A relationship between Minors and Linkages

Fuyuan Chen *

Institute of Statistics and Applied Mathematics, Anhui University of Finance and Economics, Bengbu, Anhui 233030, P.R. China

October 22, 2015

ABSTRACT. Linkage is very important in very large scale integration (VLSI) physical design. In this paper, we mainly study the relationship between minors and linkages. Thomassen conjectured that every (2k+2)-connected graph is k-linked. For $k \geq 4$, K_{3k-1} with k disjoint edges deleted is a counterexample to this conjecture, however, it is still open for k=3. Thomas and Wollan proved that every 6-connected graph on n vertices with 5n-14 edges is 3-linked. Hence they obtain that every 10-connected graph is 3-linked. Chen et al. showed that every 6-connected graph with K_9^- as a minor is 3-linked, and every 7-connected graph with K_9^- as a minor is (2,5)-linked. Using a similar method, we prove that every 8-connected graph with K_{12}^- as a minor is 4-linked, and every (2k+1)-connected graph with K_{2k+3}^- as a minor is (2,2k-1)-linked. Our results extend Chen et al.'s conclusions, improve Thomas and Wollan's results, and moreover, they give a class of graphs that satisfy Thomassen's conjecture for k=4.

Keywords: Minor; Linkage; k-Linked; (2, k)-Linked.

AMS Subject Classification (2010): 05C83; 13C40; 68W35; 05C40; 05C70.

1 Introduction

All graphs considered in this paper are finite, undirected, and simple (without loops or multiple edges). The sets of vertices and edges of a graph G are denoted by V(G) and E(G), respectively. Let X be a subset of V(G).

^{*}E-mail address: chenfuyuan19871010@163.com (F. Chen).

We use G[X] to denote the subgraph of G whose vertex set is X and whose edge set consists of all edges of G that have both ends in X. The neighbors of v in G[X], denoted by $N_{G[X]}(v)$, is the set of vertices in G[X] which are adjacent to v. When G[X] = G, we simply write N(v) instead of $N_{G[X]}(v)$. A minor of G is any graph obtained from G by deleting edges and (or) vertices and contracting edges. According to Bondy and Murty [2], we use K_n to denote the complete graph with n vertices, and K_n^- the subgraph of K_n with exactly one edge deleted. Let s_1, s_2, \ldots, s_k be k positive integers. A graph G is said to be (s_1, s_2, \ldots, s_k) -linked if it has at least $\sum_{i=1}^k s_i$ vertices and for any k disjoint vertex sets S_1, S_2, \ldots, S_k with $|S_i| = s_i$, G contains vertex disjoint connected subgraphs F_1, F_2, \ldots, F_k such that $S_i \subseteq V(F_i)$. The $(2, 2, \ldots, 2)$ -linked graphs are called k-linked, that is, for any 2k distinct vertices $x_1, y_1, x_2, y_2, \ldots, x_k, y_k$, there exists k vertex disjoint paths P_1, P_2, \ldots, P_k such that P_i joins x_i and y_i , for $1 \le i \le k$.

The layout is first modeled as a routing graph, where each node represents a tile and each edge denotes the boundary between two adjacent tiles. A number of basic models for very large scale integration (VLSI) layout are based on the construction of vertex disjoint paths between terminals on a multi-layer grid. So linkage is very important in VLSI physical design.

The research on linkage has a long history, and has attracted more and more graph theorists. In 1980, Thomassen [9] conjectured that

Conjecture 1.1 (Thomassen [9]). Every (2k + 2)-connected graph is k-linked.

It has been observed that K_{3k-1} with k disjoint edges deleted is a counterexample to this conjecture for $k \geq 4$, however, it is still open for k = 3. In 2005, Chen, Gould, Kawarabayashi, Pfender and Wei [3] proved that

Theorem 1.1 (Chen, Gould, Kawarabayashi, Pfender and Wei [3]). Every 6-connected graph with K_9^- as a minor is 3-linked.

Theorem 1.2 (Chen, Gould, Kawarabayashi, Pfender and Wei [3]). Every 7-connected graph with K_9^- as a minor is (2,5)-linked.

In 2008, Thomas and Wollan [8] proved that

Theorem 1.3 (Thomas and Wollan [8]). Every 6-connected graph on n vertices with 5n - 14 edges is 3-linked.

By Theorem 1.3, they obtain the following corollary.

Corollary 1.1 (Thomas and Wollan [8]). Every 10-connected graph is 3-linked.

By applying a similar method to the proofs of Theorems 1.1 and 1.2, we obtain the following two main results.

Theorem 1.4. Every 8-connected graph with K_{12}^- as a minor is 4-linked.

Theorem 1.5. Every 2k + 1-connected graph with K_{2k+3}^- as a minor is (2, 2k-1)-linked.

Theorem 1.4 extends Theorem 1.1 and improves Theorem 1.3. Moreover, it gives a class of graphs that satisfy Conjecture 1.1 for k = 4. Theorem 1.5 is the extension of Theorem 1.2.

By Theorems 1.1 and 1.4, it's natural to propose the following conjecture.

Conjecture 1.2. Every 2k-connected graph with K_{3k}^- as a minor is k-linked.

In Sections 2 and 3, proofs of Theorems 1.4 and 1.5 will be given, respectively.

