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ABSTRACT. Linkage is very important in very large scale integration
(VLSI) physical design. In this paper, we mainly study the relationship
between minors and linkages. Thomassen conjectured that every (2k + 2)-
connected graph is k-linked. For k > 4, K3x_; with k disjoint edges deleted
is a counterexample to this conjecture, however, it is still open for k = 3.
Thomas and Wollan proved that every 6-connected graph on n vertices with
5n — 14 edges is 3-linked. Hence they obtain that every 10-connected graph
is 3-linked. Chen et al. showed that every 6-connected graph with Ky
as a minor is 3-linked, and every 7-connected graph with Kg as a minor
is (2,5)-linked. Using a similar method, we prove that every 8-connected
graph with K[, as a minor is 4-linked, and every (2k + 1)-connected graph
with K, .3 as a minor is (2,2k — 1)-linked. Our results extend Chen et
al.’s conclusions, improve Thomas and Wollan’s results, and moreover, they
give a class of graphs that satisfy Thomassen’s conjecture for k& = 4.
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1 Introduction

All graphs considered in this paper are finite, undirected, and simple (with-
out loops or multiple edges). The sets of vertices and edges of a graph G
are denoted by V(G) and E(G), respectively. Let X be a subset of V(G).
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We use G[X] to denote the subgraph of G whose vertex set is X and whose
edge set consists of all edges of G that have both ends in X. The neighbors
of v in G[X], denoted by Ng(x|(v), is the set of vertices in G[X] which are
adjacent to v. When G[X] = G, we simply write N(v) instead of Ngx)(v).
A minor of G is any graph obtained from G by deleting edges and (or)
vertices and contracting edges. According to Bondy and Murty [2], we use
K, to denote the complete graph with n vertices, and K the subgraph of
K, with exactly one edge deleted. Let s,, 3o, ..., 8¢ be k positive integers.
A graph G is said to be (s, s2,...,sk)-linked if it has at least Zle S
vertices and for any k disjoint vertex sets Sy, Sz, ..., Sk with |S;| = s,
G contains vertex disjoint connected subgraphs Fy, Fs, ..., Fi such that
S; € V(F;). The (2,2,...,2)-linked graphs are called k-linked, that is, for
any 2k distinct vertices x,, ¥1, T2, ¥2, ..., Tk, Yk, there exists k vertex
disjoint paths Py, P, ..., P such that P; joins z; and y;, for 1 < i < k.

The layout is first modeled as a routing graph, where each node repre-
sents a tile and each edge denotes the boundary between two adjacent tiles.
A number of basic models for very large scale integration (VLSI) layout are
based on the construction of vertex disjoint paths between terminals on a
multi-layer grid. So linkage is very important in VLSI physical design.

The research on linkage has a long history, and has attracted more and
more graph theorists. In 1980, Thomassen [9] conjectured that

Conjecture 1.1 (Thomassen [9]). Every (2k + 2)-connected graph is k-
linked.

It has been observed that Ka3x_;, with k disjoint edges deleted is a
counterexample to this conjecture for k£ > 4, however, it is still open for
k = 3. In 2005, Chen, Gould, Kawarabayashi, Pfender and Wei [3] proved
that

Theorem 1.1 (Chen, Gould, Kawarabayashi, Pfender and Wei [3]). Every
6-connected graph with Ky as a minor is 3-linked.

Theorem 1.2 (Chen, Gould, Kawarabayashi, Pfender and Wei [3]). Every
7-connected graph with Ky as a minor is (2, 5)-linked.

In 2008, Thomas and Wollan {8] proved that

Theorem 1.3 (Thomas and Wollan [8]). Every 6-connected graph on n
vertices with 5n — 14 edges is 3-linked.

By Theorem 1.3, they obtain the following corollary.

Corollary 1.1 (Thomas and Wollan [8]). Every 10-connected graph is 3-
linked.
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By applying a similar method to the proofs of Theorems 1.1 and 1.2,
we obtain the following two main results.

Theorem 1.4. Every 8-connected graph with K[, as a minor is {-linked.

