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Abstract

Let G be a graph of order n with adjacency matrix A(G) and
diagonal degree matrix D(G). The generalized characteristic poly-
nomial of G is defined to be fe(z,t) = det (2, — (A(G) — tD(G))).
R—graph of G, denoted by R(G), is obtained by adding a new ver-
tex for each edge of G and joining each new vertex to both end ver-
tices of the corresponding edge. The generalized R—vertex corona,
denoted by R(G) 3 A}H;, is the graph obtained from R(G) and
H;,...,H, by joining the i — th vertex of V(G) to every vertex of
H;. In this paper, we determine the generalized characteristic poly-
nomial of R(G)BA} H;. As applications, we get infinitely many pairs
of generalized cospectral graphs, the number of spanning trees and
Kirchhoff index of R(G) DA} H;.
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1 Introduction

We only consider simple graphs. For a graph G of order n, let A(G)
denote the adjacency matrix of G, and D(G) the diagonal degree ma-
trix of G. The Laplacian matrix and signless Lapalcian matrix of G are
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defined as L(G) = D(G) — A(G) and Q(G) = D(G) + A(G), respec-
tively. The characteristic polynomial of a n x n matrix Z is denote by
#(Z,)) = det(M, — Z), where I, is the identity matrix of order n. The
eigenvalues of A(G), L(G) and Q(G) are called the A-spectrum, L-spectrum
and Q-spectrum of G, respectively. The adjacency, Laplacian and sign-
less Laplacian eigenvalues of G are denoted as A\ (G) < X2(G) < -+ <
A(G), 0 = u(G) < u2(G) £ -+ < pa(G) and 1 (G) < 1(G) <

« € vp(G). The generalized characteristic polynomial of G is defined
to be fg(z,t) = det(zl, — (A(G) — tD(G))) [1,4,13], which generalizes
A—spectrum, L—spectrum and @Q—spectrum of G. The characteristic poly-
nomials of A(G), L(G) and Q(G) are equal to fg(),0), (=1)V( @ fo(-,1)
and fg(A, —1), respectively.

Graphs with the same A-spectrum (respectively, L-spectrum and Q-
spectrum) are called A-cospectral (respectively, L-cospectral, @-cospectral)
graphs. For graph G and H, if fg(z,t) = fu(z,t), then we call G and H
are f—cospectral. Obviously, if G and H are f-cospectral, then they are
A-cospectral, L-cospectral and Q-cospectral.

Graph operations, such as the disjoint union, the corona, the edge
corona, the neighborhood corona [3,10-12,14], are techniques to construct
new classes of graphs from old ones. For a graph G, R(G) is a graph ob-
tained from G by adding a vertex u. and joining u. to the end vertices of
e for each e € E(G) [5,9]. Let I(G) be the set of newly added vertices,
i.e., I(G) = V(R(G))\V(G). We define a new graph operation based on
R—graph, the generalized R-vertex corona of graph G with n vertices and
H,\, Hj,...,H,. We compute the generalized characteristic polynomial of
the generalized R-vertex corona. In the rest of this paper, j,, denotes the
column vector of size n consisting entirely of 1's and 0 denotes a zero matrix
when its size is obvious.

The paper is organized as follows. In Section 2, we give the definition
of the generalized R-vertex corona and some useful tools. In Section 3,
we compute the generalized characteristic polynomial of the generalized
R-vertex corona. Also, we construct many pairs of generalized cospectral
graphs. As the applications, kirchhhoff indez and the number of spanning
trees of some special R-vertex corona graphs are computed.
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2 Preliminaries

Definition 2.1. Let G be a graph of n vertices with vertez set V(G) and
H,,H,,...,H, be n arbitrary graphs. The generalized R—vertex corona
of G and Hy,H,,...,H, denoted by R(G) & A}H;, is the graph obtained
from R(G) and Hy, Ha,. .., H, by joining the i —th verter of V(G) to every
vertez of H;.

In this paper, we will determine the generalized characteristic polyno-
mial of R(G) @ AZH; with the help of the coronal of a matrix and the
Kronecker product. The Z-coronal T'z(A\) of an n x n matrix Z is de-
fined (3,10-12,14] to be the sum of the entries of the matrix (A, — Z)~1,
that is, Tz(A\) = jT(A\ I, — Z)~!jn. It is well known that, if Zisann x n
matrix with each row sum equals to a constant ¢, then I'z(}) = ;Z5.