2 Proof of Theorem 1.4

Let G be a connected graph and H a minor of G. Let S, A, $B \subseteq V(G)$ and $C_1, C_2, \ldots, C_{|H|}$ a partition of V(G), such that each $G[C_i]$ is connected, and contracting each C_i yields H. Let $l = |A \cap B|$. If $S \subseteq A$, $V(G) = A \cup B$, and there are no edges between $A \setminus B$ and $B \setminus A$, then (A, B) is an S-cut of size l. If $C_i \subseteq B \setminus A$ for some $1 \le i \le |H|$, then the S-cut (A, B) is called an S^H -cut.

The following theorem proved by Hall [4] is very important in our main proof.

Theorem 2.1 (Hall's Theorem, Hall [4]). A bipartite graph G[X,Y] has a matching which covers every vertex in X if and only if

$$|N(S)| \ge |S|$$

for all $S \subseteq X$.

In order to prove Theorem 1.4, we introduce the following theorem which is stronger than Theorem 1.4.

Theorem 2.2. Let G be a graph and $S = \{x_1, x_2, y_1, y_2, z_1, z_2, d_1, d_2\} \subseteq V(G)$. Let G^* be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a partition C_1, C_2, \ldots, C_{12} of V(G), such that each $G^*[C_i]$ is connected, and contracting each C_i in G^* yields $H = K_{12}^-$. If G^* has no S^H -cut of size smaller than 8, then there are four vertex disjoint paths in G connecting $(x_1, x_2), (y_1, y_2), (z_1, z_2), (d_1, d_2)$, respectively.

Proof. If not, then let G be a counterexample with the minimum number of edges. Let $S, C_1, C_2, \ldots, C_{12}$ be as in the theorem. Then by the choice of G, G[S] contains no edges.

We say that for each $1 \le i \le 12$, $G[C_i]$ contains no edges. Since if for some $i, G[C_i]$ contains edges, then without loss of generality, suppose that $uv \in E(C_1)$. As G[S] contains no edges, suppose that $v \notin S$. By the choice of G, there has to be an S^H -cut (A, B) of size 8 with $u, v \in A \cap B$, otherwise the contraction of uv would yield a smaller counterexample. As $|A \cap B| = 8$ and $u, v \in C_1$, at least five of the twelve C_i sets contain no vertices of $A \cap B$. Without loss of generality, we may assume that $C_i \cap A \cap B \neq \emptyset$ for $1 \leq i \leq k$, and $C_i \cap A \cap B = \emptyset$ for i > k, where k is an integer with $1 \le k \le 7$. As $S \subseteq A$, and $G^*[C_i]$ is connected, $C_i \subseteq B \setminus A$ or $C_i \subseteq A \setminus B$ for each i > k. Since $C_i \subseteq B \setminus A$ for at least one i > k, it is in fact true that $C_i \subseteq B \setminus A$ for all i > k, otherwise, contracting each C_i in G^* doesn't yield a K_{12}^- . As there is no S^H -cut of size less than 8 in G^* , there are eight vertex disjoint paths from S to $A \cap B$ in G[A]. Label the vertices of $S' = A \cap B$ with $x_1', x_2', y_1', y_2', z_1', z_2', d_1', d_2'$ according to the starting vertices in S of these paths. Let $C_i' = C_i \cap B$ for $1 \leq i \leq 12$. Then $G[B], S', C_1', C_2', \ldots, C_{12}'$ satisfy all the conditions of the theorem, and G[B] is smaller than G, as there is at least one vertex in $S \setminus B$ (note that $v \notin S$). By the choice of G, we can find four vertex disjoint paths in G[B] connecting $(x'_1, x'_2), (y'_1, y'_2),$ $(z'_1, z'_2), (d'_1, d'_2)$, respectively. This, together with the eight paths in G[A], produce the desired paths in G, a contradiction.

Now we have that $G[C_i]$ contains no edges for each $1 \le i \le 12$. Thus, $C_i \subseteq S$ or $|C_i| = 1$. If $C_i = S$ for some $1 \le i \le 12$, then |V(G)| = 19. Therefore, $12 \le |V(G)| \le 19$. Suppose without loss of generality that $|V(C_i)| \ge |V(C_j)|$ for $1 \le i < j \le 12$.

Case 2.1. |V(G)| = 12.

Proof. In this case, $|C_i| = 1$ for each $1 \le i \le 12$. Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4\}$. Then either $\{x_1v_1x_2, y_1v_2y_2, z_1v_3z_2, d_1v_4d_2\}$ or $\{x_1v_2x_2, y_1v_3y_2, z_1v_4z_2, d_1v_1d_2\}$ is the desired set of vertex disjoint paths, a contradiction.

If $|V(G)| \ge 13$, we have that each vertex in S has at least two neighbors in $V(G) \setminus S$. Otherwise, suppose x_1 has at most one neighbor in $V(G) \setminus S$. If x_1 has no neighbors in $V(G) \setminus S$, then $(A = S, B = V(G) \setminus x_1)$ is an S^H -cut of size 7. On the other hand, if x_1 has exactly one neighbor in $V(G) \setminus S$, say $x_1v_1 \in E(G)$, then $C_i \setminus x_1 \neq \emptyset$ for all $1 \le i \le 12$. Since $|V(G) \setminus S| \ge 5$, $G \setminus x_1$ with $S' = (S \setminus x_1) \cup \{v_1\}$ is a smaller counterexample, a contradiction to the minimality of G.