Theorem 1.5. Every 2k + 1-connected graph with K3 ., as a minor is
(2,2k — 1)-linked.

Theorem 1.4 extends Theorem 1.1 and improves Theorem 1.3. More-
over, it gives a class of graphs that satisfy Conjecture 1.1 for k = 4. Theo-

rem 1.5 is the extension of Theorem 1.2.
By Theorems 1.1 and 1.4, it's natural to propose the following conjec-

ture.

Conjecture 1.2. Every 2k-connected graph with K3, as a minor is k-
linked.

In Sections 2 and 3, proofs of Theorems 1.4 and 1.5 will be given,
respectively.

2 Proof of Theorem 1.4

Let G be a connected graph and H a minor of G. Let S, A, B C V(G) and
Cy, Ca, ..., Cy; a partition of V(G), such that each G[C;] is connected,
and contracting each C; yields H. Let { = |ANB|. If S C A, V(G) = AUB,
and there are no edges between A\ B and B\ A, then (4, B) is an S-cut of
size I. If C; C B\ A for some 1 < i < |H|, then the S-cut (A, B) is called
an S _cut.

The following theorem proved by Hall [4] is very important in our main
proof.

Theorem 2.1 (Hall's Theorem, Hall {4]). A bipartite graph G[X,Y] has a
matching which covers every vertez in X if and only if

IN(S5)] 2 |S]
forall SC X.

In order to prove Theorem 1.4, we introduce the following theorem
which is stronger than Theorem 1.4.

Theorem 2.2. Let G be a graph and S = {z1,z2,¥1,¥2, 21, 22,d1,d2} C
V(G). Let G* be the graph obtained from G by adding all missing edges in
G|[S). Suppose that there is a partition C, Cy, ..., Ci2 of V(G), such that
each G*[C;] is connected, and contracting each C; in G* yields H = Ki,. If
G* has no SH-cut of size smaller than 8, then there are four vertez disjoint
paths in G connecting (z1,72), (y1,%2), (21,22), (d1,da), respectively.
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Proof. If not, then let G be a counterexample with the minimum number
of edges. Let S, Cy, C, ..., C12 be as in the theorem. Then by the choice
of G, G[S] contains no edges.

We say that for each 1 < i < 12, G[C;] contains no edges. Since if for
some i, G[C;] contains edges, then without loss of generality, suppose that
uv € E(C)). As G[S] contains no edges, suppose that v ¢ S. By the choice
of G, there has to be an S¥-cut (A, B) of size 8 with u,v € ANB, otherwise
the contraction of uv would yield a smaller counterexample. As|ANB| =8
and u, v € C1, at least five of the twelve C; sets contain no vertices of ANB.
Without loss of generality, we may assume that C;NANB # Qfor1 <i <k,
and C;NANB =0 for i > k, where k is an integer with 1 < kK < 7. As
S C A, and G*[Cj] is connected, C; C B\ Aor C; C A\ B for each i > k.
Since C; C B\ A for at least one ¢ > k, it is in fact true that C; C B\ A
for all i > k, otherwise, contracting each C; in G* doesn’t yield a K,. As
there is no SH-cut of size less than 8 in G*, there are eight vertex disjoint
paths from S to AN B in G[A]. Label the vertices of $' = AN B with
Ty, T3, Y1, Y2, 21, 25, d}, dj according to the starting vertices in S of these
paths. Let C] = C; N B for 1 < i < 12. Then G[B), S, C{, Cj, ..., Ci,
satisfy all the conditions of the theorem, and G[B] is smaller than G, as
there is at least one vertex in S\ B (note that v ¢ S). By the choice of G,
we can find four vertex disjoint paths in G[B} connecting (z}, z5), (¥, ¥5),
(21,23), (d1,d5), respectively. This, together with the eight paths in G[4),
produce the desired paths in G, a contradiction.

Now we have that G[C;] contains no edges for each 1 < i < 12. Thus,
CiCSor|Ci|=1. IfC; =8 for some 1 < i < 12, then [V(G)| = 19.
Therefore, 12 < |V(G)| < 19. Suppose without loss of generality that
V() 2 V(G| for 1 i< j < 12.