Let My, Mz, M3 and My be respectively px p, px ¢, gxpand g X q

matrices with M; and M, invertible. It is well known that( AAZ ﬁ: )

det (M) det (My — MaM[ ' Ms) = det (My) det (My — MaM[ ' Ma) . where M;—
MoM;'Ms and My — MM ' M> are called the Schur complements [15] of M,

and M), respectively.
If A = [ai;] is an m x n matrix and B is an r x s matrix, then the Kronecker

product {7] A® B is defined as the mr x ns matrix with the block form

aunB ... ai.B

amlB e amnB

This is an associative operation with the property that (4® B)T = AT ® BT
and (A ® B)(C ® D) = AC ® BD whenever the products AC and BD exist.
Let t(G) denote the number of spanning trees of G. It is well known (5] that

if G is a connected graph on n vertices, then ¢(G) = ﬂﬁg’—"m-@- The Kirch-

hoff index of a graph G, denoted by K f(G), is defined as the sum of resistance
distances between all pairs of vertices [2,8]. Gutman [6] proved that the Kirch-
hoff index of a connected graph G with n(n > 2) vertices can be expressed as

Kf(G)=n3 "1, “—%37

3 Generalized characteristic polynomial of
R(G) . /\?Hi

Let G be an arbitrary graph on n vertices and m edges and H; an arbitrary
graph on t; vertices, fori = 1,2,...,n. Let N=m+nand M =t1+t2+...+tn.
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Label the vertices of G by 1,2,...,n and the newly added vertices in R(G) by
n+1,...,n+m. Label the vertices of H; by n4+m+1,n+m+2,...,n+m+t;,
and the vertices of H; for i > 2by n+m+ i itk +1,n+m+Si 1t +2,...,n+
m+ 2};:1&,.

Theorem 3.1. Let G be an arbitrary graph with n vertices and m edges, and H;
an arbitrary graph with t; vertices fori =1,2,...,n. The generalized character-
istic polynomial of R(G) AT H; is

IR(G)BAPH (=) =

T —Tp(Hy)-eDap{z+ 8+t Xty O 0 o
det( 0 0 0
0 0 3“PA(H,.)-¢D(H,.)(1'+‘)+‘Xtn 0

[1] 0 0 zl,n

n
= A(R(G)) + ¢ DRG] f, (= + . 0).
i

Proof. The adjacency matrix of R(G) DA} H; can be written as:
A(R(G)DA}‘H..):( ARGy © )
0

j,’;ooo

ps A(H) O 0 0
0 J, © o0 o0 0 A(Ha) 0 0
W, C= . ) B =
here o o . g 0 0 0 o
o o o jT o 0 0 0 A(H,)
o o o o N

Let E be the incidence matrix of G, A(R(G)) = (Aég) E) .
The degree matrix of R(G) D A? H; can be written as:

. w o
D (R(Q)BATH,) = (D(R(G)H (o O)NxN ° )
0 D(F) + In
t 0 0 0
0 tz 0 o0
where D(R(G)) = (wéc) 0 ),w = :

2m o 0 . o0
(4] 0 0 tn
DH) 0 o 0
0 DH) o 0
Let F denote H UH,U...UH,, D(F)= .
0 0 - 0
0 (4] 1] D(Hn)

Then, the generalized matrix of R(G) & AT H; can be written as:
A(R(G)BATH;) - tD (R(G) D AT H,)

- (MY 9y, (D(R(G)) +(% 3)N . 0 )
¢ B 0 N DR + In
_ (A(R(G))—tD(R(G))—t(‘: g)N , c )
cT * B ~ tD(F) — tly

So, the generalized characteristic polynomial is
fric)@ar a, (2, )
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N x
-cT v zlp — B+ tD(F) + tIy
= det((z + t)Ip — B + tD(F))det(zIn — A(R(G)) + tD(R(G))

= det (le - A(R(G)) + tD(R(G)) +t (‘g’ g) o )

