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Abstract In this paper, we study the Fibonacci polynomials modulo /77 such
that x2=x + 1 and then we obtain miscellaneous properties of these
sequences. Also, we extend the Fibonacci polynomials to the ring of
complex numbers. We define the Fibonacci Polynomial-type orbits
F(’;‘b)(x) = {x;} where R be a 2-generator ring and (a, b) is a generating
pair of the ring R. Furthermore, we obtain the periods of the Fibonacci
Polynomial-type orbits F(’f,’b) (%) in finite 2-generator rings of order p?.
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1 Introduction and Preliminaries

Fibonacci numbers are one of the most well-known numbers, and it has
many important applications to diverse fields such as mathematics,
computer science, physics, biology and statistics. The Fibonacci numbers
fn are the terms of the sequence 0,1,1,2,3,5,8,13, ... where f,, = fn-1 + fr-2
with the initial values f, = 0 and f; = 1. Generalized Fibonacci sequence
have been intensively studied for many years and have become into an
interesting topic in Applied Mathematics. Fibonacci sequences and their
related higher-order (tribonacci, k-nacci) sequences are generally viewed as
sequences of integers.

Most of the study of Fibonacci sequences is done with groups. The notion
of Wall number was first proposed by D. D. Wall [1] in 1960 and gave
some theorems and properties concerning Wall number of the Fibonacci
sequence. K. Lil and J. Wang [13] contributed to the study of the Wall
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number for the k-step Fibonacci sequence. In the mid eighties, Wilcox [7]
extended the problem to abelian groups. Knox [9] proved that the periods of
k-nacci (k-step Fibonacci sequences in dihedral groups were equal to
2k + 2. Deveci, Karaduman and Campbell [16] examined the behavior of
the period of the k-nacci sequence in some finite binary polyhedral groups.
Recently, k-nacci sequences have been investigated; see for example [12,
14, 15]. However, very little is done with the rings. Let R be a ring identity
1. Consider the sequence {M,,} of elements of R, recursively defined by
Mpy, =AMy +4M,, for n=0 (1.
D. J. DeCarli begin by considering a special case of (1.1), denoted by {F,}
and defined by
Fn+2 = Aan+1 + Aan for n:2 0

That is, D. J. DeCarli [6]gave a generalized Fibonacci sequence over an
arbitrary ring in 1970. Special cases of Fibonacci sequence over an
arbitrary ring have been considered by R. G. Buschman [4], A. F. Horadam
{2] and N. N. Vorobyov [3] where this ring was taken to be the set of
integers. O. Wyler [5]also worked with such a sequence over a particular
commutative ring with identity. Tagyurdu and Giiltekin obtain the period of
generalized Fibonacci sequence in finite rings with identity of order p? by
using equality recursively defined by F,,, = A Fq + AgF,, for n 20,
where F, = 0 ( the zero of the ring), F; = 1 (the identity of the ring) and
Ay, A, are generator elements of finite rings with identity of order p? [17].
Classification of all finite rings of order p? with p a prime has been studied
by B. Fine [10].

It is well-known that a sequence is periodic if, after a certain point, it
consists only of repetitions of a fixed subsequence. The number of elements
in the repeating subsequence is the period of the sequence. A sequence is
simply periodic with period £ if the first £ elements in the sequence form a
repeating subsequence. For example, the sequence
a,b,c,d,eb,cdeb,c,d,e,.. is periodic after the initial element a and
has period 4 and the sequence a,b,c,d,e,f,b,c,d,e f,b,c,d,e,f .. is
simply periodic with period 6. The minimum period length of
(Fy modn){2._., sequence is denote by k(n) and is called Wall number of n

[1].
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Consequence 1.1 (Renault [11]).
Fk(n) =0 (mOd n) (1.2)
Fitny-1 = Feyer EFemy+2 =1 (mod n) (1.3)

Definition 1.2. The Fibonacci polynomials are defined by recurrence
relation

xXFpy () + Fop(x)  ifnz2
Note the the Fibonacci polynomials are generated by a matrix

Qz‘—‘(’{

0 ifn=0
E(x)=41 ifn=1 (1.4)

n_ (Farn(@)  F(x) )

@) = ( FG) Fyy(X) (1.5)
which can be proved by mathematical induction. The first few Fibonacci
polynomials are displayed below as well as the array of their coefficients
(8].