Case 2.1. |V(G)| = 12.

Proof. In this case, |C;j| = 1 for each 1 < i < 12. Let V(G)\ S =
{v1,v2,v3,v4}. Then either {z1v122,y1v2y2, 21v322,d1vad2} or {z V273,
Y1V3Y2, 210422, d1v1da } is the desired set of vertex disjoint paths, a contra-

diction.
O

If [V(G)| 2 13, we have that each vertex in S has at least two neighbors
in V(G)\ S. Otherwise, suppose z; has at most one neighbor in V(G)\ S.
If x; has no neighbors in V(G) \ S, then (A = S,B = V(G)\ ;) is an
SH_cut of size 7. On the other hand, if z; has exactly one neighbor in
V(G)\ S, say z1v; € E(G), then C;\z; # 0 for all 1 < i < 12. Since
[V(G)\S| 2 5, G\z1 with §' = (S\z;)U{v,} is a smaller counterexample,
a contradiction to the minimality of G.
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Case 2.2. |V(G)| = 13.

Proof. In this case, |Cy| = 2. Let V(G) \ S = {v1,v2,v3,v4,Vs5}.

IfC, = {.'131,1:2} (the cases C) = {y1,'y2} and C; = {21,22} are anal-
ogous), then there exists a matching from C; into V(G) \ S. Since each
vertex in S has at least two neighbors in V/(G)\ S, suppose that {z,v;, Zova}
is such a matching. If viv; € E(G), then either {z v1vaz2, y1v3y2, 21v422,
dyvsdz} or {zjviveZ2, Y1vsYe, 21U522, d1vadz} is the desired set of vertex
disjoint paths, a contradiction. Then vyv2 ¢ E(G). As G* contracts to
a K, vs has a neighbor in C,. Without loss of generality, suppose that
T1v3 € E(G). Now {z1v3v222, y101Y2, 21V422, d1vsd2} is the desired set of
vertex disjoint paths, a contradiction.

Now suppose that C; = {z;,71} (the other cases are analyzed by a
similar argument). As above, there exists a matching from C} into V(G)\S.
Suppose that {z,v;,y1v2} is such a matching. Then at most one of the
edges in a path in {z1v1Z2, y1v2y2, 21v322, d1veds} is missing, but now this
edge can be replaced by a path of length 2 through vs to produce the

desired set of vertex disjoint paths, a contradiction.
3

Case 2.3. |V(G)| = 14.

Proof. In this case, |Cy| > 2. Let V(G) \ S = {v1,v2,v3,v4,V5, Vs }.

If |Cy| = 3, without loss of generality suppose that z1,y1, 21 € C1, then
there ia a matching from {2, ya, 22, d1, d2} into {v1, v, v3, v4, vs,v6}. Since
if not, we consider the bipartite graph G; = G[{z2, 2, 22,d1,d2}, V(G)\ 5],
then by Theorem 2.1, there exists a set Sy C {z2,y2, 22,d1,d2}, such that
|Ng,(51)] < |S1]- Now (A= SUNg,(51), B=(S\S1)U(V(G)\S)) is an
SH._cut of size |S\S1|+|Ng,(51)|, which is smaller than 8 in G*, a contradic-
tion. Without loss of generality, suppose that {z2vs, y2vs, 2204, d1Vs, d2ve }
is this matching. Now G*[z1,y1, 21, 1, V2, V3, vs, vs, Us) is a Kg or a K, and
therefore 4-linked. Then there are four vertex disjoint paths in G* connect-
ing (z1,v2), (y1,v3), (21,v4), (vs, ve), respectively. As the edges z;y1, ¥121,
T)2z) are not used in this path system, this is in fact a path system in G.
Together with the matching, we get the desired set of vertex disjoint paths,
a contradiction. '