+t(W O — C(zly — B +tD(F) + tIn)~'CT),
0 0 NxN

where
det ((z + t)Ipm — B + tD(F))
(z +t)], — A(H)) +tD(H,) © ]
= det 0 0
0 0 (z+t)., — A(H,) +tD(H,)

ol PLACE )

and
C(zly — B+tD(F) +tiy) ' CT =

3T, (= + 01y - A +eDHD) 'y, © 0 °
0 o o
0 o T (=401, - AR +DHD) 13, O
o L] o 0
PA(HI)—QD(H])(“""” o ] 0
= o o o
° 0 TA(Hp)-tD(Ha)(=+t) O
o ° o o
Hence,
fr)aap a2, 1)
w o
= dot(zly — A(R(G)) + tD(R(G
ortziy - AGR@) +eDR@N +1 (g 5) o
Fa(Hy)—tD(H(E+D O ) o
. n
- 0 - 0 o[ Ilra;=+e0)
o O  TA(Hn)—tD(Hp)(=+2) O] ¢
[+] [+] 4] [+
z-rA(Hl)_,D(Hl)(=+t)+txt; ] [ o
= dot{ ° . ° °
o 0 =-TA(H)—tD(Hn)(T+ O+t X tn °
0 o o xlm
n
= A(R(G)) + tD(R(G [ o, (= + 2. 0). o
i

Theorem 3.2. Let G be a graph with n vertices and m edges. Let H; be an
arbitrary graph with t; vertices fori=1,2,...,n. Then the following hold

(1) The adjacency characteristic polynomial of R(G)EI A} H; is

¢A(R(0)EM;'H,~)('\)

A=Tap(d) O o 0
=det 0 0 o | - ARG | [Toamo).
0 o A - PA(H,.)()‘) 0 i
0 /] o M

(2) The Laplacian characteristic polynomial of R(G) IAT H; is
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L(R(G)AATH M)

=A=T_pap)(-2+ 1+ [ o 4
= det 0 - o o | + LIR(G))
0 0 —A-T_p(Ha) =2+ 1) +tn 0
0 0 [4 Mm

n
. H¢L(H‘.)(-4\ +1)- (-1)N+M~
i

(3) The signless Laplacian characteristic polynomial of R(G) QAT H; is
PQ(r()AA7 H;) ()

A-ToupA-1)—-t; 0 0 0

= det 0 S (] 0 | - Q(R(G))
0 0 A-Tgu,(A-1)-t, 0
0 0 0 Mo

. H dqQu) (A = 1).

Proof. (1) Since darG)anr H,)(A) = fre)anps.(M0), by Theorem 3.1, we
have

PaR@BAPH,)(A)
A - PA(H‘)(X) 0 0 0
n
= det 0 . 0 0 | - ARG | [Teaw) V).
0 4] A~ PA(Hn)(A) 0 i
0 0 o My

(2) Since ¢L(R(G)BA;‘H,-)(A) = (_1)N+MfR(G)BA:‘H,-(“’\1 1), by Theorem 3.1, we
have

PLR(GOIBAP H)H M)
“A =T LA+ +e 0 0 o
= dot ° . o o |+ L(R@OY
o O  ~A-T_p(Hp)(~A+1+ta O
(1] (] [+] AMm

Rid
Teny-r+ 1 - (oM.
1

(3) Since dQ(r(G)aATH(A) = fre@nzra, (A, —1), by Theorem 3.1, we have
fawr@map (V)

A—PQ(Hl)()‘—l)—tl o 0 0
= det 0 . [ 0 | - Q(R(G))
0 0 A-Touum(A-1)—-t. O
] 1] [s) m
T éawox-1. O
i

Corollary 3.3. Let G be a graph with n vertices and m edges. Let H; be an
arbitrary graph with t; vertices fori=1,2,...,n and W denotes diag(t,,...,tn).
IfTa)-enmo(@ +1) = Tagn-coon(z +t), then
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Tri@)BAD H, (2:8)
= (z +2t)™ " "det((x — Ta(a)—en(a) (T + )z + 201, + t(z + 20)W

— (z + 2t)A(G) + 2t(z + 2t) D(G) — A(G) — D(G)) ﬁfyl. (z+¢,¢).

Proof. Let

E-I"A(”‘)_ap(yl)(z+c)+tx¢1 o ] o

A = det 0
x - FA(”")_QD(’;")(:-#C)-FQ X ty

1] .
] o
') [ zlm
= det ((z - rA(H)—:D(Ig)(“ + ) In + W 10 ) )
Thus,

fr(e)yBap 1, (25 1)

= det(A — A(R(G)) + tD(R(GC) [ fu; (= + £, 1)

= (z + 2¢)" " "det({z — Ta(n)—encany (T + )@ + 20 In + t(x + 2t )W

— (z + 20)A(G) + 2t(z + 2t)D(G) — A(G) = D(GN [ fu, (= + t, 1) ]
From Corollary 3.3, we can get the following 2 Corollaries.

