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Abstract

Consider any undirected and simple graph G = (V, E), where
V and E denote the vertex set and the edge set of G, respectively.
Let |G| = |V| = n > 3. The well-known Ore’s theorem states that
if degs(u) + dege(v) > m + k holds for each pair of nonadjacent
vertices © and v of G, then G is traceable for kK = —1, hamiltonian
for k = 0 and hamiltonian-connected for k = 1. In this paper, we
investigate any graph G with degg(u) + degg(v) > n — 1 for any
nonadjacent vertex pair {u,v} of G in particular. We call it the
(*) condition. We derive four graph families, H;, 1 < i < 4, and
prove that all graphs satisfying (*) are hamiltonian-connected unless
G € H; for some i. We also establish a comprehensive theorem for
G satisfying (x), which shows that G is traceable, hamiltonian, pan-
cyclic or hamiltonian-connected unless G belongs to different subsets
of {Hi | 1 < i < 4}, respectively.
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1 Introduction

For the graph definitions and notations we follow (3], and we consider fi-
nite, undirected and simple graphs only. G = (V,E) is a graph if V is
a finite set and E C {(u,v) | (u,v) is an unordered pair of V}, where
V is called the verter set of G and E the edge set of G. We use |G|
or |V| for the number of distinct vertices in G. Two vertices u and v
are adjacent, denoted by u ~ v, if (u,v) € E. Given a vertex u of
G, the neighborhood of u, denoted by Ng(u), is the set {v | (u,v) €
E} C V. The degree of u, denoted by deggs(u), is the total number
of elements of Ng(u). Let S be a subgraph of G. Define two sym-
bols Ns(u) = Ng(u) N V(S), and degg(u) = |Ns(u)|. A path P be-
tween two vertices vy and vy is represented by P = (v, vy, v2, - ,Uk),
where all vertices are different except possibly for vp = v, and every two
consecutive vertices are connected by an edge. We also write the path
P = (v, v1,...,v) as {vo,v1,...,Vi, P, vj,vj41,..., k), where P’ denotes
the path (vi,vi41,...,v;). A hamiltonian path between v and v, where u
and v are two distinct vertices of G, is a path joining u to v that visits every
vertex of G exactly once. A graph G is traceable if it contains a hamiltonian
path. A graph G is connected if there is a path between any two distinct
vertices in G and is hamiltonian-connected if there is a hamiltonian path
hetween any two distinct vertices in G. A cycle is a path of at least three
vertices such that the first vertex is the same as the last vertex. A hamil-
tonian cycle of G is a cycle that traverses every vertex of G exactly once.
We say that G is a hamiltonian graph if G contains a hamiltonian cycle.
The total number of vertices within a path P is denoted by |P|. A graph G
is pancyclic if for every given integer ! with 3 <[ < |G| = n, there exists a
cycle with I distinct vertices in G. Obviously, a hamiltonian graph is trace-
able, but a traceable graph might not be hamiltonian. Moreover, except
for K2, a hamiltonian-connected/pancyclic graph is a hamiltonian graph,
but the converse is not true. See [6,7] for the relationship among various
hamiltonian properties, and [4,10,11] for certain most recent studies.

The following well-known theorems set up the corresponding degree-
sum conditions for any graph to be traceable, hamiltonian, hamiltonian-
connected or pancyclic.

Theorem 1. (Ore, 1960/63, [12, 13]) Let G = (V,E) be a graph with
|Gl = n 2 3. If degg(u) + degg(v) > n + k for any pair of nonadjacent
vertices u, v in V, then G is traceable for k = —1, hamiltonian for k = 0,
and hamiltonian-connected for k = 1.
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Theorem 2. (Bondy, 1971, {2]) Let G = (V, E) be a graph with |G| =n >
3. If degs(u) + degg(v) = n for any pair of nonadjacent vertices u, v in
V, then either G is pancyclic or G is the complete bipartite graph Ky /2 n/2,
where n is an even integer.

Consider a graph G = (V, E) and two vertices u and v of G. Let §(u, v)
denote the distance between « and v, which is the total number of edges
of a shortest path between u and v, and diam(G) denote the diameter of
G, defined by max{d(u,v) | u,v € V}. It is easy to see that any graph G
satisfying the condition(s) in Theorem 1 must be with diam(G) < 2. In
addition, the conditions in Theorems 1 and 2 are tight in the sense that
under the weakened degree-sum condition, there exist graphs which fail to
possess the corresponding hamiltonian property [2,8]. Nonetheless, when
a slight change on the degree condition occurs, researchers are interested
in characterizing graphs which perform differently and learning why some
graphs lose the original hamiltonicity while others endure well. Some re-
lated studies are presented below as a contrast to the above two theorems.