Then |Cy| = |C2| = 2. If 21, 1, 21 ¢ C1 U Cy, then the same argu-
ment as above applies. Without loss of generality, we may assume that
C1UC; = {y1,¥2, 21, 22}. If zjur or djur ¢ E(G) for some 1 < j < 2
and some 1 < k < 6, say z1v; ¢ E(G), then Glz2,d),v1,v2,v3,v4, Vs, Vs)
is a Kg, a very similar argument can be used to find the desired vertex
disjoint paths. Thus, we may assume that z;vk, djvx € E(G) for1 <j <2
and 1 < k < 6. Still we get that there is a matching from {y1,y2, 21, 22}
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into {v,,v2,v3,v4,vs,ve}, suppose that y1v1,y2va, 21v3, 2204 is the match-
ing. If vivs, vavy € E(G), then {zivsx2,y1v1V2y2, 21V3Vs22, d1ved2} is
the desired set of vertex disjoint paths, a contradiction. Hence, we may
assume that vjva € E(G). As G* contracts to a K, vs and v are
adjacent to both C; and Cs. If vsy; € E(G) (and similarly if vsys €
E(G)), then {z1v1T2, y1U5v2Y2, 21V3v4 22, d1ved2} is the desired set of ver-
tex disjoint paths, a contradiction. Hence vsz;, vsz2 € E(G), but now
{z1vaz2, y1v1v3V2Y2, 21U 22, d1ved2} are the desired vertex disjoint paths,
a contradiction.

a
Case 2.4. |V(G)| =15.

Proof. In this case, [C}]| > 2. Let V(G)\ S = {v), v, v3, v4, vs5, V6, U7}

If |Ci| > 3, then without loss of generality, suppose that z;, y1 ¢
C1 U C,. As above, there is a matching from {z2,ys, 21, 22,d1,d2} into
{v1,v2,v3,v4,vs,v,v7}. Without loss of generality, suppose that {zqvs,
YoUs, 2104, 225, d1ve, d2v7} is the matching. As G*([z1,y1,v1,vo, V3,4, Vs,
vg,v7) is a Kg or a Kj, it’s 4-linked. Then there are four vertex disjoint
paths in G* connecting (z1,v2), (v1,v3), (v, vs), (e, v7), respectively. As
the edge z1y is not used in this path system, this is in fact a path system
in G. Together with the matching, we get the desired set of vertex disjoint
paths, a contradiction.

Then |Cy| = |Cy| = |C3| = 2. If 21, 1 ¢ C1 U C2 U Cs, the same ar-
gument as above applies. Without loss of generality, we may assume that
C1UC U Cs = {y1,¥2, 21, 22,d1,da }. If zju ¢ E(G) for some 1 < j <2
and some 1 < k <7, say z;v; ¢ E(G), then G|z, v1,v2,vs, V4,05, v, 7] is
a Kg, and thus 4-linked, and a very similar argument can be used to find
the paths. Thus, we may assume that z;vx € E(G) for 1 < j < 2 and
1 <k < 7. As above, there is a matching from {y1, y2, 21, 22,d1,d2} into
{v1,v2,v3,v4,v5,v6,v7}. Suppose that {y1v1,y2v2, 2103, 22v4, d1 s, dave} is
the matching. If vyvq, vavy, vsvs € E(G), then {z1v722, y1v1v2y2, 21v3v4 22,
dyvsvsdz} is the desired set of vertex disjoint paths, a contradiction. Hence,
we may assume that viv, ¢ E(G). Now vry1, v7y2 € E(G), otherwise, ei-
ther {z1v1%2, y1v7v2y2, 21034 22, d1vsVeda} O {Z1V2T2, Y1v1V7Y2, 21V3V4 22,
d1vsveda} is the desired set of vertex disjoint paths, a contradiction. We
also have that at least one of v7z; and w7z is not in E(G), otherwise,
{z1v422, y1v1V3V2Y2, 21722, d1UsUEdse } are the desired vertex disjoint path-
s, a contradiction. Similarly, we obtain that if v;d, € E(G), then v.d> ¢
E(G). As G* contracts to a K, v7 is adjacent to Cy, Cs, and C;. But vy
is adjacent to at most two vertices in C) U Cy U C3, a contradiction.