Theorem 1.3. For any prime p, up to isomorphism, the finite 2-generator
rings which is not field of order p? are given by the following presentations
[10]
=(a,blpa=pb=0,a*=a,b*=bab=ba=0)=1Z,+1Z,
=(a,b|pa=pb=0,a>=qa,b>=b,ab=aqa,ba=b)
—(a,blpa—pb 0,a® =a,b*=b,ab=b,ba=a)
={a,b|pa=pb= Oa2 0,b>=b,ab=a,ba=a)
=(a,b|pa=pb=0,a®=0,b>=b,ab=ba=0)=Z,+ C,(0)
l-(ablpa pb=0,a>=b,ab=0)
=(a,b|pa =pb =0,a® = b%=0) = C, x C,(0).
Deflnltlon 1.4. The sequence {M,,} of elements of R is defined by
MTH'Z = Aan+1 + AoMn for nz= 0 (].6)
where R is a ring with identity / and My, M;, A,, A, are arbitrary elements
of R [6].
Definition 1.5. A special case of equality (1.6) is denoted by {F,} and
defined by

Fn+2 = A1Fn+1 + AOFn for n=20
where Fy = 0 ( the zero of the ring), F; = 1 (the identity of the ring) and
Ay, A, are arbitrary elements of R [6].
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2 The Fibonacci Polynomials Modulo m

Reducing the sequence of the Fibonacci Polynomials by a modulus m such
that x2 = x + 1, we can get a repeating sequence, denoted by

{F,(x)(mod m)} = {Fy(x)(mod m), F,(x)(mod m), ... F;(x)(mod m), ... }.

It has the same recurrence relation as in (1.4).

Theorem 2.1. The sequence {F, (x)(mod m)} is simply periodic.

Proof. Let ={a;x+ b;,a,x + b,|0 < ay,a;,by,b, <m—1}, then
|S] = m*. The sequence {F,(x)(mod m)} repeats since there are only a
finite number m* of pairs of terms possible, and the recurrence of a pair
results in recurrence of all following terms, which implies that the sequence
{E,(x)(mod m)} is periodic. Since the sequence is periodic, there exist
natural numbers { and j, with {>j such that F;,,(x)(mod m) =
Fjs1(x)(mod m) |, Fiyp(x)(mod m) = Fj(x)(mod m).  From  the
definition of the sequence {F,(x)}, we can easily derive that F,_,(x) =
Fy(x) — xFy_y1 (x).

Therefore, we obtain F;(x)(mod m) = F;(x)(mod m), and hence,
Fi_1(x)(mod m) = F;_,(x)(mod m),

Fi_z(x)(mod m) = F;_,(x)(mod m), ...,

Fi_j+1(x)(mod m) = Fy(x)(mod m),

Fi_j(x)(mod m) = Fy(x)(mod m).

So we get that the sequence is simply periodic.

We next denote the period of the sequence {F,(x)(mod m)} by h*®)(m).
Example. The sequence{F, (x)(mod 3)} is

0L, x,x+2,x+1,0,x+1,2x + 1,x,2,0,2,2x, 2x + 1,2x + 2,0,2x + 2,
x+2,2x,1,01,x,..}

and thus hF®(3) = 20.

For a given matrix A = [P;] with P;;’s being polynomials, A(mod m)
means that every entry of A is reduced modulo m, that is, A(mod m) =
(Py(mod m)). Let (A),, = {(A)"(mod m)| n = 0}. If gcd(det A, m) = 1,
(A), is a cyclic group. We denote the cardinal of the set (Q,),, by [(Q2)m|.
Since detQ, = —1, it is clear that the set is a cyclic group for every
positive integer m.

It is easy to see from (1.5) that hF®)(p) = |(Q,),| for every prime p if
x2=x+1.
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Theorem 2.2. If m =[Ti., p;%, (t = 1) where p;’s are distinct primes,
then hF @) (m)=lcm[hF&) (p, &), RF®) (p,%2), ..., FF®) (p, %) |.
Proof. Since hf@®(p,%) is the length of the period of the sequence
{E,(x)(mod p;t )}, the sequence {F,(x)(mod p;®')} repeats only after
blocks of length k.hF&)(p;%), (k € N). Since also hF®)(m) is the length
of the period {F,(x)(mod m)}, the sequence {F,(x)(mod p;i )} repeats
after hF®(1m) terms for all values i. This implies that hF®)(m) is of the
form k. hF& (p,e) for all values of i. We thus prove that hF*)(m) equals
the least common multiple of R*®) (p, &)1 (u;*)’s.
Example. The sequences {F,(x)(mod 2)} and {F,(x)(mod 6)} are as
follows, respectively:
{0,1,x,x,1,0,1,x,...}
and
{0,1,x,x+2,4x +1,0,4x + 1,5x + 4,x,5,0,5,5x,5x + 42x + 5,0, 2x +
5,x + 2,5%,1,0,1,x, ... }.
Then, we obtain hF®)(2) =5 and hF®(6) = 20. Also we know that
RF@®)(3) = 20. Thus it is verified that hF ) (6) =lem[hF ®(2), KFF3].
Theorem 2.3. Let p be a prime and let u be the largest positive integer such
that such that hF®(p) = hF@(p*). Then we have AF®(p¥) =
p~thF®@(p) for every v = u. In particular, if AF®)(p) = hF®)(p?), then
we have hf@® (p¥) = p*~LhF@®(p) for every v = 2.
Proof. Let k be a positive integer and I be the 2 x 2 identity matrix. If
@M PE = [(mod p*+1), then (Q)" PP = I(mod p*). This
yields that h"®)(p*) divides hF*)(p**1). Also, writing (Qz)hF(X)(”k) =
I+ (qi(,';).p") we obtain
p
(Qz)hp(x)(Pk)-P = (1 + (ql(";)pk))p = Z (i:) (qi(,lj‘)’pk)‘ = I(mod pk+1)
(=0
by the binomial expansion. This means that A7®(p*+1) divides
RF®) (p*).p.  Therefore, hF@(pk+1) = KFE(p*) or KFX(pk+) =

