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1 Introduction, definitions and notations

1.1 Introduction

The Rogers — Ramanujan identities
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were first proved by L.J. Rogers [17] and later independently rediscovered by S.
Ramanujan [15]. Many additional g-series=infinite product were found by Ra-
manujan and were recorded in his lost notebook [15]. A large collection of such
identities was produced by L.J. Slater [18]. In literature we find that several g-
identities from Slater compendium [18)] have been interpreted combinatorially
by several authors (for example see Connor [11], Subbarao [20], Subbarao and
Agarwal [21], Agarwal [2] and Agarwal and Andrews [4]). In the early nineteen
eighties Agarwal and Andrews introduced a new class of partitions called “(n+t)-
color partitions” or partitions with “n 4t copies of n”. Using these new partitions
many more g-identities have been interpreted combinatorially in [1, 3, 5, 8, 14].
In (8,16] Agarwal and Rana have interpreted a generalised g-series using “(n+t)-
color partitions”, lattice paths and F' — partitions. Recently in [13, 14] Goyal and
Agarwal and in [19] Sood and Agarwal interpreted five g-identities combinatori-
ally by using above techniques. The purpose of this paper is to extend their work
and provide combinatorial interpretations of three more identities of the Rogers -
Ramanujan type which appear in Slater’s compendium [18] and also derived by
Chu and Zhang [10] given below:
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Z(q4 q4)n(q ) = (qg,qg) [q 14,94 ;q ]oo[q 9739 ]ocn (13)

n=0

fo'e) 2
" (=9:4%)

2 T~ @t e el %, (14)

n=0 H ) H

g (n+2) (4o

z(q @)@, 6%)nt1 (6350w 4%,0% i 0" lolg™, 4% 6w (19)
n=0 4 !

1.2 Definitions and notations

First we recall the definitions of partitions with “n + ¢ copies of n” and their
weighted difference.

Definition 1.1. [9] A partition with “n + t copies of n”, t > 0 is a partition in
which a part of size n, (n > 0), can come in n + t different colors, denoted by the
subscripts, ny,n2,M3,*+ , Npye.

Example 1.1. Partitions of 2 with “n + 1 copies of n” are,

21, 2104, 1;1;, 1;1,04,
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22, 220y, 121y, 151,04,

23, 2305, 1212, 12150,.

Note that zeros are permitted if and only if t > 1. Also in no partition are zeros
permitted to repeat.

Definition 1.2. [9] The weighted difference of two parts m;, nj, m > n is defined
bym —n — i — j and denoted by ((m; — n;)).

Next we recall the following description of lattice paths from [6] and F’ - parti-
tions from [7], which we shall be considering in this paper.

Definition 1.3. [6] All paths will be of finite length lying in the first quadrant.
They will begin on the y-axis and terminate on the x-axis. Only three moves are
allowed at each step:

northeast : from (i,5)t0o (i + 1,5 + 1)

southeast ; from (i,j) to (i + 1,5 — 1), only allowed if j > 0

horizontal: from (i,0) to (i + 1,0), only allowed along x-axis

The following terminology will be used in describing lattice paths:

Peak: Either a vertex on the y-axis which is followed by a southeast step or a
vertex preceded by a northeast step and followed by a southeast step.

Valley: A vertex preceded by a southeast step and followed by a northeast step.
Note that a southeast step followed by a horizontal step followed by a northeast
step does not constitute a valley.

Mountain: A section of the path which start on either the x-or y-axis, which ends
on the x-axis, and which does not touch the x-axis anywhere in between the end
points. Every mountain has at least one peak and may have more than one.
Plain: A section of the path consisting of only horizontal steps which starts either
on the y-axis or at a vertex preceded by a southeast step and ends at a vertex
Sollowed by a northeast step.

The Height of a vertex is its y-coordinate. The Weight of a vertex is its x-
coordinate. The Weight of a path is the sum of the weights of its peaks.

Definition 1.4. [7] A two rowed array of non-negative integers

ay az - a,
by by --- b )
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whereay > a2 > --->ar 20and by > by > --- > b, 20,
is known as a generalized F - partition(Frobenius partition) or more simply an
F —partitionof nifn=r+ 3 ._,ai+ Y., b:.

