. Let G be a graph. Then $\beta(G) \geq p(G)$.

proof. As the edges of G can be decomposed into $\beta(G)$ star graphs, and each star graph is a complete multipartite graph, so $\beta(G) \geq \varepsilon(G) \geq p(G)$. \square

Corollary 3.3. Let G be a tree. Then $p(G) = \varepsilon(G)$.

proof. For tree G, we have $\varepsilon(G)=\mu(G)$. The conclusion is clear by Lemma 2.5. \square

Let $G_1 = (X_1, \mu_1)$ and $G_2 = (X_2, \mu_2)$ be two graphs, the sum $G_1 + G_2 = (X, \mu)$ of G_1 and G_2 is a graph, where $X = X_1 \times X_2$. Let $(x_1, x_2), (y_1, y_2) \in X$, the vertices (x_1, x_2) and (y_1, y_2) are adjacent in the sum $G_1 + G_2$ if and only if either $x_1 = y_1$ and $(x_2, y_2) \in \mu_2$ or $(x_1, y_1) \in \mu_1$ and $x_2 = y_2$. Let n be odd, we know, from [18], $p(C_n + C_{(2t+1)n}) = \varepsilon(C_n + C_{(2t+1)n}) = \frac{(2t+1)(n^2+1)}{2}$. A complete multipartite graph edge decomposition of $C_5 + C_{15}$, which each edge-induced subgraph is a star graph or a 4-cycle, is given by the following Figure 2, where black points denote the center of star graph, cycles denote 4-cycle of decomposition. We can obtain a ring if we curl edges from up to down and from left to right.

Figure 2: Graph $C_5 + C_{15}$

4 Graph G with p(G) = n - 2

In this section, we will characterize the graphs by using positive inertia index. Obviously, if G is a nonempty graph with three vertices, then p(G) = 1; If G is a graph with n vertices, then there does not exist graph G with p(G) = n.

Lemma 4.1. Let G be a graph of order n. Then p(G) = n - 1 if and only if n = 2, $G \cong K_2$.

proof. Suppose that p(G) = n - 1, by Corollary 3.2, we have $\beta(G) \ge n - 1$. This implies that G is a complete graph. Furthermore, p(G) = 1 by Lemma 2.2. Hence n = 2 and $G \cong K_2$. \square

Figure 3: The graph G with four vertices and p(G) = 2

Lemma 4.2([2]). (1)Let G be a graph with four vertices. Then p(G) = 2 if and only if $G \in \{F_1, F_2, F_3\}$.

(2) Let G be a graph with five vertices. Then p(G) = 3 if and only if $G = C_5$. Lemma 4.3. There doesn't exist graph G of order 6 with $\varepsilon(G) = 4$.

proof. Suppose that there exist a graph G of order 6 with $\varepsilon(G)=4$, then G has no isolated vertex and isn't a complete graph (if G is a complete graph, then $\varepsilon(G)=1$, a contradiction. If G has an isolated vertex w, then $\beta(G\setminus\{w\})\geq \varepsilon(G\setminus\{w\})=\varepsilon(G)=4$, this implies that $G\setminus\{w\}$ is a complete graph. so $\varepsilon(G)=\varepsilon(G\setminus\{w\})=1$, a contradiction). Let u,v be two non-adjacent vertices of graph G, then $G\setminus\{u,v\}$ is a graph of order 4 with $p(G\setminus\{u,v\})=2$ (if $p(G\setminus\{u,v\})\leq 1$, then $\varepsilon(G\setminus\{u,v\})\leq 1$ by Remark 3.2, thus $\varepsilon(G)\leq 3$, a contradiction. If $p(G\setminus\{u,v\})=3$, then $\varepsilon(G\setminus\{u,v\})=3$, thus $G\setminus\{u,v\}$ is a complete graph, so $\varepsilon(G)\leq \varepsilon(G\setminus\{u,v\})+2=1+2=3$, a contradiction). By Lemma 4.2 (1), we consider the following two cases.

