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Abstract

The aim of this note is to present a short proof of a result of
Alaeiyan et al. [Bull. Austral. Math. Soc. 77 (2008) 315-323;
Proc. Indian Acad. Sci., Math. Sci. 119 (2009) 647-653] concerning
the non-existence of cubic semisymmetric graphs of order 8p or 8p?,
where p is a prime. In those two papers the authors choose the heavy
weaponry of covering techniques. Our proof relies on the analysis of
the subgroup structure of the full automorphism group of the graph

and the normal quotient graph theory.
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1 Introduction

Throughout this paper a graph means a finite, connected, simple and undi-
rected graph. For a graph X, denote by V(X), E(X), A(X) and Aut (X)
the vertex set, edge set, arc-set and the full automorphism group of X,
respectively. A graph X is said to be vertezr-transitive, edge-transitive and
arc-transitive if Aut (X) acts transitively on V(X), E(X) and A(X), re-
spectively. If the graph X has regular valency and is edge- but not vertex-
transitive, then it is called semisymmetric.

The study of semisymmetric graphs was initiated by Folkman [7] who
gave constructions of several infinite families of such graphs, and posed a
number of open problems which spurred the interest in this topic (see for
example (3, 4, 5, 7, 8, 12, 13, 14, 15, 18, 19, 20, 22, 23, 24, 25, 26]).

Let p be a prime. Folkman (7] proved that there is no cubic semisym-
metric graph of order 2p or 2p?. Following this, some authors considered
the classification of cubic semisymmetric graphs with given orders. For ex-
ample, Malni¢ et al. [21] classified cubic semisymmetric graphs of order 2p>.
By Du [6], there is no connected cubic semisymmetric graph of order 6p,
and Lu et al. [17] classified connected cubic semisymmetric graphs of order
6p°. Recently, Hua and Feng [10] classified cubic semisymmetric graphs of
order 8p®, and by using covering techniques, Alaeiyan et al. [1, 2], proved
the following result.

Theorem 1.1 Ewvery cubic edge-transitive graph of order 8p or 8p? is vertez-

transitive for each prime p.

In this paper, we shall present a short proof of this theorem by using
group theory and quotient graph theory.

2 Main Results

We start by stating some preliminary results.

Proposition 2.1 [21, Corollary 2.3] Let X be a connected bipartite graph
admitting an abelian subgroup G < Aut (X) acting regularly on each of the
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bipartition sets. Then X is vertez-transitive.

Let X be a cubic graph and let G < Aut(X) act transitively on the
edges of X. Let N be a normal subgroup of G. The quotient graph Xy
of X relative to N is defined as the graph with vertices the orbits of N in
V(X) and with two orbits adjacent if there is an edge in X between those
two orbits. Below we introduce two propositions, of which the first is a

special case of [16, Theorem 9).

Proposition 2.2 Let G be transitive on V(X). Then G is an s-regular
subgroup of Aut (X) for some integer s. If N has more than two orbits in
V(X), then N is semiregular on V(X), Xn is a cubic symmetric graph with
G/N as an s-regular group of automorphisms, and X is a regular N-cover
Of X N-

The next proposition is a special case of {17, Lemma 3.2].

Proposition 2.3 Let G be intransitive on V(X). Then X is a bipartite
graph with two partition sets, say Vo and V|. If N is intransitive on the bi-
partition sets, then N is semiregular on both Vg and Vy, X is a cubic graph
with G/N as an edge- but not vertez-transitive group of automorphisms and

X is a reqular N-cover of Xn.

Before giving a proof of Theorem 1.1, we need to show the following

two lemmas.

Lemma 2.4 Let X be a cubic edge-transitive graph order 8p™, wherep > 7
is a prime and n is an integer. Then every Sylow p-subgroup of Aut (X) is

normal.