O
Case 2.5. |V(G)| =16.
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Proof. In this case, |C| > 2. Let V(G) \ S = {v1, v2, v3, v4, Vs, Vs, V7, U8}

If |Cy| = 3, then [C4] =1 and G[C4 U {v;,vg,vs,v4,v5,vs,v7,vg}] isa
Ky or a Ky . Thus the same argument as above applies.

Then |Cy| = |Cof = |C3] = |C4] = 2. We claim that there is a
matching from $ into V(G) \ S. Since if not, we consider the bipar-
tite graph G; = G[S,V(G) \ S], then by Theorem 2.1, there exists a
set S; C S, such that |Ng,(S1)| < |S1]. Now (A = SU Ng,(51), B =
(S\ S1) U (V(G)\ 8S)) is an SH_cut of size |S \ S1| + |Ng,(S1)|, which is
smaller than 8 in G*, a contradiction. Without loss of generality, suppose
that {z1v1, T2v2, y1v3, y2va, 21Vs, 22V6, d1v7, d2vg} is such a matching. One
of the edges v, v,, v3vy, UsUs, V7vs is missing, otherwise the four paths are
easy to find. This implies that each v; has at least four neighbors in S and
|Ng,(v:)] 2 1, for 1 < j < 4. It’s easy to see that zov; ¢ E(G), otherwise,
{z1v172, y1v3vay2, 21V5V2Ve 22, d1vr¥sda}, {T11Z2, Y1V3V2V4Y2, 21UsVE22, d1
vevgda}, or {Z V1 T2, Y1U3VaY2, 21U5V6 22, d1V7v2usd2 } is the desired path sys-
tem, a contradiction. Similarly, we could get that x;vs, y1v4, y2vs, 2106,
29vs, d1vs, dovr & E(G).

Suppose that z,v3, Tovs € E(G). lf yyvy € E(G) or y1vz € E(G), thena
path system can easily be found. Therefore yyv;, y1v2 ¢ E(G). Thus, y,vs,
Y16, Y197, or ¥1vg € E(G). Without loss of generality, assume that y1vs €
E(G). Now z1v1 ¢ E(G), otherwise {z1vazs, y1vsVaya2, 21v1V622, d1U7V2U8
d2} is the desired path system, a contradiction. Similarly, zjve ¢ E(G).
If zyuy € E(G), then if dyv; € E(G), yava,y2ur ¢ E(G), otherwise ei-
ther {z1v3z2, y1v5v2Y2, 21V4V6 22, d1V1Usd2 } OF {Z1V3T2, Y1VsVTY2, 21VaV6 22,
divyvsdz} is the desired path system, a contradiction. As v has at least
four neighbors in S, zavg, 29v2, d1v2, dove € E(G). Now yov; ¢ E(G), since
otherwise {z1vaz2, y1vsv1ye, 21VaUs22, d1¥2d2} is the desired path system,
a contradiction. As v; has at least four neighbors in S, zv;, 29v1, d1v1,
dov; € E(G). Now it’s easy to obtain that yovs, yovs, yous ¢ E(G), since
otherwise {z1v3z2, y1Vsy2, 21v4V6 22, d1v2d2}, {Z1v3%2, Y1UsV7V6Y2, 21VaV1 22,
diveda}, or {Z1v3%2, Y1UsUsY2, 21VaV6 22, d1vad2 } is the desired path system,
a contradiction. Now y, has at most one neighbor in V(G) \ S, a contra-
diction. Then dyvy ¢ E(G). Similarly, we have that dyv; ¢ E(G), now v,
has at most three neighbors in S, a contradiction.