Case 2.2. |V(G)| = 13.

Proof. In this case, $|C_1| = 2$. Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4, v_5\}$.

If $C_1 = \{x_1, x_2\}$ (the cases $C_1 = \{y_1, y_2\}$ and $C_1 = \{z_1, z_2\}$ are analogous), then there exists a matching from C_1 into $V(G) \setminus S$. Since each vertex in S has at least two neighbors in $V(G) \setminus S$, suppose that $\{x_1v_1, x_2v_2\}$ is such a matching. If $v_1v_2 \in E(G)$, then either $\{x_1v_1v_2x_2, y_1v_3y_2, z_1v_4z_2, d_1v_5d_2\}$ or $\{x_1v_1v_2x_2, y_1v_4y_2, z_1v_5z_2, d_1v_3d_2\}$ is the desired set of vertex disjoint paths, a contradiction. Then $v_1v_2 \notin E(G)$. As G^* contracts to a K_{12}^- , v_3 has a neighbor in C_1 . Without loss of generality, suppose that $x_1v_3 \in E(G)$. Now $\{x_1v_3v_2x_2, y_1v_1y_2, z_1v_4z_2, d_1v_5d_2\}$ is the desired set of vertex disjoint paths, a contradiction.

Now suppose that $C_1 = \{x_1, y_1\}$ (the other cases are analyzed by a similar argument). As above, there exists a matching from C_1 into $V(G) \setminus S$. Suppose that $\{x_1v_1, y_1v_2\}$ is such a matching. Then at most one of the edges in a path in $\{x_1v_1x_2, y_1v_2y_2, z_1v_3z_2, d_1v_4d_4\}$ is missing, but now this edge can be replaced by a path of length 2 through v_5 to produce the desired set of vertex disjoint paths, a contradiction.

 \supset

Case 2.3. |V(G)| = 14.

Proof. In this case, $|C_1| \geq 2$. Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4, v_5, v_6\}$.

If $|C_1|=3$, without loss of generality suppose that $x_1,y_1,z_1\notin C_1$, then there is a matching from $\{x_2,y_2,z_2,d_1,d_2\}$ into $\{v_1,v_2,v_3,v_4,v_5,v_6\}$. Since if not, we consider the bipartite graph $G_1=G[\{x_2,y_2,z_2,d_1,d_2\},V(G)\backslash S]$, then by Theorem 2.1, there exists a set $S_1\subseteq \{x_2,y_2,z_2,d_1,d_2\}$, such that $|N_{G_1}(S_1)|<|S_1|$. Now $(A=S\cup N_{G_1}(S_1),B=(S\backslash S_1)\cup (V(G)\backslash S))$ is an S^H -cut of size $|S\backslash S_1|+|N_{G_1}(S_1)|$, which is smaller than 8 in G^* , a contradiction. Without loss of generality, suppose that $\{x_2v_2,y_2v_3,z_2v_4,d_1v_5,d_2v_6\}$ is this matching. Now $G^*[x_1,y_1,z_1,v_1,v_2,v_3,v_4,v_5,v_6]$ is a K_9 or a K_9^- , and therefore 4-linked. Then there are four vertex disjoint paths in G^* connecting $(x_1,v_2),(y_1,v_3),(z_1,v_4),(v_5,v_6)$, respectively. As the edges x_1y_1,y_1z_1,x_1z_1 are not used in this path system, this is in fact a path system in G. Together with the matching, we get the desired set of vertex disjoint paths, a contradiction.

Then $|C_1|=|C_2|=2$. If $x_1, y_1, z_1 \notin C_1 \cup C_2$, then the same argument as above applies. Without loss of generality, we may assume that $C_1 \cup C_2 = \{y_1, y_2, z_1, z_2\}$. If $x_j v_k$ or $d_j v_k \notin E(G)$ for some $1 \leq j \leq 2$ and some $1 \leq k \leq 6$, say $x_1 v_1 \notin E(G)$, then $G[x_2, d_1, v_1, v_2, v_3, v_4, v_5, v_6]$ is a K_8 , a very similar argument can be used to find the desired vertex disjoint paths. Thus, we may assume that $x_j v_k, d_j v_k \in E(G)$ for $1 \leq j \leq 2$ and $1 \leq k \leq 6$. Still we get that there is a matching from $\{y_1, y_2, z_1, z_2\}$

into $\{v_1, v_2, v_3, v_4, v_5, v_6\}$, suppose that $y_1v_1, y_2v_2, z_1v_3, z_2v_4$ is the matching. If $v_1v_2, v_3v_4 \in E(G)$, then $\{x_1v_5x_2, y_1v_1v_2y_2, z_1v_3v_4z_2, d_1v_6d_2\}$ is the desired set of vertex disjoint paths, a contradiction. Hence, we may assume that $v_1v_2 \notin E(G)$. As G^* contracts to a K_{12}^- , v_5 and v_6 are adjacent to both C_1 and C_2 . If $v_5y_1 \in E(G)$ (and similarly if $v_5y_2 \in E(G)$), then $\{x_1v_1x_2, y_1v_5v_2y_2, z_1v_3v_4z_2, d_1v_6d_2\}$ is the desired set of vertex disjoint paths, a contradiction. Hence $v_5z_1, v_5z_2 \in E(G)$, but now $\{x_1v_4x_2, y_1v_1v_3v_2y_2, z_1v_5z_2, d_1v_6d_2\}$ are the desired vertex disjoint paths, a contradiction.