For this purpose, we define some notations on graphs first. Let G,
and Gy be two graphs. We say that G} and G2 are disjoint if Gy and
G5 have no vertex in common. The union of two disjoint graphs G; and
G3, denoted by G + Gy, is a graph with V(G; + G,) = V(G,) U V(G»)
and E(G, + G2) = E(G,) U E(G2). By kG we mean the disjoint union
of k copies of the graph G, and I,, denotes nK;. The join of two disjoint
subgraphs G; and Gs, denoted by G1 V Ga, is the graph obtained from
G1 + G3 by joining each vertex of G; to each vertex of G2. Note that
Theorem 4 is adapted for graphs with diam(G) < 2.

Theorem 3. (Aldred et al., 1994, [1]) Let G = (V,E) be a simple graph
with |G| =n 2 3. Ifdegg(u) +degn(v) > n—1 holds for each pair of non-
adjacent vertices u, v in V, then either G is pancyclic or G is isomorphic to
one of the following four graphs: (i) K1V (K, + K,;) with s+t =n—1; (i)
a subgraph of K(n_1y/2 V IL&L’" (i) Knj2,ny2; () a cycle with 5 vertices.

Theorem 4. (Li, 2006, [9]) Let G be a connected graph with |G| =n > 3.
If deg(u) + deg(v) > n — 1 holds for any pair of nonadjacent vertices u,
v in G, then either G is hamiltonian or G belongs to one of the following
two families: (i) K1V (Ks + K;) with s+t =n—1; (i) {G | Kppy1 C
GC K,VIp} withn=2p+1.

Theorem 5. (Shih et al., 2012, [14]) Let G = (V,E) be a simple graph
with |G| =n > 3. Let H; be any simple graph with i vertices. If degg(u)+
degi(v) > n holds for each pair of nonadjacent vertices u, v in V, then
either G is hamiltonian-connected or G belongs to one of the two families:
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n=s+t+2

(a)

Figure 1: An illustration of graphs of (a) Gi; (b) Ga.

(i)G={HV(K;+ Ky) | s,t >1ands+t=n—2}; (i) Go={H, VI |
2s=n}.

Graphs in G; for ¢ € {1,2}, which appear in Theorem 5, are illustrated
in Figure 1. It is easy to show that graphs in G; UG, satisfy the degree-suin
condition in Theoremn 5, but there exists no hamiltonian path between x and
y. It is also interesting to observe the similarities among the graph families
independently obtained in Theorem 3, 4, and 5. Inspired by these works,
we intend to relax the condition in Theorem 5 and find out all exceptional
graph types. In Section 2, we present our main theorem, Theorem 6, and
the proof. A brief conclusion is given in Section 3.

2 Main results

Definition 1. Let H; be any simple graph with ¢ vertices, and K, a com-
plete graph with t vertices for t > 1. The symbol K, denotes the graph
obtained by removing certain edges from K, such that deg Kr (v) 2t-2 for
allve V(K;). We define four graph families, {H; | 1 < i < 4}, in which
each graph consists of n vertices with n > 3.

o H, contains {G | Kyry1 € G C (K, V (Ko + I_1)), degg(u) +
degg(v) =2 n — 1 for any pair of nonadjacent vertices u and v of
G}. More specifically, H, consists of two types of graphs: (a) H} =
{H VI 41 | n=2r+1} and (b) H} = {H,v*(Ko+I_1) | n = 2r+1},
where V* is the same as V, and further, we allow the situation when
a,b € V(K3), Ny, (a)] 2 r—1, |[Nyg_(b)| 2 -1, and |Ny, (a) U
Nu.(b)| =r.
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Figure 2: An illustration of graphs of H;: (a) H} = {H, V141 | n=2r+1}
and (b) H? = {H, V* (K2 + I,-1) | n=2r +1}.

e Hy contains {G | (K, VIV~ Ky;) € G C (K, V K2 V™ Ky,),
degg(u)+degg(v) 2 n—1 for any pair of nonadjacent vertices u and v
of G}. More specifically, let V(K2) or V(H3) be {z,y}. M2 consists of
three types of graphs: Hj = {K;, VHV™ K, | t; < tg,n = t1+t2+2};
HE = {Ki, VK2 V™ Ky, |ty 2 t2,n =ty + 82+ 2, either Nk, (z) =0
or Nk,,(y) = 0}; HE={K,, VHV K, | ti > ta,n=1t1 +t2 +2,
both |Nk,,(z)| 2 1 and |Nk,, (y)| 2 1}. Here G1V~ G, is the same as
G1V Gz except that for v € G2 with degg, (v) = |G| — 1, at most one
edge between v and G, can be removed such that |Ng, (v)| = |G1| —1.

e M3 consists of two types of graphs: H} = {H} V' I. | n = 2r} and
H% ={H,VI.|n=2r}. Here H} denotes a simple graph consisting
of r vertices and at least one edge, and H;Y V'I, is the same as HY VI,
except that for only one vertez y € H} with degy+(y) > 1, ezactly
one edge between y and I; is removed.

o Hy={HsV (K; +2K3)}U{H3V3K,}.

Ilustrations of all graphs in the #;s are shown in Figures 2, 3, 4, and
5. Obviously, each of them satisfies degg (u) +degs (v) > n —1 for any pair
of nonadjacent vertices u, v and there exists no hamiltonian path between
z and y. The main theorem is stated below.