Corollary 3.4. Let G be a graph with n vertices and m edges. Let H; be an
arbitrary graph with t; vertices for i = 1,...,n and W denotes diag(t1,...,tn).
If T acsyy—eo(an (& +t) = Taay-epn(z +t). Then

(1) The adjacency characteristic polynomial of R(G) D AT H; is

bari@)BAr ) (A) = A" det (A = Taa(MHn — (A + DA(G) - D(G)) H¢A(H,~)()‘)~
(2) The Laplacian characteristic polynomial of R(G) D AT H; is
SL(re@yBAP V) = (=DM (=X 4 2)" T det (=X = T (o (=X + D) (=2 + 2)]n

+ (A +2)W = AD(G) + (=X + LG [ brcuy (-2 + 1).

(3) The signless Laplacian characteristic polynomial of R(G) O A H; is
QRGBT HH(A) = (A = 2)" " "det((A — Py (A — 1))(A ~ 2}

= =2W - (A= 1)QG) - (A - 2D(G) [Tbauny A - 1).

Corollary 3.5. Let G be an arbitrary graph with n vertices and m edges, and
H,,H,,...,H, be r-regular graphs on T vertices. Then

fre@apa (2, t)

T
= det(((x— m) (z + 2t) + t{z + 2t) x T) I, — (z + 2t + 1)A(G)

+ (2tz + 4t - 1)D(G)) 1‘[ Sz +tt) (z+20)"77
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Corollary 3.6. Let G be an arbitrary graph with n vertices and m edges, and
H,,Ha,...,H, be r-regular graphs on T vertices. Then
(1) The adjacency characteristic polynomial of R(G) AT H; is

eacn@mnpiy® = A" ""det (A (A= 5 ) I = 3+ DAG) - DG ) [T bacno )

(2) The Laplacian characteristic polynomial of R(G) DAl H; is
L(R()BAT (V)

= (=A+2)™ "det ((—,\ -

S+ T) (A4 DI+ (-A+ L) - m(c:))

“brean (A1) - (=DM,
(8) The signless Laplacian characteristic polynomial of R(G) O Al H; is
PQr(G)IBAT 5 (A)

=(A—2)"""det ((,\ - TT_,” - T) (A=2)n = (A= 1Q(C) + (=X + 2)D(G))
“#Qeu (A - 1).
Proof. It is clear from Corollary 3.5. o

Corollary 3.7. Let G be an r-regular graph with ny vertices and m, edges, and
H; be arbitrary graphs on ng vertices. If H; ~ H fori=1,2,...,n1, then
frG)BAp H, (2 1)
=det((x ~ Fawy-eoa)y (z + )z + 2¢) + t(z + 2t)(n2)) n, — (= + 26)A(G)
= 2t(z + 2t)D(G) — A(G) — D(G)) (fr(z + t,t))"! (z + 2¢)™1 7",

Proof. By Corollary 3.3, we have
freBar b, (2, t)
=det((z — Ta)—eow) (2 + )T + 28)In; + t(z + 20)W — (z + 2t)A(G)
- 2t(x + 2t)D(G) — A(G) — D(G)) (fu(z + ¢, t))" (z 4+ 2t)™1 ™™
=det((z = Taq)—en(n) (T + )= + 2t) + tz + 2t)(n2))n; — (z + 2t)A(G)
= 2t(z + 26)D(G) — A(G) — D(®)) (fu(z + &, )" (z + 20)™2 7™,
Following conclusions are consistant with the result in literature (9].

Corollary 8.8. Let G be an r-regular graph with n, vertices and m; edges, and
H; be arbitrary graphs on ng vertices. If Hi~ H fori=1,2,...,n,, then

(1) The adjacency characteristic polynomial of R(G) QAT H; is

4’A(n(c)l:|/\;‘l P

ny ny

=A™= TT (3 = Cagn ) = M@A =71 = X(6) [TO = xi(Ga™,
i=1 i=1

where A; denotes the ith adjacency eigenvalue of G.