hF®)(pk).p, and the latter holds if, and only if, there is a g, which is not

divisible by p. Since h®)(p¥) # hF®) (p¥*1), there is an q{’s*") which is

not divisible by p, thus, AF®) (p¥+1) % hF® (p¥+2) To complete the proof
we use an inductive method on u.
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Example. Since {F,(x)(mod 4)}={0,1,x,x +2,1,2x + 2,3, x +
2,3x,1,0,1,x, ...}, RF®(4) = 10. Also we know that ”**)(2) = 5. Thus it
is verified that hF®)(4) = 2. hF)(2).

3. The Fibonacci Polynomials in The Set of Complex Numbers C
Define the sequence of the Fibonacci polynomials in the set of complex
numbers € as shown:

o, if n=0,
E, = {1, if n=1, 3.D
(i+1)F,_y+F,, if n=2.
Letting
_[f+1 1
m=[7" ol
Forn = 1, by (1.5) we may write
F, F,
M =[ w1 m ] 3.2
Fo  Fas G2

It is easy to see that we obtain the sequence in (3.1) if we choose x =i + 1
in (1.4). Let h®(m) denote the period of the sequence of {F,(mod m)}
which is obtained by reducing the sequence of the Fibonacci polynomials in
the set of complex numbers € modulo m and let |{M},,| denote the order of
the cyclic group (M),, which is generated by reducing the matrix m
modulo. Therefore, it is clear that the rules produced for the period h®(m)
and the cyclic group (M),, are of the same form of the results obtained in
the above.
It is important to note that h(m) may not be equal to h¥®)(m). We can
give the following Example for this situation.
Example. The sequences {F,(mod 2)} and {F, (x)(mod 2)} are as follows,
respectively:

01,i+1101,i+1,..

0,1,x,x,1,0,1,..

and thus h%(2) = 4 and h*®)(2) = 5.

4 The Fibonacci Polynomials in Some Finite Rings
Definition 4.1. Let R be a 2-generator ring and (a, b) be a generating pair
of the ring R. We define the Fibonacci Polynomial-type orbit F{ ,y(x) =
{x;} of (a,b) by

Xp=a, X3 =0b, Xpty = bXp + Xy nz1.
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Similarly, we define the Fibonacci Polynomial-type orbit F(’f,_a)(x) = {x;}
of (b,a) by
Xo=b, x =a, Xpe1 = AXp + Xp-q nz1
Proposition 4.2. A Fibonacci Polynomial-type orbit of a finite 2-generator
is periodic.
Proof. Let R be a finite 2-generator ring and n be the order of R. Since
there are n? distinct 2-tuples of elements of R, at least one of the 2-tuples
appears twice in a Fibonacci Polynomial-type orbit. Therefore, the
subsequence following this 2-tuple repeats. Because of the repeating the
sequence is periodic.
We next denote the period of the sequence F(y ,)(x) by PF{ ,)(x).
Definition 4.3. Let R be a finite 2-generator ring. If there exist a Fibonacci
Polynomial-type orbit of the ring R such that every element of the ring R
appears in the sequence, then the ring R is called Fibonacci Polynomial-
type sequenceable.
Example. Let us consider the finite ring with identity
D=(ab;pa=pb=0,a’=ab?*=bab=ba=0)=2Z,+1Z,
which has two generators a and b. For p = 3 the orbit F(} ,y(x) is
a,b,a+b,2b,a,2b,a + 2b,b,a,b, ...
and hence is Fibonacci Polynomials-type sequenceable. Also, PF(‘,’,.b)(x) =
8.