Theorem 6. Let G = (V, E) be a simple graph with |G| = n > 3 such that
dege(u) + degg(v) > n — 1 holds for each pair of nonadjacent vertices u
and v in V. Then either G is hamiltonian-connected or G belongs to one
of the four families H; with i € {1,2,3,4}.

To prove Theorem 6, we make the following assumptions. Let G =
(V,E) be a simple graph with |G| = n > 3 and G satisfy the degree-
sum condition in Theorem 6. Let v and v be two arbitrary vertices in G
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(b

Figure 3: An illustration of graphs of Hy: (a) Hj = {K,, VH2V™ K, | t1 <
to,n=1t;+t2+2}; (b) HE = {Ky, VK2V~ Ky, |ty S ta,n=1t; +t3 + 2,
either Nk,,(z) = @ or Nk, (y) = 0}; (c) H3 = {K,, VH V™ Ky, | t; >
ta,n =t; +t2 + 2, both |Ng, (z)| 2 1 and |Nk,, (y)| > 1}.

Figure 4: An illustration of graphs of Hs: (a) Hi = {HF V' I, | n = 2r}
and (b) H = {H. VI |n=2r}.

K+2K;
(2)

Figure 5: An illustration of graphs of H4: (a)H} = {H3 V(K +2K3)} and
(b) H2 = {H3 V 3K,}.

and P the longest path between v and v in G. If |P| = n, then P is a
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hamiltonian path. It suffices to verify the case when |P| < n — 1. In the
following discussion, let P = (u = uy,u2,...,up = v) with p <n —1, and
S = G — P. We define two symbols 1 and | as follows. For i < j, u; T u;
denotes the path {(u;, uiy1, Uis2,...,%j—1,%;); for i > j, u; | u; denotes
the path (u, ui—1, Ui—2,...,Uj4+1,%;). For any vertex x of V, the symbol
z ~ S means there exists some vertex y in S such that z ~ y. By z » S,
we mean there exists no vertex y in S such that z ~ y. For simplicity, let
|Gl =n,|S|=s, |P|=p,n=p+s and |[Np(S)| =m.

Proposition 1. (1) Let u; be a vertex in P, where 1 < i < p, such that
u; ~z for some vertezz in S. Ifi < p—1, then ujy1 » x; if i > 2, then
ui—1 = z. (2) Let u; and u; be two distinct vertices in P and = be a vertex
in S such that u; ~z anduj ~z, where1 <i<j<pandj—-i22 If
J<p—1, then ujpq = ujp1; if i > 2, then u;_y =~ uj_1.

Proof. (1) For ¢ < p — 1, assume the opposite by letting u;4; ~ z, then
(u = u1tu;, T, uip1Tup = v) is a path longer than P. It contradicts the
assumption that P is the longest path between u and v. Therefore, u;41 =
z. The proof for the case with 1 > 2 is similar.

(2) For j < p — 1, assume the opposite by letting uiy1 ~ uj41. Thus
(v = uytui, T, ujluis1, uj1Tup = v) is a path longer than P, which leads
to a contradiction. The proof for the case with i > 2 is similar. O

The following proposition is derived with the same reasoning as in
Proposition 1.

Proposition 2. Suppose that S is a connected graph. (1) Letu; be a vertex
in P, where1 < i <p, such thatu; ~S. Ifi <p-—1, thenu;41 » S, and if
1> 2, thenu;—y = S. (2) Let u; and u; be two distinct vertices in P such
that u; ~ S and u; ~ S, where 1 <i<j<pandj-i>2 Ifj<p-1,
then u;4q » ujt1, and if i > 2, then u;—1 » u;_1.

2.1 Proof of Theorem 6: S is not a connected graph

Lemma 1. If S is not a connected graph, then G € H}.

Proof. Suppose S consists of k components with & > 2, denoted by S, Sz,
..., Sk. Take w € S; and z € S3. Then w ~ z. With Proposition 2(1),
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INp(S:)| < [] for i € {1,2}. Thus

n—1 < degg(w)+ degg(z)
< ISi =1+ [Np(S1)| + 152 — 1+ [Np(S2)|

< 1Si+18:0 -2+ 51+ [E]
< IS+ 1S|-2+p+1

k
< n=) |8 -1

i=3

It must be Z:Ls |Si| = 0, |P| = p being an odd integer, and degq(w) +
degg(2) = n — 1. Namely, S consists of two components, degg(w) =
1S1] — 1+ [&], and degg(z) = |S2| — 1 + [E]. It implies that both S; and
S, are complete graphs, and each vertex in $)US, is adjacent to [E] vertices
of P. Let V(Podd) = {ul,ug, ve ,up} and V(Peven) = {'u,z,u4, ves ,up_l}
be two subsets of V(P). Then each vertex in § = S) U S, is adjacent to
each vertex in P,qq. We claim that |S;] = |S2| = 1. Otherwise, assume
the opposite by letting |S;| > 2 without loss of generality. Consider two
distinct vertices a,b € S;. Then a ~ u;, b ~ u3, and there is a hamiltonian
path Q in S; between a and b. The path (u = uy,a,Q,b,uztu, = v) is a
path longer than P, which is a contradiction. Consequently, [S;| = |Sz| = 1.
Furthermore, by Proposition 1(2), there is no edge between any two vertices
of Peyen; applying the degree-sum assumption of Theorem 6 on two vertices
Of Peyen results in the subgraph Peyen V Pogq of G. Let 7 = |Pogq|. Then G
is of the form {(w + z + Peven) V Podd | Peven = Ir-1, Poda = H,}. Namely,
G e H1. O

