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Abstract

For two vertices u and v in a strong digraph D, the strong distance
between u and v is the minimum number of arcs of a strong subdigraph
of D containing u and v. The strong eccentricity of a vertex v of
D is the strong distance between v and a vertex farthest from wv.
The strong diameter (strong radius) of D is the maximum (minimum)
strong eccentricity among all vertices of D. The lower orientable strong
diameter (lower orientable strong radius), sdiam(G) (srad(G)), of a
2-edge-connected graph G is the minimum strong diameter (minimum
strong radius) over all strong orientations of G. In this paper, a
conjecture of Chen and Guo is disproved by proving sdiam(K3 D K3) =
sdiam(K;3 0K,) = 5, sdiam(K,. O P,) is determined, sdiam(G) and
srad(G) for cycle vertex multiplications are computed, and some results
concerning sdiam(G) are described.

Keywords: Lower orientable strong diameter, Lower orientable strong
radius, Cartesian product, Cycle vertex multiplication.

1 Introduction

Let G be a finite undirected simple graph with vertex set V(G) and
edge set E(G). For v € V(G), the eccentricity of v is eg(v) = max

ARS COMBINATORIA 133(2017), pp. 385-400



{d¢(v,z) |z € V(G)}, where dg(v,z) denotes the length of a shortest (v,z)-
path in G. The diameter of G is d(G) = max {eg(v)|v € V(G)} and the
radius of G is (G) = min {ec(v) |v € V(G)}.

Let D be a directed graph (digraph) with vertex set V(D) and arc set
A(D) which has no loops and no two of its arcs have same tail and same head.
The distance dp(u,v) from a vertex u to a vertex v in D is the length of
a shortest directed (u,v)-path in D. Since the distance dp does not satisfy
the symmetric property, the distance dp is not a metric. For v € V(D), the
notions ep(v), d(D) and r(D) are defined as in the undirected graph. The
underlying graph G(D) of a digraph D is arising when directions of arcs are
ignored.

A vertex v is reachable from a vertex u of D if there is a directed path
in D from u to v. A digraph D is strongly connected or strong if any pair
of vertices in D are mutually reachable in D. The underlying graph G(D)
of a strong digraph D is necessarily 2-edge-connected.

As the distance dg(u,v) between two vertices u and v in a connected
graph G is the length of a shortest (u,v)-path in G, the distance dg(u,v)
is the minimum number of edges in a connected subgraph of G containing
v and v. This equivalent formulation of the distance dg was extended hy
Chartrand, Erwin, Raines, and Zhang [2] to strongly connected digraphs, in
particular to strong oriented graphs.

The strong distance, sdp(u,v), between u and v is defined, in (2], as the
minimum number of arcs of a strong subdigraph of D containing u and wv.
The strong distance sdp is a metric on V(D).

The strong eccentricity of a vertex v in D is sep(v)
max {sdp(v,z) |z € V(D)}. The strong diameter of D is sdiam(D)
max {sep(v)|v € V(D)} and the strong radius of D is srad(D)
min {sep(v){v € V(D)}.

An orientation of a graph G is a digraph D obtained from G by assigning
a direction to each of its edges. For a 2-edge-connected graph G, let 2(G)
denote the set of all strong orientations of G; the lower orientable strong
diameter of G is sdiam(G) = min{sdiam(D) : D € 2(G)}; the lower
orientable strong radius of G is srad(G) = min{srad(D) : D € 2(G)}
([13]); and the orientation number of G is d(G) = min {d(D)|D € 2(G)}
((8)).

Notations and terminology not described here can be seen in [1].

For X C V(D), the subdigraph of D induced by X is denoted by D[X].
The size of D is the number of arcs in D, and v — v means (u,v) is an arc
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in D.

In this paper, we concentrate on sdiam(G) and srad(G).

2 Lower orientable strong diameter of cartesian
product of graphs

In this section, we consider lower orientable strong diameter of cartesian
product of graphs.

Let G be a 2-edge-connected graph. Juan, Huang and Sun [5] proved that
sdiam(G) > 2d(G), and Chen, Guo and Zhai (4] proved that sdiam(G) <
2d(G). Consequently, if d(G) = d(G), then sdiam(G) = 2d(G). Hence to
compute sdiam(G), it is enough to consider G with d(G) > d(G).

The cartesian product GOH of two graphs G and H has V(GOH)
= V(G) x V(H), and two vertices (uj,uz) and (v;,v2) of GOH are

adjacent if and only if either u; = v; and wov, € E(H) or ug = v
and u vy € E(G).
For the n-dimensional hypercube @, = Qn-;0K;, McCanna [6]

evaluated d(Q,) as follows: d(Q2) = 3, d(Q3) = 5 and d(Qn) = n
for n > 4. As d(Qn) = n, sdiam(Qn) = 2n for n > 4 ([12], see
Theorem 3). Juan, Huang and Sun [5] proved that srad(G) > 2r(G).
Hence, 2r(G) < srad(G) < sdiam(G) < 2d(G). Since 7(Q.) = n,
srad(Q,) = 2n for n > 4 ([12], see Theorem 1).