Proof Set A = Aut(X) and let P be a Sylow p-subgroup of A. By
[21, Proposition 2.4], the stabilizer A, of v € V(X)) has order dividing 2" -3
for some integer r. Without loss of the generality, assume |A4,| = 2¢-3 for
some integer £. Then, |A| | 23¥¢.3.p". If A is non-solvable, then A has
a non-abelian simple chief factor T} /T>. Noting that |[T)/T2| | 23+¢-3 - p,
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by (9, pp.12-14], T, /T, = T = As or PSL(2,7), contrary to the assumption
that p > 7. Thus, A is solvable.

For each divisor  of A, denote by O,.(A) the maximal normal r subgroup
of A. We have the following claim.

Claim: Op(A4) > 1.

Suppose to the contrary that Op(A) = 1. By the solvability of A, we
know that either O2(A) > 1 or Oz(A) = 1. Let M = Oy(A). It is easy
to check that M has more than two orbits on V(X), and moreover, if X
is not vertex-transitive, then M is intransitive on each partition set of X.
By Propositions 2.2 and 2.3, M is semi-regular, and so then |M] | 4. Let
H/M be a minimal normal subgroup of A/M. Then H/M must be an
elementary abelian p-group. Let @ be the Sylow p-subgroup of H. Since
p > 7, Sylow theorem implies that Q < H. Therefore, Q is characteristic in
H, and hence it is normal in A because H JA. This implies that O,(A) > 1,
a contradiction.

Now we are ready to finish the proof. Set N = O,{A). Suppose N < P.
Applying Propositions 2.2 and 2.3, the quotient graph Xy of X relative to
N is a cubic graph of order 8p* with ¢t = |P|/|N| > 1. Furthermore, A/N
is an edge-transitive automorphism group of Xy. By Claim, Aut (Xy) has
a normal p-subgroup, say T/N. It is easy to see that P/N is also a Sylow
p-subgroup of Aut (Xx) and so T/N < P/N. Consequently, T/N < A/N.
This is contrary to the fact that N = O,(4). Thus, N = P, namely, P< A.
O

Lemma 2.5 Let G = GL(2,p) where p is an odd prime. Then G has no

subgroup isomorphic to A,.

Proof Suppose to the contrary that L is a subgroup of G isomorphic
to As. By elementary group theory, H = SL(2,p) is a subgroup of G =
GL(2,p) of index 2, and SL(2,p) has a unique involution. As L = A4 has
three involutions, L is not contained in H. It follows that LH = G, and
hence L N H is a subgroup of L of index 2. However, by elementary group
theory, A4 has no subgroups of index 2, a contradiction. O
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Proof of Theorem 1.1 Suppose to the contrary that X is a cubic semisym-
metric graph of order 8p* with t = 1 or 2. By (5, pp.282-290], there exists
no cubic semisymmetric graph of order 8p* with p < 7. In what follows,
assume that p > 7. Let A = Aut(X) and let P be a Sylow p-subgroup of
A. By Lemma 2.4, P is normal in A. By Proposition 2.3, P is semi-regular,
and the quotient graph Xp of X relative to P is a cubic graph with A/P
as an edge-transitive group of automorphisms. It follows that Xp = Q3.
Note that Aut(Q3) = S4 x Zg, and the subgroup of Aut (Q3) fixing each
partition set of Q3 setwise is isomorphic to S4. Hence, A/P < S4. Since
A/ P is edge-transitive, we may take B/P < A/P such that B/P = A,.
Let C = Cg(P). Then P<C. If P=C, then Ay = B/P = B/C <
Aut (P). As [P| =p' witht =1 or 2, one has P & Z, or Z, X Z,,. For the
former, we have Aut(P) & Zpe-1(,_1). This is clearly impossible because
Aq < Aut(P). For the latter, Aut (P) = GL(2,p). This is also impossible
by Lemma 2.5. Therefore, we must have C > P. Take a minimal normal
subgroup of B/P contained in C/P, say M/P. Since B/P = Ay, one has
M/P =7y X Zy. Since M < C, one has M = P x Q, where Q = Zy x Z,
is a Sylow 2-subgroup of M. Clearly, M is ahelian. Furthermore, M acts
regularly on each partition set of X. By Proposition 2.1, X is vertex-

transitive, a contradiction. 0
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