Example 1.2, n=28=4+(6+5+2+0)+(5+3+2+1) and the corresponding Frobe-
6 5 2 0

] tation i
nius notation is 5 3 9 1

In Section 2, we provide the combinatorial interpretations of (1.3) — (1.5) using
“n- color partitions” and ordinary partitions. In Section 3, we then provide the
combinatorial interpretations of (1.3) — (1.5) using lattice paths and also establish
a bijection between “n- color partitions” and lattice paths. Further the results are
extended in Section 4 using F' — partitions.

2 Combinatorial interpretations using ““n- color par-
titions”

Theorem 2.1. Forv > 0, let A,(v) denote the number of partitions of v with ‘n
copies of n’ into parts greater than or equal to 3 such that if m; is the least or the
only part in the partition then m — i = 2(mod4) and weighted difference between
consecutive parts is non negative and = 0(mod4) and let

Bi(v) =Y _ Ci(v — k)Ds(k),
k=0

where C1(v) denote the number of partitions of v into parts = +4, +6, +8,
+10 (mod28) and D, (v) denote the number of partitions of v into distinct parts
= 43, 5, 7(mod14). Then

A](l/) = Bl(l/),
forallv.

Example 2.1. We demonstrate Theorem 2.1 by showing that
A1(8) = B1(8) =3.
The relevant n~color partitions corresponding to A;(8) are

82, 8 5131
and B, (8) = 3, since
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8
By(8) = Y_ Ci(8 - k)Dy(k),

k=0

where the relevant partitions corresponding to Cy(v) and D, (v) are given in the
table below;

v Cy(v) | partitions enumer- | Dy(v) | partitions enumer-
ated by C,(v) ated by D, (v)
0 1 empty partition 1 empty partition
1 0 - 1 1
2 0 - 0 -
3 0 - 1 3
4 1 4 0 -
5 0 - 1 5
6 1 6 0 -
7 0 - 1 7
8 2 8,444 1 543
hence,

B, (8) =C1(8)D1(0) + C1(7)D1(1) + - - - + C1(0) D1 (8)
=3.
Theorem 2.2. For v > 0, let A3(v) denote the number of partitions of v with ‘n
copies of n’ into parts such that if m; is the least or the only part in the partition

~ then m = i(mod4) and weighted difference between consecutive parts is non
negative and = 0(mod4) and let

174
By(v) = Z Ca(v — k) Dy (k),
k=0
where Co(v) denote the number of partitions of v into parts = £2, +4, £10,
+12(mod28) and D2 (v) denote the number of partitions of v into distinct parts
= 1,45, 7(mod14) . Then
AZ(U) = B2(V)y
Jorallv.

Theorem 2.3. For v > 0, let A3(v) denote the number of partitions of v with
‘n + 2 copies of n’ into parts such that for some i, i;,o must be a part and
weighted difference between consecutive parts is non negative and = 0(mod4)
and let

Ba(v) =) Cs(v —k)Ds(k),
k=0
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where C3(v) denote the number of partitions of v into parts = £2, +6, +8,
+12(mod28) and D3(v) denote the number of partitions of v into distinct parts
= %1, £3, 7(mod14). Then

As(v) = Bs(v),
Jorallv.

Proof of Theorem 2.1

Let A; (v, m) denote the number of partitions of v enumerated by A, () into m
parts.

We split the partitions enumerated by A, (v, m) into three classes:

(i) those that do not contain kx_o as a part,

(ii) those that contain 3, as a part,

(iii) those that contain kx—2(k > 3) as a part.

We now transform the partitions into class (i) by subtracting 4 from each part
ignoring the subscripts, it will not disturb the inequalities between the parts and
transformed partition will be of the type enumerated by A; (v — 4m, m).

Next transform the partitions in class (ii) by deleting the least part 3; and then sub-
tracting 2 from all the remaining parts ignoring the subscripts. The transformed
partition will be of the type enumerated by A;(v — 2m — 1,m — 1),

Finally we transform the partitions in class (iii) by replacing the part kx_o by
(k + 1)x—3 and then subtracting 2 from all the other parts. This will produce the
partitions of (v — 2m + 1) into m parts. Note here that, by this transformation we
will get only those partitions of (v — 2m + 1) into m parts which contain a part
of the form kj_o. Therefore the actual number of partitions which belong to class
(#4d) is Ay(v — 2m + 1,m) — A;(v — 6m + 1,m) where A;(v — 6m + 1,m)
is the number of partitions of v — 2m + 1 into m parts which are free from parts
like ky_s.