(2) The Laplacian characteristic polynomial of R(G) DAL H; is

¢L(R(G)EA}'1 o)
1l2 nl
=A=2™7 TT =1 = wEHN™ TTO = (r1 4 nz + 3+ 1 (G)A?

=2 i=1

+ (4pi(G) + 2n3 + 7y + 2)A = 3u:(G)),
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where p; denotes the ith Laplacian eigenvalue of G.
(3) The signless Laplacian characteristic polynomial of R(G) D AT H; is

¢Q(R(G)DA;" Hi)()‘)
= (=217 [T -1 = wa(H)™ [](A? = (Pqean (A - 1)
i=1 i=1

+vi(G) +r1 + n2 + 2)A + 2r) + 2n2 + 2PQ(H)(/\ = 1) + vi(G)),
where v; denotes the ith signless Laplacian eigenvalue of G.

Proof. (1) Since ¢4(p(cymnr ,)(A) = frieymar 1, (A, 0), by Corollary 3.7, we
have

¢A(R(G)BA_'.‘1 H,-)('\)

= A1 det (AA = Tacay (A n — (A + DA(G) = D(G)) (fay (W™

ny n2 .
=A™= T (A = (Caen ) = A@)A =11 = 2:(6) [T = MG

i=1 i=1
(2) Since ‘f’L(R(G)EIA;‘! (A = (“1)"’+m'+mn2fa(c)a/\:‘l #, (=M 1), by Corol-
lary 3.7, we have
¢L(R(G)EIA:‘1 PRI
=det((=A =T (=A+ D) (=A+ 2)In; + (=2 + Dnaly; ~ (=2 +2)A(G) — A(C)
+2(=2 +2)D(G) = D(C)) (=)™ "M IF N2 (X 4 )T (i (=2 + 1)

= (_1)n1+mx+‘"1n2 I-II ((A - 2) (/\ —-2r; —ng — An_jl) -ry - ’ui(G))

i=1

na
JT A+ 1+ paED™ (A + )™
i=1
Note that p;(G) = 0. Now the result follows easily.
(3) Since q(r(cyoart #,)(A) = frigy@art 4, (A —1), by Corollary 3.7, we have
‘i’Q(R(o)BA:‘l 1A .
= (A= 2)™ ™ det((A — Toumy(A = 1)) (A = 2)Iny — (A = 2naln, — (A — 2)A(G)
= 2(2 = 2)D(G) - QIG)(feuny(A —1)™!

= [T = (Coun (A = 1) + vi(G) + 11 + n2 + 2)A + 211 + 2n2 + 2Ty (A — 1)

i=1

+u(GNA -2y ™™ ﬁ(k— 1— v (H)™. ]

i=1

Corollary 3.9. If G and G2 are generalized cospectral regular graphs, and H;
is an arbitary graph for i = 1,2,...,n, then R(G1) OATH; and R(G2) O AH;
are generalized cospectral.

Proof. It is clear from Corollary 3.3. m]

Corollary 3.10. Let G be an r-regular graph with ny vertices and m, edges,
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and H; be an arbitrary graph with ng vertices. If H; ~ H fori =1,2,...,n1,
then the L — spectrum of R(G) D AT  H; is

(a) 2, repeated my — n, times;

(b) pi(H) + 1, repeated ny times fori=2,...,n2;

(c) three roots of the equation x® — (r1 + na + 3 + pi(G))z? + (4:(G) + 2n2 +
4+ 2z —3ui(G) =0, fori=1,2,...,n;.

Proof. It is clear from Corollary 3.8. ]

Corollary 3.11. Let G be an r-regular graph with ny vertices and m, edges,
and H; be an arbitrary graph with na vertices. If H; ~ H fori=1,2,...,n1 that
the Kirchhoff index and the number of Spannning trees of R(G) DA H; are

n2 my—n ri+ng+3 Tl 4p(G)+2ngtry +2
KIR@BAMH) =3 n 1 1 1 2 i 2+
i=2 #pi(H) +1 2 2ng+r +2 52 3u:(G)

«(my +ny +nyny),
271771 [T72 (p,(G2) + D)™ (2ng + 1 + 2) [112,(31:(G))

t(R(G)BA?lHi) = my + 71 +nin2
Proof. 1t is clear from Corollary 3.10. m}
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