Then zjv4 ¢ E(G) If z;v7 € E(QG), then dyv;,d1vs ¢ E(G). Otherwise
either {z1v3Z2, Y1vsv4Y2, 21V7V6 22, d1v1vsd2} Or {T1V3Z2, Y1UsVAY2, 21V7V622,
d1vaugda} is the desired path system, a contradiction. As each of v; and v,
has at least four neighbors in S, you1, 22v1, davy, yov2, 22v2, d2v2 € E(G).
Now dyvs and dyve ¢ E(G), otherwise, either {z)vsz2, y1vsv1¥2, 21V7V622,
divavgda } or {Z1v3T2, Yy1UsV1Y2, 21V7V2 22, d1Vsvsd2 } is the desired path sys-
tem, a contradiction. If dyv; € E(G), then zyv4,z2v4 ¢ E(G), otherwise,
either {z1v4v22, Y1UsV1Y2, 21V7V6 22, d1U3Vsda } or {T1V1V4T2, Y1VUsV2Y2, 2107
vez2,d1vsvgdy} is the desired path system, a contradiction. Now v4 has at
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most three neighbors in S, a contradiction. Thus, dyvs ¢ E(G). As d,
has at least two neighbors in V(G) \ S, dijvs € E(G). But now zjuy,
zavy € E(G), otherwise, either {zv4v2z2, y1v3v1Y2, 21V7V6 22, d1vsvsd2 } OF
{z1v1v4z2, Y1VaV2Y2, 21V7V622, d1VsUsda} is the desired path system, a con-
tradiction. Now v4 has at most three neighbors in S, a contradiction. Thus,
d1vs ¢ E(G). Now d; has only one neighbor in V(G) \ S, a contradiction.
Then zjv7; ¢ E(G). Similarly, we could obtain that z,vs ¢ E(G). As z
has at least two neighbors in V(G) \ S, z1v3 € E(G).

We claim that each of dy and ds is adjacent to exactly one of v; and v,.
Since if d; (the case d; is analogous) is adjacent to both v; and v, then
z1v7, Y1vr € E(G). Otherwise, either {z,v7vax2, Yy1UsV4Y2, 21V3V6 22, d1V1U8
da} or {z1v3z2, Yy1v7v4Y2, 21V5V1 Ve 22, d1vausda} is the desired path system,
a contradiction. Similarly, we could obtain that zov; ¢ E(G). Now vy
has at most three neighbors in S, a contradiction. As zsv;, 1101, 2101,
z1v2, Y1V2, 21v2 € E(G), if dyv; ¢ E(G), then dav; € E(G) (5 € {1,2}).
Otherwise v, or vz has at most three neighbors in S, a contradiction.

Without loss of generality, assume that dyv;, dove € E(G). Now we
could obtain that zjv7, y1v7, y1vs ¢ E(G), otherwise {z1v7va12, y1Usv4Ye2,
2103V 22, dyv1vsda}, {Z1V3T2, Y1V7V4Y2, 21VUsV222, d1v1vsd2}, or {T1v3T2, Y1
UsU4Y2, 21UsV122, d1U7v2d2} is the desired path system, a contradiction.
Similarly, we could obtain that zovg ¢ E(G). Since each of v7 and vg has at
least four neighbors in S, z2v7, yav7, 22v7, T1vs, Y2Us, 22vs € E(G). Now we
have that z,v4 ¢ E(G), otherwise, {z1v4v2%2, Y1Vsv7Yy2, 21V3V6 22, d1 V1 Ugd2 }
is the desired path system, a contradiction. Similarly, zovs ¢ E(G). As
vg has at least four neighbors in S, yovs, 22v4, divs, dovy € E(G). But
now {z1v1v7Z2, y1Usvaya, 21V3V622, d1vsdz} is the desired path system, a
contradiction.

Thus, zv3 ¢ E(G). Now z; has only one neighbor in V(G) \ S, a
contradiction.