For the complete graph K, let V(K,) = {1,2,...,v}; for the path P,
on v vertices, let V(P,) = {1,2,...,v} and E(P,) = {{i,i+1} : i €
{1,2,...,v —1}}; and for the cycle C, on v vertices, let V(C,) = V(P,)
and E(C,) = E(P,) U {{v1}}.

Theorem 2.1 Let G be a graph with vertices v and v such that dg(u,v) =
d(G) and between u and v there is a unique path in G. Then, for any integer
m > 3, sdiam(K,,0G) > 2d(G) +3.

Proof. Let P : z1z2 ... 2 be the unique (u,v)-path in G, where u = z;,
v=u1x¢ and k = d(G)+1. As d(K,, OG) = d(G) +1, sdiam(K,,OG) >
2(d(G) +1).

Suppose sdiam (K, O0G) = 2(d(G) + 1), then there exist an orientation
D of K,,0G with sdiam(D) = 2(d(G) +1). Let ¢,5 € {1,2,...,m} and
i # j. Then dk,oc((i,u),(j,v)) = d(G)+1 and there is a unique 2-
edge-connected subgraph with 2(d(G) + 1) edges containing (i,u) and (j,v)
in K,, 0G, namely, the cycle Ci; : (i,z1) (4, z2) ... (i, zx—1) (i,2k)
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,zx) (Grzk-1) ... (Gyz2) (Gyx1) (,x1). Ci; must be a directed cycle
in D. Without loss of generality assume that the orientation of Cy2 in D is

(1,171) — (1,1132) - - = (l,xk_l) — (l,a:k) - (2,.1:k) — (21-73!:—1)
= - = (2,z2) = (2,z1) — (1,z;). Consequently, the orientation
of Cl,a in D is (1,221) — (1,2:2) = - = (l,l‘k_.l) — (l,zk) -
B,zx) = (B,zk—1) = -+ = (8,z2) = (3,z;) — (1,z1). Now the
orientation of Cz3 in D is not a directed cycle, a contradiction. Hence,
sdiam(K,, O G) > 2(d(G) +1). [ |

In [7], Koh and Tay proved that for m > 2 and n > 2,

n+2  if (m,n) € {(2,3),(2,5),(3,2)},

d( aFr,) =
(K O Fr) {n+1 otherwise.

Clearly, sdiam(K,; 0 P;) = 4. In 3], Chen and Guo proved that, for m > 3,
sdiam(K,, O P,) = 5. We have the following.

Theorem 2.2 For positive integers m > 3 and n > 3, sdiam(K,,OF,) =
2n + 1.

Proof. By Theorem 2.1, sdian(K,OPF,) > 2d(P,)+3 = 2n+ 1. To
complete the proof, it suffices to provide an orientation D of K,, OP, with
sdiam(D) < 2n + 1. We consider two cases.
Case 1. m = 3.

Define an orientation D of K30O P, as follows:

(1,1) = (1,2) =» (1,3) = --- = (1,n),

(2,1) = (2,2) = (2,3) - -+ = (2,n),

(3,1) « (3,2) « (3,3) « .-+ +(3,n),

(3,1) = (1,1) = (2,1) and (3,1) = (2,1),

for 2<5<n-1, (1,3) > (2,3) » 34) = (L), (+)

(3,n) « (1,n) « (2,n) and (3,n) « (2,n).
Claim 1. For iy, € {1,2,3} and ji,j, € {2,3,4,...,n—1} with j; < jo,
sdp((i1,71), (i2,J2)) < 2n.

Claim 1 follows from the strong subdigraph [(1,71) = (2,71) = (3,51) —
(I!Jl)] U [(1)]2) - (2v.72) - (3v.72) - (1).72)] U [(2’.71) - (2’jl +1) g

i (27.72)] U [(3’j2) - (3:j2_ 1) - - 2 (3)jl)] in D.

Claim 2. For jji,j2 € {1,2,...,n}, sep((3,5)) < 2n,
SdD((lajl)9(1)j2)) < 2n and SdD((2’jl)’(2vj2)) < 2n.
Claim 2 follows from the directed 2n-cycles (1,1) — (1,2) — --- —

(n) - Bn) » Bn-1) » 3,n-2) = --- = (3,1) = (1,1) and
2,1) > (2,2) = - = (2,n) = 3,n) = Bn—-1) = 3,n—-2) = ---
(3,1) - (2,1) in D.
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Claim 3. sep((1,1)) < 2n+1.

Claim 3 follows from the directed (2n+1)-cycle (1,1) = (2,1) — (2,2) —
o= (2,n) = 3,n) - 3,n—1) = - = (3,1) = (1,1) in D and from
sdp((1,71),(1,72)) < 2n for j1,j2 € {1,2,...,n}.

Claim 4. sep((1,n)) € 2n+1.

Claim 4 follows from the directed (2n+1)-cycle (2,1) = (2,2) — (2,3) —
cv = (2,m) = (L,n) = (3,n) = 3,n—-1) =» (3,n-2) = --- = (3,1) =
(2,1) in D and from sdp((1,71),(1,72)) < 2n for ji,j2 € {1,2,...,n}.
Claim 5. For j € {2,3,...,n -1}, sdp((2,1),(1,5)) £ 2n.