Case 1. If $G \setminus \{u,v\} \cong F_1, V(F_1) = \{1,2,3,4\}$ (see Figure 4). Without loss of generality to assume that $d_G(u) \geq d_G(v)$. If $d_G(u) = 4$, then the edges of G can be decomposed into a $K_{1,1,2}$ and two star graphs. If $d_G(u) = 3$, then the edges of G can be decomposed into a $K_{1,1,2}$ and two star graphs or a $K_{2,2}$ and two star graphs. If $d_G(u) = 2$ and u is adjacent to vertices 1 and 4 at the same time, (1) if $d_G(v) = 2$, then the edges of G can be decomposed into a K_3 and two star graphs or a $K_{2,2}$ and two star graphs; (2) if $d_G(v) = 1$, then the edges of G can be decomposed into three star graphs. If $d_G(u) = 2$ and u is not adjacent to vertices 1 and 4 at the same time, then the edges of G can be decomposed into a G and two star graphs or a G can be decomposed into

edges of G can be decomposed into three star graphs. Therefore, $\varepsilon(G) \leq 3$, this is a contradiction.

Case 2. Similar to the proof of case 1, if $G \setminus \{u, v\} \cong F_2$ or F_3 , then $\varepsilon(G) \leq 3$, this is a contradiction. \square

Lemma 4.4. There doesn't exist graph G of order 7 with $\varepsilon(G) = 5$.

proof. Suppose that there exist a graph G of order 7 with $\varepsilon(G)=5$, then G is not a complete graph and has no isolated vertex. Let u,v be two non-adjacent vertices of graph G, then $G\setminus\{u,v\}$ is a graph of order 5 with $p(G\setminus\{u,v\})=3$ (if $p(G\setminus\{u,v\})\leq 2$, then $\varepsilon(G\setminus\{u,v\})\leq 2$ by Remark 3.2, thus $\varepsilon(G)\leq 4$, a contradiction. If $p(G\setminus\{u,v\})=4$, then $\varepsilon(G\setminus\{u,v\})=4$, thus $G\setminus\{u,v\}$ is a complete graph, so $\varepsilon(G)\leq \varepsilon(G\setminus\{u,v\})+2=1+2=3$, a contradiction). By Lemma 4.2(2), we have $G\setminus\{u,v\}=C_5$. Without loss of generality to assume that $d_G(u)\geq d_G(v)$. If $d_G(u)\geq 4$, then the edges of G can be decomposed into a $K_{1,1,2}$ and three star graphs. If $d_G(u)=3$, then the edges of G can be decomposed into a $K_{1,1,2}$ and three star graphs or a $K_{2,2}$ and three star graphs. If $d_G(u)=2$, then the edges of G can be decomposed into a $K_{3,1,2}$ and three star graphs. If $d_G(u)=1$, then the edges of G can be decomposed into a $K_{3,1,2}$ and three star graphs. If $d_G(u)=1$, then the edges of G can be decomposed into a $K_{3,2,2}$ and three star graphs. If $d_G(u)=1$, then the edges of G can be decomposed into four star graphs. Therefore, $\varepsilon(G)\leq 4$, this is a contradiction.

Theorem 4.1. Let G be a graph of order n. Then p(G) = n - 2 if and only if

1)
$$n = 2$$
, $G \cong 2K_1$;

- 2) n = 3, $G \cong K_1 \bigcup K_2$, $K_{1,2}$ or K_3 ;
- 3) n = 4, $G \cong F_1$, F_2 or F_3 ;
- 4) n=5, $G\cong C_5$.

proof. By Lemma 4.1 and Lemma 4.2, we only need to show that there doesn't exist graph G with p(G) = n - 2 when $n \ge 6$.

Suppose that there exists a graph G with p(G)=n-2 (here $n\geq 6$). By Theorem 2.1, we have $\varepsilon(G)\geq p(G)$. Hence $\varepsilon(G)=n-1$ or n-2.