The above transformations are clearly reversible and so establish a bijection be-
tween the partitions enumerated by A, (v, m) and those enumerated by

Ailv—4dmm)+ Aj(v-2m—-1,m - 1)+ A;(v - 2m + 1,m)
—Aj(v—-6m+1,m).

This leads to the identity
Ai(vym)=A(v-dmm)+ Ai(v-2m-1,m—-1)

+ A4 (v-2m+1,m)— A (v—-6m+1,m). (2.1)
Now let o oo
A=Y Ay, m)zme, (2.2)
v=0 m=0
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substitute A; (v, m) from (2.1) into (2.2), we get

fi(z;:9) = fi(zq*9) + 26 fi(zq% q) + a7 fiza%; 9) — 971 F1(24% 9). (2.3)

Consider

flzg) =) an(g)" (2.4)
n=0

since f1(0;q) = 1, using (2.4) in (2.3) and then comparing the coefficients of z",
we get
qn(n+2)

(q4 7*)n(2, %)’

n(n+2)z
(z:q

)= Z < (4%44)n(g,4%)n"
n(n+2)

Z (¢4, Q")n (2,4%)n’

n=0

an(q) =

and

YA =)D Arm)g

v=0 m=0v=0

=fi1(1;9)

e n(n+2)

=N 9 "
=2 (9%,9)1(9,9%)n

n=0
_(-%¢*)o
(9%9%)00

=ZC'1(V)Q"

v=0

(@,9,9"%¢")0 ("%, ¢'% ¢®) o

which completes the proof of Theorem (2.1).

Sketch proofs of Theorems 2.2 and 2.3

The proofs are similar to that of Theorem 2.1, hence we omit the details and give

only the main steps.
The following are the recurrence relations corresponding to Theorem 2.2 and 2.3

respectively:
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Ag(v,m) =Aa(v —dm,m) + Ay(v —2m +1,m - 1)
+ Az(v —2m +1,m) — Ag(v — 6m + 1,m),
(2.5)
As(v —1,m — 1) =Az(v,m) — Az(v — dm,m). (2.6)

and the respective g-functional equations are

fa(2;9) = f2(zq*; q) + 2af2(20%; q) + a7 f2(20%;9) — ¢~ ' f2(24%9), (2.7)
2qf3(z;9) = f2(z:9) — fo(24%; q). (2.8)

3 Combinatorial interpretations using lattice paths

Theorem 3.1. For v > 0, let Ey(v) denote the number of lattice paths of weight
v which start at (0,0), have no valley above height 0, there is a plain of length
= 2(mod4) in the beginning of the path, the length of the other plains, if any, are
= 0(mod4). Then
E\(v) = By(v) = A1(v), forallv.
Example 3.1. We demonstrate Theorem 3.1 by showing that
Ey(8) = B1(8) = Ay(8) =3.

The relevant lattice paths corresponding to E,(8) are as follows,
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and by Example 2.1, A,(8) = B,(8) = 3.

Theorem 3.2. Forv > 0, Let E;(v) denote the number of lattice paths of weight
v which start at (0,0), have no valley above height 0, the length of the plains, if
any, are = 0(mod4). Then

E,(v) = By(v) = A1(v), forall v.

Theorem 3.3. For v > 0, let E3(v) denote the number of lattice paths of weight
v which start at (0,2), have no valley above height 0, the length of the plains, if
any, are = 0(mod4). Then

Es(v) = B3(v) = Az(v), forallv.
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Proof of Theorem 3.1

In WTZ;H%T the factor ¢g"("+2) generates a lattice path from (0,0) to (2n +
2,0) having n peaks each of height 1 and plain of length 2 in the beginning of the
path.

For n=5, the path begins as

9

(0,0) 2 4 6 8 10 12
Graph A

In the above graph we consider two successive peaks say, i** and (i + 1)** and
denote them by P and P;, respectively.

P, (2i+1,1) P,(21+3,1)

(0.0)

Graph B

The factor 1/(g%; ¢*). generates n nonnegative parts = 0(mod4), say a; > ag >
-+ 2 an > 0, which are encoded by inserting a, horizontal steps in front of
the first mountain, and a; — a;4, horizontal steps in front of the (n — ¢ + 1)st
mountain, 1 < { < n — 1. Thus the z-coordinate of the it" peak is increased by
an+ (an—l - an) + (an-—2 - an—l) +-o 4 (an—i+1 — @n_i42) = Gn_i41 and
the z-coordinate of the (i + 1)** peak is increased by a,,_;.