Case 2.4. |V(G)| = 15.

Proof. In this case, $|C_1| \geq 2$. Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$.

If $|C_1| \geq 3$, then without loss of generality, suppose that $x_1, y_1 \notin C_1 \cup C_2$. As above, there is a matching from $\{x_2, y_2, z_1, z_2, d_1, d_2\}$ into $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$. Without loss of generality, suppose that $\{x_2v_2, y_2v_3, z_1v_4, z_2v_5, d_1v_6, d_2v_7\}$ is the matching. As $G^*[x_1, y_1, v_1, v_2, v_3, v_4, v_5, v_6, v_7]$ is a K_9 or a K_9^- , it's 4-linked. Then there are four vertex disjoint paths in G^* connecting $(x_1, v_2), (y_1, v_3), (v_4, v_5), (v_6, v_7)$, respectively. As the edge x_1y_1 is not used in this path system, this is in fact a path system in G. Together with the matching, we get the desired set of vertex disjoint paths, a contradiction.

Then $|C_1| = |C_2| = |C_3| = 2$. If $x_1, y_1 \notin C_1 \cup C_2 \cup C_3$, the same argument as above applies. Without loss of generality, we may assume that $C_1 \cup C_2 \cup C_3 = \{y_1, y_2, z_1, z_2, d_1, d_2\}$. If $x_i v_k \notin E(G)$ for some $1 \le j \le 2$ and some $1 \le k \le 7$, say $x_1v_1 \notin E(G)$, then $G[x_2, v_1, v_2, v_3, v_4, v_5, v_6, v_7]$ is a K_8 , and thus 4-linked, and a very similar argument can be used to find the paths. Thus, we may assume that $x_i v_k \in E(G)$ for $1 \leq j \leq 2$ and $1 \le k \le 7$. As above, there is a matching from $\{y_1, y_2, z_1, z_2, d_1, d_2\}$ into $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$. Suppose that $\{y_1v_1, y_2v_2, z_1v_3, z_2v_4, d_1v_5, d_2v_6\}$ is the matching. If v_1v_2 , v_3v_4 , $v_5v_6 \in E(G)$, then $\{x_1v_7x_2, y_1v_1v_2y_2, z_1v_3v_4z_2,$ $d_1v_5v_6d_2$ is the desired set of vertex disjoint paths, a contradiction. Hence, we may assume that $v_1v_2 \notin E(G)$. Now $v_7y_1, v_7y_2 \notin E(G)$, otherwise, either $\{x_1v_1x_2, y_1v_7v_2y_2, z_1v_3v_4z_2, d_1v_5v_6d_2\}$ or $\{x_1v_2x_2, y_1v_1v_7y_2, z_1v_3v_4z_2, d_1v_5v_6d_2\}$ $d_1v_5v_6d_2$ } is the desired set of vertex disjoint paths, a contradiction. We also have that at least one of v_7z_1 and v_7z_2 is not in E(G), otherwise, $\{x_1v_4x_2, y_1v_1v_3v_2y_2, z_1v_7z_2, d_1v_5v_6d_2\}$ are the desired vertex disjoint paths, a contradiction. Similarly, we obtain that if $v_7d_1 \in E(G)$, then $v_7d_2 \notin$ E(G). As G^* contracts to a K_{12}^- , v_7 is adjacent to C_1 , C_2 , and C_3 . But v_7 is adjacent to at most two vertices in $C_1 \cup C_2 \cup C_3$, a contradiction.

Case 2.5. |V(G)| = 16.

Proof. In this case, $|C_1| \ge 2$. Let $V(G) \setminus S = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}$. If $|C_1| \ge 3$, then $|C_4| = 1$ and $G[C_4 \cup \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8\}]$ is a K_9 or a K_9^- . Thus the same argument as above applies.

Then $|C_1| = |C_2| = |C_3| = |C_4| = 2$. We claim that there is a matching from S into $V(G) \setminus S$. Since if not, we consider the bipartite graph $G_1 = G[S, V(G) \setminus S]$, then by Theorem 2.1, there exists a set $S_1 \subseteq S$, such that $|N_{G_1}(S_1)| < |S_1|$. Now $(A = S \cup N_{G_1}(S_1), B = (S \setminus S_1) \cup (V(G) \setminus S))$ is an S^H -cut of size $|S \setminus S_1| + |N_{G_1}(S_1)|$, which is smaller than 8 in G^* , a contradiction. Without loss of generality, suppose that $\{x_1v_1, x_2v_2, y_1v_3, y_2v_4, z_1v_5, z_2v_6, d_1v_7, d_2v_8\}$ is such a matching. One of the edges $v_1v_2, v_3v_4, v_5v_6, v_7v_8$ is missing, otherwise the four paths are easy to find. This implies that each v_i has at least four neighbors in S and $|N_{G_j}(v_i)| \ge 1$, for $1 \le j \le 4$. It's easy to see that $x_2v_1 \notin E(G)$, otherwise, $\{x_1v_1x_2, y_1v_3v_4y_2, z_1v_5v_6z_2, d_1v_7v_8d_2\}$, $\{x_1v_1x_2, y_1v_3v_2v_4y_2, z_1v_5v_6z_2, d_1v_7v_8d_2\}$, or $\{x_1v_1x_2, y_1v_3v_4y_2, z_1v_5v_6z_2, d_1v_7v_2v_8d_2\}$ is the desired path system, a contradiction. Similarly, we could get that $x_1v_2, y_1v_4, y_2v_3, z_1v_6, z_2v_5, d_1v_8, d_2v_7 \notin E(G)$.