- (1) If $\varepsilon(G) = n 1$, then $\beta(G) = n 1$ and G is a complete graph. Therefore, $\varepsilon(G) = 1$. However, $n \ge 6$, this is a contradiction.
- (2) We will show that there doesn't exist a graph G such that $\varepsilon(G) = n 2$ when $n \geq 6$. By using mathematical induction on n. The conclusion holds according to Lemma 4.3 and Lemma 4.4 when n = 6 or 7. Now, let G be a graph with $n(\geq 8)$ vertices and $\varepsilon(G) = n 2$, then G is not a complete graph and has no isolated vertex. Furthermore, let u, v are two non-adjacent vertices of graph G, then $\varepsilon(G \setminus \{u, v\}) < n 3$ (if not, we know that $G \setminus \{u, v\}$ is a complete graph. Therefore, $\varepsilon(G) \leq 3$. However, $\varepsilon(G) = n 2 \geq 6$, which is a contradiction), and $\varepsilon(G \setminus \{u, v\}) \geq n 4$ (if not, $\varepsilon(G) < n 2$). So $\varepsilon(G \setminus \{u, v\}) = n 4 = |V(G \setminus \{u, v\})| 2$. According to the induction hypothesis, there doesn't exist such graph $G \setminus \{u, v\}$. \square

References

[1] B. Cheng, B.L. Liu, On the nullity of tricyclic graphs, Linear Algebra Appl. 434(2011) 1799-1810.

- [2] D.M. Cvetković, M. Doob, H. Sachs, Spectra of Graphs, Academic Press, New York, 1980.
- [3] D.B. Elizabeth, L.S. Bryan, On Biclique Decompositions of Complete tpartite Graphs, Linear Algebra Appl. 217(1995)31-40.
- [4] Y.Z. Fan, K.S. Qian, On the nullity of bipartite graphs, Linear Algebra Appl. 430(2009) 2943-2949.
- [5] S. Fiorini, I. Gutman, I. Sciriha, Trees with maximum nullity, Linear Algebra Appl. 397(2005) 245-251.
- [6] S.C. Gong, Y.Z. Fan, Z.X. Yin, On the nullity of graphs with pendant trees, Linear Algebra Appl. 433(2010) 1374-1380.
- [7] R.L. Graham and H.O. Pollak, On the addressing problem for loop switching, Bell Syst. Tech. J. 1(1971) 2495-2519.
- [8] S.B. Hu, B.L. Liu, X.Zh. Tan, On the nullity of bicyclic graphs, Linear Algebra Appl. 429(2008) 1387-1391.
- [9] P. Lancaster, M. Tismenetsky, The Theorty of Matrices, Academic Press Inc., Orlando, Fla., second edition, 1985.
- [10] S.C. Li, On the nullity of graphs with pendant vertices, Linear Algebra Appl. 429(2008) 1619-1628.
- [11] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities. Allyn and Bacon. Inc., Boston, 1964.
- [12] J. Orlin, Contentment in graph theory, Indag. Math. 39(1977) 406-424.
- [13] G.W. Peck, A new proof of theorem of Graham and Pollak, Discrete Math. 49(1984) 327-328.
- [14] D. Pritikin, Applying a proof of Tverberg to complete bipartite decompositions of digraphs and multigraphs, J. Graph Theory. 1(1986) 197-201.
- [15] I. Sciriha, I. Gutman, On the nullity of line graphs of trees, Discrete Math. 232(2001) 35-45.
- [16] J.H. Smish, Some properties of the spectrum of a graph, in: Combinatorial Structures and Their Applications, Gordon and Breach, Science Publ., Inc., New York, 1970, pp. 403-406.
- [17] H. Tverberg, On the decomposition of K, into complete bipartite graphs, J. Graph Theory 6(1982) 493-494.
- [18] D.B. West, Introduction to Graph Theory, Prentice Hall, London, 2001.