Then z;v3 and z2v3 can’t both be edges. By symmetrical arguments,
we have that N(z;) " N(z2) = N(y1) N N(y2) = N(z1) N N(22) = N(d;)n
N(d2) = 0. Therefore, each v; has exactly four neighbors in S. Sup-
pose that viv2 ¢ E(G) and N(v1) = {z1,%1,21,d1}. Then z1v3 ¢ E(G),
otherwise, {1v3vaT2, y1v1v4Y2, 21VsVs 22, d1v7vsd2 } is the desired path sys-
tem, a contradiction. Hence zous € E(G). Now yv2 ¢ E(G), oth-
erwise, {T1v1v3T2,y1V2v4Y2, 21VsV622, d1v7vgdy} is the desired path sys-
tem, a contradiction. Thus yovs € E(G). Now zovs ¢ E(G), other-
wise, {T1v1v4T2, Y1v3v2Y2, 21V5V622,d1V7vsda} is the desired path system,
a contradiction. Then zv4 € E(G). Now yvs ¢ E(G), otherwise,
{z1v4v272, y1v3Vs Y2, 21V1V622, dyv7Usds} is the desired path system, a con-
tradiction. Hence y1vs € E(G). But now, {z1v4u3z2, y1vsv2y2, 21v1 V622,
d1v7vsda} is the desired path system, a contradiction. This completes the
case |V(G)| = 186.
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Case 2.6. [V(G)| > 16.

Proof. In this case, V(G)\ S 2 {v1,v2,v3,v4,vs, Vs, V7, V8, Vo }. It's easy to
see that G[vy,v2, vs, va, Us, Vg, U7, Us, V9] is a Ky or a K, thus it’s 4-linked.
We claim that there is a matching from S to eight vertices of V(G) \ S.
Since if not, we consider the bipartite graph G; = G[S,V(G) \ S], then
by Theorem 2.1, there exists a set Sy C S, such that |Ng,(S1)| < |Si].
Now (A = SU Ng,(51), B = (S\ S1) U(V(G) \ S)) is an SH-cut of size
|S\ Si| + |Ng, (51)|, which is smaller than 8 in G*, a contradiction. Now

the desired path system can easily be found, a contradiction.
O

The completion of the cases completes the proof of the theorem.
a

It’s easy to see that Theorem 1.4 is a corollary of Theorem 2.2.

3 Proof of Theorem 1.5

In order to prove Theorem 1.5, we introduce the following theorem which
is stronger than Theorem 1.5.

Theorem 3.1. Let G be a graph, and S = {z1,22,¥1,Y2,¥3,---,Y2k-1} C
V(G). Let G* be the graph obtained from G by adding all missing edges in
G|[S]. Suppose that there is a partition Cy, Cs, ..., Carys of V(G), such
that each G*[C}] is connected, and contracting each C; in G* yields H =
K43 Further suppose that G* has no SH _cut of size smaller than 2k +1.
Then there are two vertex disjoint connected subgraphs in G containing

{z1,z2} and {y1,y2,¥3,...,y2k—1}, respectively.

Proof. If not, then let G be a counterexample with the minimum number
of edges. Let S, Cy, Co, ..., Cory3 be as in the theorem. As in the proof
of Theorem 2.2, it’s easy to get that foreach 1 < i <2k +3,C; C S
or |Ci| =1. If C; = S for some 1 < i < 2k + 3, then |V(G)| = 4k + 3.
Therefore, 2k + 3 < |V(G)| < 4k + 3. Without loss of generality, suppose
that |[V(C;)| 2 |V(Cj)| for 1 <i<j<2k+3.

If [V(G)] = 2k + 3, then |[C;| = 1 for each 1 < i < 2k + 3. Let
V(G)\ S = {v1,v2}. Then either G[z1,z2,v1], Gly1,¥2,¥3,- - - Y2k~1,V2]
or Glz1,z2,v2], G[y1,¥2,¥3,--.,Y2k—1,v1] is the desired set of connected
subgraphs, a contradiction.

As in the proof of Theorem 2.2, we have that if |V(G)| > 2k + 4, then
each vertex in S has at least two neighbors in V(G) \ S.
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If [V(G)| = 2k +4, then |Cy| = 2. Let V(G)\ S = {v1,v2,v3}. It’s easy
to see that N(z1)NN(z2)NV(G)\S # 0. Since [N (z1)N(V(G)\S)| = 2 and
IN(z2) N (V(G)\ S)| = 2. Without loss of generality, assume that z;v;,
zou; € E(G). We claim that G[y1,y2,¥3,--.,Y2k—1, V2, U3] is connected.
Since each y; is connected to at least one of v3 and v3. Then if vou; € E(G),
this is clear. Otherwise, observe that |C;| = 1 for 2 < i < 2k + 3, then
there is a y; with y;ve, y;u3 € E(G).