Suppose that $x_1v_3, x_2v_3 \in E(G)$. If $y_1v_1 \in E(G)$ or $y_1v_2 \in E(G)$, then a path system can easily be found. Therefore $y_1v_1, y_1v_2 \notin E(G)$. Thus, y_1v_5 , $y_1v_6, y_1v_7, \text{ or } y_1v_8 \in E(G)$. Without loss of generality, assume that $y_1v_5 \in$ E(G). Now $z_1v_1 \notin E(G)$, otherwise $\{x_1v_3x_2, y_1v_5v_4y_2, z_1v_1v_6z_2, d_1v_7v_2v_8\}$ d_2 is the desired path system, a contradiction. Similarly, $z_1v_2 \notin E(G)$. If $z_1v_4 \in E(G)$, then if $d_1v_1 \in E(G)$, $y_2v_2, y_2v_7 \notin E(G)$, otherwise either $\{x_1v_3x_2, y_1v_5v_2y_2, z_1v_4v_6z_2, d_1v_1v_8d_2\}$ or $\{x_1v_3x_2, y_1v_5v_7y_2, z_1v_4v_6z_2, d_1v_1v_8d_2\}$ $d_1v_1v_8d_2$ is the desired path system, a contradiction. As v_2 has at least four neighbors in S, x_2v_2 , z_2v_2 , d_1v_2 , $d_2v_2 \in E(G)$. Now $y_2v_1 \notin E(G)$, since otherwise $\{x_1v_3x_2, y_1v_5v_1y_2, z_1v_4v_6z_2, d_1v_2d_2\}$ is the desired path system, a contradiction. As v_1 has at least four neighbors in S, x_1v_1 , z_2v_1 , d_1v_1 , $d_2v_1 \in E(G)$. Now it's easy to obtain that $y_2v_5, y_2v_6, y_2v_8 \notin E(G)$, since otherwise $\{x_1v_3x_2, y_1v_5y_2, z_1v_4v_6z_2, d_1v_2d_2\}, \{x_1v_3x_2, y_1v_5v_7v_6y_2, z_1v_4v_1z_2, y_1v_5v_7v_6y_2, z_1v_4v_1z_2, y_1v_5v_7v_6y_2, z_1v_4v_1z_2, y_1v_5v_7v_6y_2, z_1v_4v_1z_2, y_1v_5v_7v_6y_2, z_1v_4v_6z_2, z_1v_6z_2, z_1v$ $d_1v_2d_2$, or $\{x_1v_3x_2, y_1v_5v_8y_2, z_1v_4v_6z_2, d_1v_2d_2\}$ is the desired path system, a contradiction. Now y_2 has at most one neighbor in $V(G) \setminus S$, a contradiction. Then $d_1v_1 \notin E(G)$. Similarly, we have that $d_2v_1 \notin E(G)$, now v_1 has at most three neighbors in S, a contradiction.

Then $z_1v_4 \notin E(G)$. If $z_1v_7 \in E(G)$, then $d_1v_1, d_1v_2 \notin E(G)$. Otherwise either $\{x_1v_3x_2, y_1v_5v_4y_2, z_1v_7v_6z_2, d_1v_1v_8d_2\}$ or $\{x_1v_3x_2, y_1v_5v_4y_2, z_1v_7v_6z_2, d_1v_2v_8d_2\}$ is the desired path system, a contradiction. As each of v_1 and v_2 has at least four neighbors in S, y_2v_1 , z_2v_1 , d_2v_1 , y_2v_2 , z_2v_2 , $d_2v_2 \in E(G)$. Now d_1v_4 and $d_1v_6 \notin E(G)$, otherwise, either $\{x_1v_3x_2, y_1v_5v_1y_2, z_1v_7v_6z_2, d_1v_4v_8d_2\}$ or $\{x_1v_3x_2, y_1v_5v_1y_2, z_1v_7v_2z_2, d_1v_6v_8d_2\}$ is the desired path system, a contradiction. If $d_1v_3 \in E(G)$, then $x_1v_4, x_2v_4 \notin E(G)$, otherwise, either $\{x_1v_4v_2x_2, y_1v_5v_1y_2, z_1v_7v_6z_2, d_1v_3v_8d_2\}$ or $\{x_1v_1v_4x_2, y_1v_5v_2y_2, z_1v_7v_6z_2, d_1v_3v_8d_2\}$ is the desired path system, a contradiction. Now v_4 has at

most three neighbors in S, a contradiction. Thus, $d_1v_3 \notin E(G)$. As d_1 has at least two neighbors in $V(G) \setminus S$, $d_1v_5 \in E(G)$. But now x_1v_4 , $x_2v_4 \notin E(G)$, otherwise, either $\{x_1v_4v_2x_2, y_1v_3v_1y_2, z_1v_7v_6z_2, d_1v_5v_8d_2\}$ or $\{x_1v_1v_4x_2, y_1v_3v_2y_2, z_1v_7v_6z_2, d_1v_5v_8d_2\}$ is the desired path system, a contradiction. Now v_4 has at most three neighbors in S, a contradiction. Thus, $d_1v_5 \notin E(G)$. Now d_1 has only one neighbor in $V(G) \setminus S$, a contradiction. Then $z_1v_7 \notin E(G)$. Similarly, we could obtain that $z_1v_8 \notin E(G)$. As z_1 has at least two neighbors in $V(G) \setminus S$, $z_1v_3 \in E(G)$.