Graph B now becomes Graph C.
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P (2i+1+a,.,1) p,(2i+3+a,,1)

/\ /'/\\x_,.-_...,_..__ e -y

0,0)

Graph C
P=(1+4+2i+an-is1,1),
P2 = (3 + 2i + An—i, 1)
The factor 1/(q; g?), generates non negative multiples of (2i — 1), 1 < i < n,
say, by x 1,bo x 3,--- ,bp x (2n —1).
This is encoded by having the i** peak grow to height b,_;,; + 1. Each increase
by one in the height of a given peak increases its weight by one and the weight
of each subsequent peak by two. Graph C now changes to Graph D or Graph E
depending on whether b,,_; > b,_;41 Or < b,_;4;. In the case when b,,_; =
bn-i41, the new graph looks like Graph D.

(2+3+a,, b, +1)

(2|+1 +an-‘~|l bnnlv |+1)

Graph D

(0.0
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The Graph E looks like

(2i+1+a,.,, b,.. ,+1)

. (2i3%a,,b,41)
P 2

0.0)

Graph E
Every lattice path enumerated by F; (v) is uniquely generated in this manner. This
proves Theorem 3.1.

Bijection between n-color partitions and lattice paths

We now establish a 1 — 1 correspondence between the lattice paths enumerated by
Bi(v) and the n-color partitions enumerated by A;(v). We do this by encoding
each path as the sequence of the weights of the peaks with each weight subscripted
by the height of the respective peak. Thus if we denote the two peaks in Graph D
(or Graph E) by A; and B, (B > A) respectively, then

A=142i+ap—it1 +2(bn +bp_1+ -+ bp—iya) + bn_it1
T=bp_j11+1

B=3+4+2i4+an_i+2(bn+bn_1+ - +baiv1)+bn_;
y=bn_;+1

Clearly, the weighted difference of these two parts is ((B, — A;)) = B — A —
T ~ Y = @p-; — Gn—i+1 Which is non negative and = 0(mod4).

To see the reverse implication we consider two n-color parts of a partition enu-
merated by A,(v), say C,, and D, with D > C > 3. Let @, = (C,u) and
Q2 = (D, v) be the corresponding peaks in the associated lattice path.



|
1
i
i

(0.0

Graph F
The length of the plain between the two peaks is D — C — u — v which is the
weighted difference between the two parts C,, and D, and is therefore nonnega-

tive and = 0(mod4).

If C,, were the smallest part of the partition, the corresponding peak in the asso-
ciated path would be the first peak preceded by a plain of length 2 + a. where
a = 0(mod4).

Finally, we show that there can not be a valley above height 0. This can be proved
by contradiction.
Suppose there is a valley V of height v (v > 0) between the peaks ¢ and Q.

02 =[D,V]

(0.0)

Graph G
In this case there is a descent of u — + from @, to V and an ascent of v — -y from
Vto Q2. Thisimpliesthat D = C+ (u—v)+(v—v),or D-C —u—v = —2.
But since the weighted difference is non negative, therefore y=0. This completes
the bijection between the lattice paths enumerated by B (v) and the n-color par-
titions enumerated by A, (v).

Sketch Proofs of Theorems 3.2 and 3.3
Theorem 3.2 is treated in exactly the same manner as the Theorem 3.1 except that

now the path begins from (0, 0).
For Theorem 3.3, comparing it with Theorem 3.2, we see that in this case there
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are two extra factors, viz., ¢2* and (1 — ¢2**1) ™' The extra factor g2" puts two
south east steps: (0,2) to (1,1) and (1,1) to (2,0). Thus there are now n + 1
peaks starting from (0, 2) and the extra factor (1 — g2**!)™" introduces a non
negative multiple of 2n + 1, say b, 4+1 x (2n + 1). This is encoded by having first
peak grow to height b,y + 2. Clearly, (bn+1)s,.,,+2 Which is of the form i;,,
will be the colored part corresponding to the first peak.

4 Combinatorial interpretations using /' — partition

Theorem 4.1. For v > 0, let Fy(v) denote the number of F - partitions of v such
that

(l.a) a; = 1(mod2),

(1.b)a; < b; and

(l.c) a; > b;4+1 and are of opposite parity.

Ay (v) denote the number of partitions of v with ‘n copies of n’ such that (1.d)
each part > 3,
(1.e) the weighted difference between consecutive parts is non negative
and = 0(mod4), and
(1.f) if m; is the least or only part in the partition then m — i = 2(mod4).
Then
A1 (v) = Fi(v) for all v.