2.2 Proof of Theorem 6: S is a connected, noncom-
plete graph

Note that S cannot be connected and noncomplete if s < 2. We only
consider S with s > 3 in this subsection. We shall assume that Np(S) =
{uwiy,-..,ui, }, where [Np(S)| = m.

Proposition 3. If S is a connected, noncomplete graph, then the following
statements hold.

(1) For each vertez z € S, degg(z) > s —~ 2.
(2 u~Sandv~S.

(3) There exists a hamiltonian path of S which connects two distinct ver-
tices  and y with degg(z) = degg(y) = s — 2.
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(4) For any vertez z of S with degg(z) = s—2, Np(z) = Np(S). In other
words, x ~ Uiy foralll <j<m.

(5) s<p-2.

Proof. (1) Let z € S and u; € P with u; ~ S. By Proposition 2, uj+; =~ S
and degpn(uiy1) < p—m+1. Note that degp(z) < m. Applying the degree
assumption of Theorem 6 on z and ui4+1, we have

n—1 < degg(z)+degg(uit1)
= degp(z) + degg(z) + degg(uit1)
m + degg(z) +p—-m+1

degg(z) +p+1.

IA

Hence degg(z) 2n—-1—(p+1)=s-2.

(2) Assume that up, = v » S. We claim that there exists a vertex u; € P
with 1 <4 < p — 1 such that u; ~ S. Otherwise, P is not connected with
S, which means that G is not traceable. It contradicts Theorem 1. By
Proposition 2, uiy1 » S and u;4y % uj4y for 1 < j < p—1 with j # 4 and
u; ~ S. Thus degg(uit1) < p— m. Since S is not complete, and by (1),
there exists a vertex z in S with degg(z) = s — 2. Since = » u;41, we have

dego(z) + degg(uiy1) < (s—2+m)+(p—m)
= s+p-—2
= n-2

It contradicts the degree-sum assumption of Theorem 6. Consequently, it
must be v ~ S. With the similar argument, it can be shown that v ~ S.

(3) If s = 3, then S is a path with 3 vertices. So there is a hamiltonian
path between the two vertices with degree 1. If s = 4, then either S is
a cycle with 4 vertices or S is a cycle with 4 vertices plus an additional
edge. It is easy to see that S has the desired hamiltonian path in either
case. Finally, consider S with s > 5. Take two nonadjacent vertices w and
z of S. Since degg(w) + degg(z) > (s —2)+(s—2) =2s-42>s5+1,
S is hamiltonian-connected by Theorem 1. In particular, there exists a
hamiltonian path between two vertices with degree s — 2.

(4) Take £ € S with degg(z) = s — 2. Consider u;, +;. With Proposition 2
and the statement in (2), u; 4+ ~ = and degc(uil;) < p-—m+ 1. For the
vertex pair {z,u;, +1}, the degree-sum assumption of Theorein 6 implies
that degg(z) > (n—1) — (p—m+1) = s—2+m. It must be degp(z) = m,
so there exists an edge between z and any vertex in Np(S).
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(5) With (1) and the fact that S is noncomplete, there exist vertices with
degree in S equal to s — 2. By (3), there is a hamiltonian path Q of S
between two distinct vertices a and b with degg(a) = degg(b) = s — 2.
Moreover, with (4), a ~ u and b ~ v. Consequently, the path P’ =
(u,a,Q,b,v) is a path with |P’| = s + 2. Since P is the longest path
between v and v in G, it must be s < p — 2. O

Lemma 2. If S is a connected, noncomplete graph, then G is hamiltonian-
connected.

Proof. With Proposition 3(1) and the fact that S is noncomplete, let = he
any vertex in S with degg(z) = s — 2. By Proposition 3(2), m > 2. There
are two cases.

Case 1. m = 2. By (2) and (4) of Proposition 3, we know Np(S) =
{u1,up} and  ~ »; and z ~ u,. With Proposition 3(5), s < p — 2. Take
y € S such that x = y. We have

degg(z) +degg(y) = (s—2+2)+(s—2+2)
= $s+s
< s+p-2
= n-—2.

It is a contradiction to the degree assumption of Theorem 6. Consequently,
no graph which is not hamiltonian-connected appears in this case.

Case 2. m > 3.