We claim that each of d_1 and d_2 is adjacent to exactly one of v_1 and v_2 . Since if d_1 (the case d_2 is analogous) is adjacent to both v_1 and v_2 , then x_1v_7 , $y_1v_7 \notin E(G)$. Otherwise, either $\{x_1v_7v_2x_2, y_1v_5v_4y_2, z_1v_3v_6z_2, d_1v_1v_8d_2\}$ or $\{x_1v_3x_2, y_1v_7v_4y_2, z_1v_5v_1v_6z_2, d_1v_2v_8d_2\}$ is the desired path system, a contradiction. Similarly, we could obtain that $x_2v_7 \notin E(G)$. Now v_7 has at most three neighbors in S, a contradiction. As x_2v_1 , y_1v_1 , z_1v_1 , x_1v_2 , y_1v_2 , $z_1v_2 \notin E(G)$, if $d_1v_j \notin E(G)$, then $d_2v_j \in E(G)$ ($j \in \{1,2\}$). Otherwise v_1 or v_2 has at most three neighbors in S, a contradiction.

Without loss of generality, assume that d_1v_1 , $d_2v_2 \in E(G)$. Now we could obtain that x_1v_7 , y_1v_7 , $y_1v_8 \notin E(G)$, otherwise $\{x_1v_7v_2x_2, y_1v_5v_4y_2, z_1v_3v_6z_2, d_1v_1v_8d_2\}$, $\{x_1v_3x_2, y_1v_7v_4y_2, z_1v_5v_2z_2, d_1v_1v_8d_2\}$, or $\{x_1v_3x_2, y_1v_8v_4y_2, z_1v_5v_1z_2, d_1v_7v_2d_2\}$ is the desired path system, a contradiction. Similarly, we could obtain that $x_2v_8 \notin E(G)$. Since each of v_7 and v_8 has at least four neighbors in S, x_2v_7 , y_2v_7 , z_2v_7 , x_1v_8 , y_2v_8 , $z_2v_8 \in E(G)$. Now we have that $x_1v_4 \notin E(G)$, otherwise, $\{x_1v_4v_2x_2, y_1v_5v_7y_2, z_1v_3v_6z_2, d_1v_1v_8d_2\}$ is the desired path system, a contradiction. Similarly, $x_2v_4 \notin E(G)$. As v_4 has at least four neighbors in S, y_2v_4 , z_2v_4 , d_1v_4 , $d_2v_4 \in E(G)$. But now $\{x_1v_1v_7x_2, y_1v_5v_2y_2, z_1v_3v_6z_2, d_1v_4d_2\}$ is the desired path system, a contradiction.

Thus, $z_1v_3 \notin E(G)$. Now z_1 has only one neighbor in $V(G) \setminus S$, a contradiction.

Then x_1v_3 and x_2v_3 can't both be edges. By symmetrical arguments, we have that $N(x_1)\cap N(x_2)=N(y_1)\cap N(y_2)=N(z_1)\cap N(z_2)=N(d_1)\cap N(d_2)=\emptyset$. Therefore, each v_i has exactly four neighbors in S. Suppose that $v_1v_2\notin E(G)$ and $N(v_1)=\{x_1,y_1,z_1,d_1\}$. Then $x_1v_3\notin E(G)$, otherwise, $\{x_1v_3v_2x_2,y_1v_1v_4y_2,z_1v_5v_6z_2,d_1v_7v_8d_2\}$ is the desired path system, a contradiction. Hence $x_2v_3\in E(G)$. Now $y_1v_2\notin E(G)$, otherwise, $\{x_1v_1v_3x_2,y_1v_2v_4y_2,z_1v_5v_6z_2,d_1v_7v_8d_2\}$ is the desired path system, a contradiction. Thus $y_2v_2\in E(G)$. Now $x_2v_4\notin E(G)$, otherwise, $\{x_1v_1v_4x_2,y_1v_3v_2y_2,z_1v_5v_6z_2,d_1v_7v_8d_2\}$ is the desired path system, a contradiction. Then $x_1v_4\in E(G)$. Now $y_2v_5\notin E(G)$, otherwise, $\{x_1v_4v_2x_2,y_1v_3v_5y_2,z_1v_1v_6z_2,d_1v_7v_8d_2\}$ is the desired path system, a contradiction. Hence $y_1v_5\in E(G)$. But now, $\{x_1v_4v_3x_2,y_1v_5v_2y_2,z_1v_1v_6z_2,d_1v_7v_8d_2\}$ is the desired path system, a contradiction. Hence $y_1v_5\in E(G)$. But now, $\{x_1v_4v_3x_2,y_1v_5v_2y_2,z_1v_1v_6z_2,d_1v_7v_8d_2\}$ is the desired path system, a contradiction. This completes the case |V(G)|=16.