If |V(G)| = 2k + 5, then let V(G)\ S = {v1,v2,vs3,v4}. If N(z1) N
N(z2) N (V(G)\ S) # 0, say zyv1, z9v; € E(G), then Glzy,z2, ] and
Gly1,v2,v3,...,Y2k-1,V2,V3,v4) are connected subgraphs. Thus, suppose
that N(z,) N N(z2) N (V(G)\ S) =0, say N(z;) = {v1, v2} and N(z2) =
{vs,vs4}. Note that this implies that neither z; nor z3 is in a C; by itself,
so at least 2k — 3 of the vertices in {y1,y2,...,¥2xk—1} have at least three
neighbors in V(G)\S and at least 2k—4 of the vertices in {y1,¥2,...,¥2k-1}
have four neighbors of V(G)\S. Without loss of generality, we may assume
that vivs, vyv4, vouz € E(G) (potentially vovy ¢ E(G)). As there are at
most two vertices in {y1,y2,¥3,...,Y2k—1} With less than three neighbors
in V(G)\ S, we can pick 1 < j < k < 4 such that G[z,z2,vj, vk is
connected, and every y; has a neighbor in {vy,v2,vs,v4} \ {v;,vc}. But
now G([V(G) \ {z1,z2,v;,vr}] is connected, a contradiction.

If [V(G)| = 2k + 6, then let V(G)\ S = {v1,v2,v3,...,Vn-2k—1}. If
N(z1) N N(z2) N (V(G)\ S) # 0, say z,v;, zov; € E(G), then G|z, z2,v1]
and G[y1,v2,¥3,---,Y2k=1,V2,73, ..., Un—2k~1] are connected subgraphs.
Thus, suppose that N(z;) N N(z3) = §.

As each vertex in S has at least two neighbors in V(G) \ S, |N(z;) U
N(z2)| 2 4. If [IN(z1) U N(z2)| = 4, then |[N(z1)| = |N(z2)| = 2. Suppose
that N(zx1) = {v1,v2} and N(z2) = {vs,vs}. Without loss of generality, we
may assume that vyvs, v1vs, vaus € E(G) (potentially vavy € E(G)). If ev-
ery y; has a neighbor in {vy,v2,...,vn_26—1}\{v1, vs}, then Gz, 29, v1, 3]
and Gly1,¥2,-..,Y2k—1,2,V4,. .., VUn_2k—1] are the desired connected sub-
graphs. Therefore, there is some y; with N(y;) = {v1,v3}, say i = 1. Sim-
ilarly, we may assume that N(ys) = {vi,vs} and N(ys) = {ve,v3}. But
now (A = SU{v1,v2,v3,v4}, B = {y4,Y5,-..,Y2k-1,V1, V2, .., Vn-2k—1})
is an SH-cut of size 2k in G*, a contradiction.

Now suppose that |N(z1) U N(z2)| > 5, say N(z1) 2 {v1,v2} and
N(z2) 2 {vs,v4,us}. Without loss of generality, we may assume that
VU3, V1Vq, V1 Vs, V203, V2vs € E(G) (potentially vovs ¢ E(G)). By similar
arguments as above, N(y1) = {v1,va}, N(y2) = {v1,v4}, N(ys3) = {v1,vs},
N(ya) = {v2,v3}, and N(ys) = {v2,v4}. Furthermore, we have that
N(:z:l) = {‘Ul,'Uz} and N(Zg) = {1}3,’04,1)5}.

If [V(G)| = 2k + 6, there is a vertex u € S, such that |N(u)| > 4,
a contradiction. If |[V(G)] > 2k + 6, (A = S U {v1,vs,v3,u4,05},B =
{¥6,Y7, ... Y2k=1,V1,Y2, . .- , Un—2k—1}) is an SH-cut of size 2k — 1 in G*, a
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contradiction. This completes the proof.

It’s easy to see that Theorem 1.5 is a corollary of Theorem 3.1.
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