Case 2.1. There exists at least one j with 1 < j < m — 1 such that
ij41 — t; = 2. Note that S is a noncomplete graph with s > 3 and, by
Proposition 3(1), degg(z) > s — 2 for each vertex z in S. Thus there
exist two distinct vertices a and b of S with degg(a) = degg(b) = s — 2
such that a = b. Since Np(a) = Np(b) = Np(S) by Proposition 3(4),
we know u;, ~ a and Uijyy ~ b for some j with 1 < j < m — 1. Since
S is connected, let Q be the path between a and b in S. The path (u =
u1uy;, a, Q,b, Uiy, +1Tup = v) is a path longer than P since Q consists of at
least two vertices a and b. It is a contradiction.

Case 2.2. Foralll < j<m-1, ij+1 — 4 2 3. Let j and k be two
distinct integers with j < k such that 4;,1 —4; > 3 and i4; —4; > 3. Since
T % Uijy1, by the assumption of Theorem 8,

n—1 < degg(x)+ dege(ui +1)

< (s=2+m)+(p—-m+1)
= s+p-—1
= n-—1
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P

u U, U Ui, u u Ui Up-1 v

Figure 6: An illustration which leads to a contradiction in Case 2.2 of
Lemma 2.

It implies that dega(u,l.,.l) =p-m+1 Thus y; G+l Uiy —1- Fur-
thermore, since z » u;, 41, using the same argument, we have Ui g1 ~
Ujp,,. Since u;, ~ S, ui, ~ y for some vertex y € S. Since S is
connected, there exists a path Q in S between z and y. Therefore, the
Path (u = ulTuz » Ty Qa Y, ulklut +lyuu¢+| llulk+11utk+1TuP = 'U) is a path
longer than P, Wthh isa contradlctlon See Figure 6.

The proof is completed. O

2.3 Proof of Theorem 6: S is a connected, complete
graph
In this subsection, let S be a complete graph with s > 1. In other words,

degg(z) = s —1 for every vertex z € S. Note that Np(S5) = {uy;,... %, }»
where |Np(S)| = m.

Proposition 4. If S is a complete graph and m > 2, then |Np(S) N
{u,v} = 1.

Proof. To prove |[Np(S) N {u,v}| = 1, we assume the opposite. That is, we
assume u » S and v » S. Equivalently speaking, we assume ¢; > 2 and
im < p—1 (Or, uy # w1 and ui, # up.) For each vertex ui; € Np(S5)
and for any vertex z € S, we have

n—1 degg(z) + degg(ui;+1)
(s —14+m)+(p—m)

n—1.

INIA A

It implies degg(us;+1) = p — m. We will derive contradictions as follows.

Case 1. iy —im_1 = 2. It implies that u;,,_, 41 = u;, 1 and degp(u;,_, L+1)
< p—m — 1, which is a contradiction.
Case 2. iy —im-1 > 3. It implies that u;,,_,4+1 ~ v, and u;, —1 ~ Uiy, +1.
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Let a and b be vertices of S such that u;,_, ~ a, u;,, ~band @ a path of
S between a and b. Thus P’ = {u = umz__l,a, @b, Uiy Uiy 41U, -1,
Ui, +1TUp = v) is a path with |P'] > p+¢, wheree =11ifa =band e =2
if @ # b, which is longer than P. It is a contradiction. O

Proposition 5. If S is a complete graph end xz € S is an arbitrary verter,
then degp(z) 2 m — 1.

Proof. Let y € P and y = u;;41 for some u;; € Np(S). It is known that
dego(z) = s — 1+ degp(z). With the assumption of Theorem 6,

n—1 < degg(z) +dego(y)
= (s—1+degp(z)) + dega(¥).

It implies degg(y) = (n — 1) — (s — 1 + degp(z)) = p — degp(z). On the
other hand, by Proposition 2 and 4, degg(y) < p — m + 1. Therefore,
p—m+12degs(y) = p — degp(z), which gives degp(z) > m — 1. 0

If degp(z) = m — 1 for some z € S, with the similar discussion as in
Lemma 2, we can show that no graph appears for Case 2, where m > 3.
The graphs obtained from Case 1 are H% and H3. They belong to H,.
With Proposition 5, we shall concentrate on the case with degp(z) = m
for all z € S from now on. Without loss of generality, with Proposition 4,
we assume u = uy ~ S if m > 2.

Proposition 6. If S is a complete graph and m > 2, then1 <s<d -1,
where d = min{ij41 —4; |1 < j<m -1}

Proof. Take two vertices u;; and u;,,, of Np(S). Note that degp(z) = m
for all z € S. Let a,b € V(S) such that @ ~ u;, and b ~ Ui;,,. Since §
is complete, there exists a hamiltonian path Q of S between & and b. The
path P' = (u = ulTu,i,a,Q,b, Uiy, Tup = v) is a path between u and v
with |P’| = p — (¢j41 — i; — 1) + s. Since P is the longest path between u
and v, we conclude that s < d — 1. O

Consider Ui 41 € P. By Proposition 2, Ui 41 > S, and Ui 41 % Uiy
for any ! # j with 1 <! < m. The following proposition is obvious.