Proposition 4.4. For any prime p # 2,
D=({ab;pa=pb=0,a®=ab*=bab=ba=0)=2Z,+1,
with generators a and b. The periods of the Fibonacci Polynomial-type

orbits F ,y and F(j ) are k(p).
Proof. Let us consider the Fibonacci Polynomial-type orbit F(’f,.,,). The
sequence FQ, ,y is as follows:
xO =a,x1 = b,x2 =a+b,X3 = Zb,x4 =a+3b,x5 =5b,
X¢ =a+8b,x; =13b,xg = a+ 21b, ..., X3, = a + fo,b,
X2n+1 = fan+1b,
Xan+2 = bXons1 + Xon = b(fonsrb) +a+ foub = f2n+1b2 +a+ fonb
= fane1b + a + fonb = D(fons1 + fon) + @ = a + foneab,
X2n+3 = bXanez + Xon41 = (@ + fane2h) + fonsrh
= ba + frns2b? + fans1b = fons2b + fonerh = (fansz + fansr)b

.= fan+3b,....
Using the above, the sequence becomes:
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a+ fob» fib’ a-+ be’ be’ w,a+ onba f2n+1ba a+ f2n+2b’ f2n+3b’ ey
where f,, denote the n th term of the ordinary 2-step Fibonacci sequence.

Now let’s determine the period of this sequence up to prime number p. It
can be seen that the coefficient of the term b of each element x, of this
sequence is term of ordinary Fibonacci sequences. Hence, the period of the
sequence is determined by the coefficient of the term b which f;, is the n th
term of the ordinary 2-step Fibonacci sequence. Thus, we obtain
PF,py (%) = k(D).
There is a similar proof for the sequence F(‘,’,'a) (x).
Proposition 4.5. For any prime p # 2.
E=(ab|pa=pb=0,a>=a,b?=b,ab=a,ba=>b)
with generators a and b. The periods of the Fibonacci Polynomial-type
orbits F(, ,y and F(;, ;) are k(p).
Proof. Let us consider the Fibonacci Polynomial-type orbit F(,,). The
sequence F(; ,y is as follows:
Xo=a,x, =b,x,=a+b,x3 =3b,x, =a+4b, x; = 8b,
x¢ =a+12b, x, =21b, xg=a +33b, .. , X3 = a+ (fony1 — )b,
Xan+1 = fans2b,
Xansz2 = bXaniy + Xon = b(fons2b) + a + (fonea — Db
= fan+2b? + @+ fons1b— b = frnu2b + @+ foniab— b
= (fansz + foned)b+a—b = frpsb+ a—b = a+ (fn43 — 1)b,
Xan+3 = bXons2 + Xone1 = b(a + (fonsz — 1Db) + fonsob
= ba + f2n+3b2 — b? + fona2b=Db + fonssb—b + [ene2b
= (fone3 + f2n42)b = fonsab, ...
Using the above, the sequence becomes:
a+ (fi =1b, fob,a+ (f3 —1)b, fib,a + (fs— 1)b, ...,
a+ (Fon+1 — Db, fons2b, a + (fanss — 1D, fon4ab, ...
where f,, denote the n th term of the of ordinary 2-step Fibonacci sequence.
Notice that each element x,, of this sequence has the form
‘= {a + (fag1— b if niseven
n fas1b if nis odd
That is, two consecutive terms of this sequences are a + (f,,4; — 1)b and
fn+1b. From Consequence 1.1., we have a + (f,4, — 1)b = a and f,,41b =
b where f,,, = 1, itis clear that PF(, ,,(x) = k(p).

There is a similar proof for the sequence F(’f,,a) ).
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Proposition 4.6. For any prime p # 2,
F=(ab|pa=pb=0a®=ab*=bab=bba=a)
with generators a and b. The periods of the Fibonacci Polynomial-type
orbits F(, ,y(x) and F(, 4y (x) are k(p).
Proof. Let us consider the Fibonacci Polynomial-type orbit F{ ,)(x). The
sequence F(j qy(x) is as follows:
Xp=a,x,=b, x,=a+b, x3=a+2b, x, = 2a+3b, x5 = 3a +5b,
X¢ = 5a+ 8b, x, =8a+ 13b, xg = 13a + 21b, ... , x, = fa1a+ fub,
Xn+1 = fa@ + foaa b,
Xn+z2 = bXpea + Xn = b(fna + fr41b) + foga + fob
= faba + fo1b® + fuora + fob = fra + fauab + faia + fob
= (fo + fa-Da + (fas1a + f)b = friaa + freab, ..
Xn43 = DXniz + Xns1 = b(fn11@ + frizb) + fo@ + frab
= fr4100 + frizb?® + foa + fouah = fri1@ + fraab + fra + freab
= (fa+1 + fu)a + (frs2a + fr41)b = fri2a + frash, o .
Using the above, the sequence becomes:

f-1a+ fob, foa + fib, fia + fob, fra+ f3b, ..., fa_1a + frb,

fna + fn+1b’ fn+1a + fn+2bs fn+2a + fn+3b 5 oo
where f, denote the n th term of the ordinary 2-step Fibonacci sequence.