Theorem 4.2. Forv > 0, let F»(v) denote the number of F ~ partitions of v such
that

(l.a) a, = 0(mod2),

(]b) a; S bi and

(l.c) a; > b;4+1 and are of opposite parity.

Aa(v) denote the number of partitions of v with ‘n copies of n’ such that
(1.d) the weighted difference between consecutive parts is non negative
and = 0(mod4), and
(1.e) if m; is the least or only part in the partition then m = i(mod4).
Then
Ax(v) = Fo(v) for all v.

Theorem 4.3. For v > 0, let F3(v) denote the number of F — partitions of v such
that

(la)a, isO,

(1.b)a; <b;+2and

(1.c) a; > b;y1 + 2 and are of opposite parity.

Az (v) denote the number of partitions of v with ‘n + 2 copies of n’ such that
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(1.d) the weighted difference between consecutive parts is non negative
and = 0(mod4), and
(1.e) for some i, i; 2 must be a part.
Then
As(v) = F3(v) for all v.

Note. Ai(v) (for1 < k < 3) of Theorem 4.1 — 4.3 are same as Theorem
2.1 — 2.3. respectively.

Proof of Theorem 4.1

We establish a 1-1 correspondence between the ' — partitions enumerated by
F(v) and the n - color partitions enumerated by A; (v). We do this by mapping

each column ‘; of the F' - partition to a single part m; of an n - color

partition enumerated by A;(v). The mapping ¢ is

o: ( ¢ ) S (@t b+ D, (1)

and the inverse mapping ¢! is given by

1. (m—1)/2
o7l imi = ((m+";_;)/2). (4.2)

Now suppose we have any two adjacent columns ( ‘; ) and ( ; ) in an
F - partition enumerated by F) (v) with

¢: (Z) =m; and ¢ : (;) = n;.

Then since
a b
b S(a+b+1)y g, =m;
and
c
( d ) - (c+d+1)d_c+1 =n,
we have

(mi—nj))=m-n—i-j
= (a+b+1)—(c+d+1)—(b—a+1)—(d—c+1)
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=2(a—d-1). (4.3)

Clearly (4.3) and (1.c) imply (1.e).

Also (4.2), (1.a) and (1.b) imply (1.d).

Now if a, = 1{(mod2), then
m—i=(a-+b+1)— (b —a,+1) = 2a,

which imply (m — i) = 2(mod4), hence (1.f) holds.

To see the reverse implication, we consider the inverse images of two consecutive
parts m;, n; of an n - color partition enumerated by A,(v)

-1, m-49/2\_(a
¢ imi= ( (m+i-2)/2 ) ‘( b )
and
. m=3)2\_{(¢.
¢ ini = ( (n+3—2)/2 ) = ( d)
that is,
a=(m-1)/2 (4.4)
b=(m+1i-2)/2 (4.5)
¢=(n-j)/2 (4.6)
d=(n+j—2)/2 (4.7)
and so
b—a=i-1 (4.8)
d—c=j-1 (4.9)
a—d= %((m,. —n)) +1 (4.10)
(4.10) and (1.e) imply (1.c).
(4.8) and (4.9) imply (1.b).
(1.f) implies that there is a column of the form Zr such that a, is odd.

-
Also such a column has to be the last in the F' — partition. This completes the
proof of the Theorem 4.1.
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To illustrate the bijection we have constructed the example for » = 8 shown in
the following table:

Table 1

F - partitions enumerated Image under ¢
by A(8)

8 :
) :
(g}) 51 + 31

Sketch Proof of Theorems 4.2 and 4.3
For Theorem 4.2, proceed in the same manner as Theorem 4.1. Here since a,. =
0(mod2), then

m_i=(ar+br+1)—(br_ar+1)=2ar

which imply (m — i) = 0(mod4).
For Theorem 4.3, the mapping ¢ is

¢: ( ‘; ) = (a+b+1)p—as3,
and the inverse mapping ¢! is given by
1., _ (m—i+2)/2
o7 imi = ( (m+i-4)/2 )

Also here the part 05 corresponds to a “phantom* column ( _(1) ) , which is
dropped from the corresponding F* - partition.

S Conclusion

The most obvious question which arises from this work is: Is it possible to gener-
alize Theorems 2.1 — 2.3 analogous to Gordon’s generalisation [12] of Rogers —
Ramanujan Identities?
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