Proposition 7. Suppose u;, 41 # ui; ,—1, where1 < j<m-1. (1) If
im < P, then |Ng(ui;41)| = p— m end No(ui;41) = V(P) \ {uy4r | L =
l,...,m}. (2) Ifim = p, then |Ng(ui;41)| € {p — m,p—m + 1} and
Ng(uij41) € (V(P)\ {uiq1 | 1 =1,...,m = 1}). Similarly, for ui;_y #
Ui;_y+1, where 2 < j < m, since u; ~ S, iNG(uii_l)l e{p—mp-m+1}
and Ne(ui;—1) € (V(P)\{ui-1 | 1=2,...,m}).
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Proof. If i, = p, then [{u;;41 | 1 £ 7 < m}| = m — 1. Otherwise,
Hui,41 11 < j <m}| = m. Take z € V(S). We know that = ~ Ui 41
and degg(z) = s — 1 + m. For the vertex pair {:r,uii+1}, the degree-sum
condition of Theorem 6 implies that degg(u;;41) 2 (n—1) - degg(z) =
- m.

IC)Jase 1. im < p. With Proposition 2, u;; 41 » u;41 for any 1 < I < m,
then dege(ui;+1) = degp(ui;41) Sp—m. It must be degg(ui;+1) =p—m,
and Nc(u,iH) = V(P) \ {uiL+1 I l= 1,. . .,m}.

Case 2. iy, = p. Similarly, with Proposition 2, degg(ui,+1) <p—m+1.
It must be |[Ng(ui;+1)| € {(p—m,p—m+1} and Ng(ui;41) isasin (2). O

Lemma 3. If S is a complete graph and m < 2, then G € H}UHIUHZUH].
Proof. There are two cases.

Case 1. m = 1. Suppose uj ~ S for some 1 < j < p. Take u; € P
with i # j and z € S. Obviously, u; » z. Using the degree assumption of
Theorem 6, we find

n—1 degg () + degg(uq)
(s=14+1)+(p-1)

n—1.

IAN A IA

Thus any vertex of S must connect to u; € P and P must be a com-
plete graph. We obtain the graphs K, V u; V K,_;, which are equal to
Kp_2V K2V~ K,, where u; € V(K3). (With Figure 3(b), readers can take
ty, = p—2,V(K2) = {z = u;,y}, and t2 = s.) Obviously, they belong to
H2.

Case 2. m = 2.

Case 2.1. i3 <p.

Case 2.1.1. i > 4. Note that u;; = u3 ~ § and Uiy ~ S. By Propo-
sition 2, ug % S and up = us41. With Proposition 7, uz ~ u; and
Ui 41 ~ Ui—1. Let a and b be distinct vertices in S such that u; ~ a
and u;, ~ b, and Q be a path between a and b in S. Then the path
(u=1u,0a,Q,b,u;,, ugtuy, -1, Uiy 1 Tup = v) is a path longer than P, which
is a contradiction.

Case 2.1.2. i3 = 3. Since i3 —4; = 2, by Proposition 6, s = 1. There-
fore, we assume that S = {w}. For p = 4, using Proposition 7, we obtain
(w1 + u3) V (w + uz + u4), which belongs to H} withr =2, Forp =35, a
similar derivation leads to a graph containing wV (u; +u3) and (ug +u4) V
(u1 + u3 + us) as its subgraphs, in which ug = w, [Ng(us) N {v1,us}| > 1
and either u; ~ u3 or u; ~ u3. It belongs to H} for r = 3 and us = y.
Consider the case when p > 6. Since u; ~ w and us ~ w, by Proposition 1,
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ug » w and ug » uq. With Proposition 7, us ~ us and ug ~ ug. Then the
path P’ = (u = u1, w, ua, ug, us, u2, ueTup = v) is a path with |P'| =p+1,
which is longer than P. It is a contradiction.

Case 2.2. i3 = p. Note that £ ~ u; and z ~ u, for all z € §. With
Proposition 7, we obtain the graphs K, Vv Hy V™ K, 5, which belong to

. O
> 3, then G € H; fori €

Lemma 4. If S is a complete graph and m
{1,3,4}.

Proof. By Proposition 4, |Np(S) N {u,v}| > 1. There are three cases.
Case 1. There exist j and k with 1 < j < k < m—1 such that ¢z —ix > 3
and i3, —4; > 3. T

Case 1.1. i, =pand m > 4.

Case 1.1.1. 44y — 4 > 3foralll # j,kand 1 <1 < m—1. Thus
the number d in Proposxtlon 6 satisfies d > 3. Consider Ui 41 € P and
z € S. Obviously, u; 41 » = by Proposition 2. Applying the degree-sumn
assumption of Theorem 6, we find

degg(ui+1) = (n—1) —degg(w)
(n=1)—(s—1+4m)
= p—m.