That is, two consecutive terms of this sequences are f,_,a + f;b and

faa + foi1b. From Consequence 1.1, we have f,_;a+ f,b=a and

frna+ fansab=b where f,_q =1 and f,,; = 1. Thus, the sequence

FEy(x) is periodic and PF(j ,y(x) = k(p).

There is a similar proof for the sequence F(’;,a) ).

Proposition 4.7. For any prime p, let
G={ab|pa=pb=0,a>=0,b2=b,ab=a,ba=a)

with generators a and b. The period of the Fibonacci Polynomial-type orbit

F py(x) is k(p) and F§ 4 (x) is 2p.

Proof. It can clearly be seen that sequence created by Fibonacci

Polynomial-type orbit F(‘f,,b) (x) is similar to sequence created by Fibonacci

Polynomial-type orbit F(’;b)(x). Thus, sequence of Fibonacci Polynomial-

type orbit F(‘f,',,)(x) is periodic and PF(f,_b)(x) = k(p).

Let us consider the Fibonacci Polynomial-type orbit Fg,.a) (x). The

sequence F( 4y(x) is as follows:
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Xo=b, x,=0a, x,=a*+b, x3=ab+a=2a, x,=2a’+b=0b,
Xs=ab+2a=3a, x,=3a*+b=>b, x, =ab+3a=4a, xg =4a*+
b=b,..,x;n =b, X3n41 = M+ 1a,

Xopnsz = AXoney + Xon = al(n+ 1al+b=(n+1)a*+b=b,

Xan43 = AQXpnsz2 F Xongy =ab+ (n+ Da=a+ n + 1)a = (n + 2)a,

Using the above, the sequence becomes:
b,a,b,2a,b,3a,b,4a,b,5q,..,b,(n+ a,b,(n+ 2)aq, ...
Notice that each element x,, of this sequence has the form
_ b n=2m
x“_{(m+1)a n=2m+1
It can be seen that the period of the sequence is determined by prime
number p. The residue class has p elements according to modulo p = 2 and
there are b of term p times. Thus, the sequence F(%'a) (x) is periodic and
PF(%'a)(X) = 2p. '

Proposition 4.8. For any prime p # 2,
H=(a,b|pa=pb=0,a>=0,b*=b,ab=ba=0)=Z,+ C,(0)
with generators a and b.The period of the Fibonacci Polynomial-type orbit

Féa.5)(%) is k(D).

Proof. It can clearly be seen that sequence created by Fibonacci

Polynomial-type orbit F(’f,,b)(x) is similar to sequence created by Fibonacci

Polynomial-type orbit F("’,,,,) (x). Thus, sequence of Fibonacci Polynomial-

type orbit F(} ) (x) is periodic and PF(} ;y(x) = k(p).

Proposition 4.9. For any prime p # 2,

I=(ab|pa=pb=0,a°=b,ab=0)

with generators a and b. The period of the Fibonacci Polynomial-type orbit

Flpay (%) is 2p.

Proof. It can clearly be seen that sequence created by Fibonacci

Polynomial-type orbit F(’b'a) (x) is similar to sequence created by Fibonacci

Polynomial-type orbit F(‘,;,'a) (x). Thus, sequence of Fibonacci Polynomial-

type orbit F(y, 5y (x) is periodic and PF(, 4y (x) = 2p.

Proposition 4.10. For any prime p # 2,
J=(a,blpa=pb=0,a®=b%=0)=C, x C,(0)

with generators a and b. The periods of the Fibonacci Polynomial-type

orbits F(]a'b) (x) and F(Ib'a) (x) are 2p.
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Proof. It can clearly be seen that sequences created by Fibonacci
Polynomial-type orbit F‘(’a.b)(x) and F(’b,a)(x) are similar to sequences
created by Fibonacci Polynomial-type orbit F(‘{,,a) (x). Thus, sequences of
Fibonacci Polynomial-type orbits F(’a'b)(x) and F(’b'a)(x) are periodic and
PFl, 4y (X) = PF}, oy(x) = 2p.
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