Case 2.6. |V(G)| > 16.

Proof. In this case, $V(G)\setminus S\supseteq \{v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8,v_9\}$. It's easy to see that $G[v_1,v_2,v_3,v_4,v_5,v_6,v_7,v_8,v_9]$ is a K_9 or a K_9^- , thus it's 4-linked. We claim that there is a matching from S to eight vertices of $V(G)\setminus S$. Since if not, we consider the bipartite graph $G_1=G[S,V(G)\setminus S]$, then by Theorem 2.1, there exists a set $S_1\subseteq S$, such that $|N_{G_1}(S_1)|<|S_1|$. Now $(A=S\cup N_{G_1}(S_1),B=(S\setminus S_1)\cup (V(G)\setminus S))$ is an S^H -cut of size $|S\setminus S_1|+|N_{G_1}(S_1)|$, which is smaller than 8 in G^* , a contradiction. Now the desired path system can easily be found, a contradiction.

The completion of the cases completes the proof of the theorem.

It's easy to see that Theorem 1.4 is a corollary of Theorem 2.2.

3 Proof of Theorem 1.5

In order to prove Theorem 1.5, we introduce the following theorem which is stronger than Theorem 1.5.

Theorem 3.1. Let G be a graph, and $S = \{x_1, x_2, y_1, y_2, y_3, \ldots, y_{2k-1}\} \subseteq V(G)$. Let G^* be the graph obtained from G by adding all missing edges in G[S]. Suppose that there is a partition $C_1, C_2, \ldots, C_{2k+3}$ of V(G), such that each $G^*[C_i]$ is connected, and contracting each C_i in G^* yields $H = K_{2k+3}^-$. Further suppose that G^* has no S^H -cut of size smaller than 2k+1. Then there are two vertex disjoint connected subgraphs in G containing $\{x_1, x_2\}$ and $\{y_1, y_2, y_3, \ldots, y_{2k-1}\}$, respectively.

Proof. If not, then let G be a counterexample with the minimum number of edges. Let $S, C_1, C_2, \ldots, C_{2k+3}$ be as in the theorem. As in the proof of Theorem 2.2, it's easy to get that for each $1 \le i \le 2k+3$, $C_i \subseteq S$ or $|C_i| = 1$. If $C_i = S$ for some $1 \le i \le 2k+3$, then |V(G)| = 4k+3. Therefore, $2k+3 \le |V(G)| \le 4k+3$. Without loss of generality, suppose that $|V(C_i)| \ge |V(C_j)|$ for $1 \le i < j \le 2k+3$.

If |V(G)| = 2k + 3, then $|C_i| = 1$ for each $1 \le i \le 2k + 3$. Let $V(G) \setminus S = \{v_1, v_2\}$. Then either $G[x_1, x_2, v_1]$, $G[y_1, y_2, y_3, \dots, y_{2k-1}, v_2]$ or $G[x_1, x_2, v_2]$, $G[y_1, y_2, y_3, \dots, y_{2k-1}, v_1]$ is the desired set of connected subgraphs, a contradiction.

As in the proof of Theorem 2.2, we have that if $|V(G)| \ge 2k + 4$, then each vertex in S has at least two neighbors in $V(G) \setminus S$.

If |V(G)| = 2k + 4, then $|C_1| = 2$. Let $V(G) \setminus S = \{v_1, v_2, v_3\}$. It's easy to see that $N(x_1) \cap N(x_2) \cap V(G) \setminus S \neq \emptyset$. Since $|N(x_1) \cap (V(G) \setminus S)| \geq 2$ and $|N(x_2) \cap (V(G) \setminus S)| \geq 2$. Without loss of generality, assume that x_1v_1 , $x_2v_1 \in E(G)$. We claim that $G[y_1, y_2, y_3, \dots, y_{2k-1}, v_2, v_3]$ is connected. Since each y_i is connected to at least one of v_2 and v_3 . Then if $v_2v_3 \in E(G)$, this is clear. Otherwise, observe that $|C_i| = 1$ for $2 \leq i \leq 2k + 3$, then there is a y_i with $y_iv_2, y_iv_3 \in E(G)$.

If |V(G)| = 2k + 5, then let $V(G) \setminus S = \{v_1, v_2, v_3, v_4\}$. If $N(x_1) \cap N(x_2) \cap (V(G) \setminus S) \neq \emptyset$, say x_1v_1 , $x_2v_1 \in E(G)$, then $G[x_1, x_2, v_1]$ and $G[y_1, y_2, y_3, \ldots, y_{2k-1}, v_2, v_3, v_4]$ are connected subgraphs. Thus, suppose that $N(x_1) \cap N(x_2) \cap (V(G) \setminus S) = \emptyset$, say $N(x_1) = \{v_1, v_2\}$ and $N(x_2) = \{v_3, v_4\}$. Note that this implies that neither x_1 nor x_2 is in a C_i by itself, so at least 2k - 3 of the vertices in $\{y_1, y_2, \ldots, y_{2k-1}\}$ have at least three neighbors in $V(G) \setminus S$ and at least 2k - 4 of the vertices in $\{y_1, y_2, \ldots, y_{2k-1}\}$ have four neighbors of $V(G) \setminus S$. Without loss of generality, we may assume that v_1v_3 , v_1v_4 , $v_2v_3 \in E(G)$ (potentially $v_2v_4 \notin E(G)$). As there are at most two vertices in $\{y_1, y_2, y_3, \ldots, y_{2k-1}\}$ with less than three neighbors in $V(G) \setminus S$, we can pick $1 \leq j < k \leq 4$ such that $G[x_1, x_2, v_j, v_k]$ is connected, and every y_i has a neighbor in $\{v_1, v_2, v_3, v_4\} \setminus \{v_j, v_k\}$. But now $G[V(G) \setminus \{x_1, x_2, v_j, v_k\}]$ is connected, a contradiction.