Let a,b,c € V(S) such that a ~ Uiy s b ~ u;,, and ¢ ~ u;;. Let Q) be
a hamiltonian path between a and b in S, and Q2 be a hamiltonian path
between a and ¢ in S. With Proposition 7, it means that there exists at
most one vertex u* € P, where u* ¢ {u;+1 |2 < j < m — 1}, such that
u;i, +1 * u*. Therefore, we have either Wiy 41 ~ Uiy OF Ujy 4y ~ Uiy,

Case 1.1.1.1. ;41 ~ ui,. Again, by Proposition 7, either Ujp—1 ~ Uig 41
or Uip—1 Uig+1- FiI‘St, if uiz—l ~ u,—a.,.], then P’ = (’U. = Uiy, G,Ql, b, ‘U.i_z_,
Ui +1TUiy -1, Uiy +1TUp = v) is a path with |P’| = p+ s, which is longer than
P. See Figure 7. We obtain a contradiction. Second, if Uig—1 ~ Uig41,
then P" = (u = u;,,a,Qy,c, u,iJ,u,g, Uiy 41 T%ip 1, Uiy 1 TUp = 0) is another
path with |P"”| = p + s, which is longer than P. See Figure 8. We obtain
a contradiction.

Case 1.1.1.2. Uiy +1 ~ Uiy, Again, by Proposition 7, either Uiy +1 ~ Uip—1
OF Uiy 41 ~ Uig—1. First, ifuji41 ~ ugy_1, then P/ = (u = v, a,Q1, by uip Ty,
u; 41U, 1, Uiy +1Tup = v) is a path with |P/| = p+ s, which is longer than
P. See Figure 9. We obtain a contradiction. Second, if Uig 41 ~ Uig—1, then
P" = (u = uj},a,Q2,¢, Uiy, Uiy 41Ty -1, Uiz +1 T8, = v) is another path
with |P”| = p + s, which is longer than P. See Figure 10. We obtain a
contradiction. Consequently, there is no graph present in this case.
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Up

Figure 7: An illustration of P’ which leads to a contradiction in Case 1.1.1.1
of Lemma 4.

Uy, Uy Up

Figure 8 An illustration of P"” which leads to a contradiction in Case
1.1.1.1 of Lemma 4.

Uy Uiy Up U Uy U

Figure 9: An illustration of P’ which leads to a contradiction in Case 1.1.1.2
of Lemma 4.

Case 1.1.2. iyy — iy = 2 for some [ € {1,...,m —1}\ {j,k}. Let I €
{1,...,m—=1}\ {j, k} with 4. 4y —i;- = 2. In this case, with Proposition 6,
s = 1. Let § = {w}. By Proposition 1, u;,. +1 = S. In addition, u;.4+1 =
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uil ujl+| U; u,'l_l u,«}_ u,'l+| Up

Figure 10: An illustration of P” which leads to a contradiction in Case
1.1.1.2 of Lemma 4.

Uipeyy =15 S0 Uipo 41 % Uiyyy—1 and Uipe +1 % Uigyy—1- We have

n—1 < degg(w) +degg(ui.+1)
< (s—1+m)+(p—m+1-2)
s+p-—2
n—2,

which is a contradiction. Thus no graph which is not hamiltonian-connected
appears.
Case 1.2, i, =pand m =3.
Case 1.2.1. There exists at least one j* with 1 < j* < 2 such that
i1 — %= 2 4. Without loss of generality, we assume that i3 — ¢; > 4.
Let a,b € V(S) such that a ~ u;, and b ~ u;,. Let Q be a path between
a and b in S. Note that for [ € {1, -1}, with Proposition 7, there exists
at most one correspondmg vertex u* in P, where u* ¢ {u; 4|1 < j < 3},
such that u; L u* if uy, ;+1 exists. We will derive contradictions as follows.

First, in the case that us ~ Uiy Ifuiy—1 ~ w41, then (u = uy,a,Q,b,u;y,
ugtu;, —1, Ui +1Tui, = v) is a longer path than P. We obtain a contra-
diction. If _u‘z_l % Uiy+1, then u;_ ) ~ u;. We have the path P/ =
(U = u3,u4-1 lug, u;; tu;; = v), which is another path having the same
endvertices with P and V(P) = V(P'). With Proposition 2(2), we have
uz % Uiz and U 41 % Uj—). It implies up ~ ui;—1 and uj 41 ~ uz.
Therefore, we obtain (u = uy,a,Q,b, u,_,_,uz,u,z_llua,u,ﬁl’l‘u,, = v) be-
ing a longer path than P, which is a contradiction.

Second, in the case that ug # Uuj,. It implies up ~ u;;—1 and up ~ uy,.
If Uip4+1 ~ U3, then (’U. = u,aq, Qab)uig¢u3)ui1+lTui1—-lauZ,uig = ’U) is
a longer path than P. We obtain a contradiction. If Uiy 41 * U3, then
Ui+1 ~ Uiy, We have the path (u = u,a,Q, b, udug, uiy—1dui 41, uyy =
v), which is a longer path than P. We obtain a contradiction.

Case 1.2.2. ig —i; = i3—iy = 3. By Proposition 6, 1 < s < 2. We assume
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that V(S) = {w} if s = 1, and V(S) = {w,z} if s = 2. With Propo-
sition 7, we obtain two graphs w V {u1,uq,u7} V ((u2 V us) + (us V ug))
and (wV z) V {uy,uq,us} V ((u2 V uz) + (us V ug)). Both graphs belong
to H4. Besides these graphs, the graph G contains a longer path, which
contradicts our assumption of the path P.

Case 1.3. in < p. Since Ui ~ S, by Proposition 2, u;, S+l S. With
Proposition 7, degc(u, +1) = p—m, and u;, S~ Uigyy Snmla.rly, Uipyy+1 ™
Uiy -1 Let a and b be distinct vertlces in S such that Uy ~a and
Uijpy ~ b, and @ a path between @ and b in S. Thus the path (u
ulTu, ,a,Q, b, u,,l!____“rf.z,,‘“,u,).,.l‘]‘u,J+l 1,u,k+,+11‘u,, = v) is a path longer
than jD which is a contradiction.

Case 2. There exists exactly one k with 1 < k& < m—1 such that ix41—ix >
3, and tj41 — iJ = 2 for all j # k. Without loss of generality, we assume
that S = {w} and g1 — i 2 3with 1 <k <[] -1

Case 2.1. i, = p. Note that w ~ Uiy, 80d W ~ Uiy,

Case 2.1.1. ig4) — i = 5. With Proposition 7, ui,,,+1 ~ ui 42 and
utk+l+l ~ Uiy +3- We have the pat'h (u - ulTutk+2»utk+1+la u1k+3Tulk+1 W,

Uig yp Ty, = v), which is a longer path than P. We obtain a contradiction.
Case 2.1.2. ik+1 — ik = 4. We have w = u;, 45 and, with Proposition 7,
Uipp1 ~ Uig 42 for each ! with 1 <l <m-—1. We claim that Ui +1 % Uig +3-
Otherwise, (u = ulTu,k+1,u1k+3,u,k+2,u,k+l+1,u,k+l,w Uiy oy TUi, = V) IS
a longer path than P, which is a contradiction. Therefore, we obtain the
graphs HY V' I, where V(I,) = {w} U {u; € P | ¢ is an even integer}, and
Ui 42 € V(H+ = {u; € P|1iis an odd integer} is at least adjacent to one
of the other vertices in H;¥. These graphs belong to Hj.

Case 2.1.3. k41 — ik = 3. Using Proposition 7, we obtain the graphs
H,v* (K, v I,0)), whereV(H)-{‘u., €P| 1<3<m~r} V(K,) =
{utk+hulk+2} and V(I —1) = {w}u ({u' € P|u; = w}\ {u1k+11utk+2})
These graphs belong to 3.

Case 2.2. iy < p. Since Uij+1 = Uiy, -1, by Proposition 2, u; 41 »
Uiyy,—1- Thus degc(u,i“) < p-—m — 1. For any vertex = in S, we have

n—1 < degg(x)+ degg(ui;+1)

(s=14+4m)+(p—-m—1)
n—2,

IA A

which is a contradiction.
Case 3. ij41 —ij=2forall j€{l,...,m -1}

Case 3.1. i, = p. In this case, p must be an odd integer. The graphs
derived are wVHY VI orwVH vI and they belong to
(51" L3 Rtk y belone
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Hs.

Case 3.2. i, = p—1. In this case, p must be an even integer. The graphs
derived are w V Hp V I¢, which belong to i

Case 3.3. i,, = p — 2, where p is an odd integer. The graphs derived are
I[*J v HF%] V' w, and they belong to 3.

Case 3.4. i, < p— 3. Using the argument similar to the case with p > 6
of Case 2.1.2 in Lemma 3, a contradiction occurs. Thus no graph appears
in this case. O

3 Conclusion

With Lemmas 1-4, Theorem 6 is proved. Note that the exceptional fam-
ilies Gy and Gz in Theorem 5 are subsets of H2 and H3, respectively. We
also note that the exceptional graphs in Theorem 4 belong to Hs and H,,
and the graph families (i), (ii) and (iii) in Theorem 3 are subsets of H,
H,; and Hgz, respectively. Graphs in these families satisfy the degree-sum
condition such that degg(z)+deg(y) = |G]—1 holds for every pair of non-
adjacent vertices z, y of G, and they are not hamiltonian, not pancyclic,
and not hamiltonian-connected. Such an analysis leads to the following
comprehensive theorem.

Theorem 7. Let G = (V, E) be a simple graph with |G| = n > 3 such that
degg(u) + degg(v) > n — 1 holds for each pair of nonadjacent vertices u
andv in V. Then

(i) G is traceable.

(ii) Either G is hamiltonian or G belongs to one of the two families: H}
and H3.

(iii) Either G is pancyclic or G belongs to one of the four families: (a)
HE; (b) Hi; (c) HE with H, = I,; (d) H} witht, =1, Hy = I, and
Kt-z = K.

(iv) FEither G is hamiltonian-connected or G belongs to one of the four
families: Hq, Ha, Ha, and Hy.
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