If $|V(G)| \geq 2k + 6$, then let $V(G) \setminus S = \{v_1, v_2, v_3, \dots, v_{n-2k-1}\}$. If $N(x_1) \cap N(x_2) \cap (V(G) \setminus S) \neq \emptyset$, say $x_1v_1, x_2v_1 \in E(G)$, then $G[x_1, x_2, v_1]$ and $G[y_1, y_2, y_3, \dots, y_{2k-1}, v_2, v_3, \dots, v_{n-2k-1}]$ are connected subgraphs. Thus, suppose that $N(x_1) \cap N(x_2) = \emptyset$.

As each vertex in S has at least two neighbors in $V(G)\setminus S$, $|N(x_1)\cup N(x_2)|\geq 4$. If $|N(x_1)\cup N(x_2)|=4$, then $|N(x_1)|=|N(x_2)|=2$. Suppose that $N(x_1)=\{v_1,v_2\}$ and $N(x_2)=\{v_3,v_4\}$. Without loss of generality, we may assume that $v_1v_3,\,v_1v_4,\,v_2v_3\in E(G)$ (potentially $v_2v_4\notin E(G)$). If every y_i has a neighbor in $\{v_1,v_2,\ldots,v_{n-2k-1}\}\setminus \{v_1,v_3\}$, then $G[x_1,x_2,v_1,v_3]$ and $G[y_1,y_2,\ldots,y_{2k-1},v_2,v_4,\ldots,v_{n-2k-1}]$ are the desired connected subgraphs. Therefore, there is some y_i with $N(y_i)=\{v_1,v_3\}$, say i=1. Similarly, we may assume that $N(y_2)=\{v_1,v_4\}$ and $N(y_3)=\{v_2,v_3\}$. But now $(A=S\cup \{v_1,v_2,v_3,v_4\},B=\{y_4,y_5,\ldots,y_{2k-1},v_1,v_2,\ldots,v_{n-2k-1}\})$ is an S^H -cut of size 2k in G^* , a contradiction.

Now suppose that $|N(x_1) \cup N(x_2)| \geq 5$, say $N(x_1) \supseteq \{v_1, v_2\}$ and $N(x_2) \supseteq \{v_3, v_4, v_5\}$. Without loss of generality, we may assume that $v_1v_3, v_1v_4, v_1v_5, v_2v_3, v_2v_4 \in E(G)$ (potentially $v_2v_5 \notin E(G)$). By similar arguments as above, $N(y_1) = \{v_1, v_3\}$, $N(y_2) = \{v_1, v_4\}$, $N(y_3) = \{v_1, v_5\}$, $N(y_4) = \{v_2, v_3\}$, and $N(y_5) = \{v_2, v_4\}$. Furthermore, we have that $N(x_1) = \{v_1, v_2\}$ and $N(x_2) = \{v_3, v_4, v_5\}$.

If |V(G)| = 2k + 6, there is a vertex $u \in S$, such that $|N(u)| \ge 4$, a contradiction. If |V(G)| > 2k + 6, $(A = S \cup \{v_1, v_2, v_3, v_4, v_5\}, B = \{y_6, y_7, \ldots, y_{2k-1}, v_1, v_2, \ldots, v_{n-2k-1}\})$ is an S^H -cut of size 2k - 1 in G^* , a

contradiction. This completes the proof.

It's easy to see that Theorem 1.5 is a corollary of Theorem 3.1.

References

- B. Bollobás and A. Thomason, Highly linked graphs, Combin. 16 (1996) 313-320.
- [2] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, American Elsevier, New York, 1976.
- [3] G. Chen, R. J. Gould, K. Kawarabayashi, F. Pfender, and B. Wei, Graph minors and linkages, J. Graph Theory 49 (2005) 75-91.
- [4] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26-30.
- [5] L. K. Jørgensen, Contractions to K₈, J. Graph Theory 18 (1994) 431–448.
- [6] K. Kawarabayashi and B. Toft, Any 7-chromatic graph has K_7 or $K_{4,4}$ as a minor, *Combin.* **25** (2005) 327–353.
- [7] D. G. Larman and P. Mani, On the existence of certain configurations within graphs and the 1-skeletons of polytopes, *Proc. London Math.* Soc. 20 (1974) 144-160.
- [8] R. Thomas and P. Wollan, The extremal function for 3-linked graphs, J. Combin. Theory Ser. B 98 (2008) 939-971.
- [9] C. Thomassen, 2-linked Graphs, Europ. J. Combin. 1 (1980) 371-378.