Claim 5 follows from the strong subdigraph [(3,5) = (3,7 -1) = --- =
3,1) = (2,1) =» (2,2) - --- = (2,7)] U [(1,5) = (2,7) = 3,5) —
(1,7)] in D.

Claim 6. For j € {2,3,...,n-1}, sdp((2,n),(1,7)) < 2n.

Claim 6 follows from the strong subdigraph [(2,7) — (2,j+1) = -+ —
(2,77.) —+ (Srn) - (3’7‘_1) — e = (3’.7)] U [(1:.7) - (2’.7) - (3r.7) -
(1,7)] in D.

By Claims 1-6 and by (%), sdiam(D) < 2n+ 1.

Case 2. m > 4.

In what follows, we consider the orientation D of K,, O P, obtained by
Koh and Tay in Proposition 1 of [7]. It is known that d(K,) is 2 if v # 4 and
itis 3 if v = 4. If v = 4, consider the orientation 1 - 2 - 3 - 4 - 1,
3 —» 1 and 2 — 4 of K4. Observe that in this orientation of K4, d(i,j) < 2
if (i,7) # (4,3); and upto isomorphism, K4 has a unique strong orientation.
Let A € 2(K;n-1) such that d(A) is 2 if m # 5 anditis 3 if m = §;
and let B € 2(K,,) such that d(B) is 2 if m # 4 anditis 3 if m = 4.
Define D as follows:

D, = D[{1,2,...,m -1} x {1}] = 4;

for i € {1,2,...,m -1}, (m,1) = (i,1);

for j € {2,3,...,n—1}, D; = D{1,2,...,m} x {j}] = B;

D, = D[{1,2,...,m -1} x {n}] = A, the converse digraph of A;

for i € {1,2,...,m -1}, (i,n) = (m,n);

for i € {1,2,...,m—1}, (1) = (¢,2) = --- = (i,n).

(m,n) - (m,n—-1) » --. = (m,1).

Claim 1. For j € {1,2,...,n}, sep((m,j)) < 2n.
Claim 2. For i € {1,2,...,m -1} and 71,52 € {1,2,...,n} with j; # 72,
sdp((4,51), (4, J2)) < 2n.

Claims 1 and 2 follow from the set {(¢,1) — (¢,2) - --- = (i,n) —
(myn) = (myn-1) = --- = (m,1) = (4,1) : i€ {1,2,...,m—1}} of
directed 2n-cycles in D.

Claim 3. For iy,i € {1,2,...,m — 1} with 4; # i and j € {1,2,...,n},
sdp((i1,7), (2,7)) < 4.
If neither m = 5 and j € {1,n} nor m =4 and j € {2,3,...,n—1},
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then Claim 3 follows, since the vertices (i;,7) and (i2,7) belong to a directed
cycle of length at most 4 in D;. If either m = 5 and j € {1,n} or m = 4
and j € {2,83,...,n— 1}, then since the strong orientation of K, contains a
directed 4-cycle, the vertices (i1,j) and (iz,j) belong to a directed cycle of
length at most 4 in Dj;.
Claim 4. For i1,i2 € {1,2,...,m — 1} with iy # i3 and j1,j2 €
{2y3’--~7n_ 1} with Jt # J2, SdD((ihjl)9(i2vj2)) < 2n.

Without loss of generality assume that % < jo. For m # 4, Claim 4

(

follows from the closed directed trail (i1,j1) P (i2,51) = ({2,751 +1) = -+ =
(i2,72) @ (m,52) = (m,j2~1) = -+~ = (m, 1) & (i2,51) in D of length at
most 2+(n—3)+2+(n—-3)+2 = 2n, where P, and R are, respectively,

directed ((i1,71), (i2,71)), ((2,32), (m, 52)) and ((m, 1), (i1,51)) paths of
length at most 2 in Dj, Dj, and Dj;, . Hence, assume that m = 4. In the

above closed directed trail, if (i1,72) = (1,2), take ?: 1,751) = (2,57),
3 @) = () and B : (45) - (La) if (i) = (1,3),
take B (L) = (21) = B.d1), @ (B72) = (4,42) and
(4sjl) — (lsjl); if (il)i2) = (271)v take : (2!.71) - (3’.71) — (lajl)a

D (L) = (272) = @d2) and Bt &) = (L) = (21 if
(i1,i2) = (2,3), take P : (2,51) = (3,71), Q: (3,72) — (4,52) and B :
@) > (Li) = @) if (i1,42) = (3,1), take P : (3,51) - (171),

t (L) = (2,52) = (4,42) and K : (4,51) = (1,51) = (2,51) =
1) i (i1,32) = (3,2), take P (3,1) = (Li) = (2d1),
2,72) = (4,52) and B: (4,51) = (L) = (2,51) - (3,71)-

Claim 5. For 41,43 € {1,2,...,m—1} with 4; # i3 and j € {2,3,...,n-1},
SdD((il) 1),(i2,j)) <2n+1.

For m # 5, Claim 5 follows from the closed directed trail
(il’l) (7'211) - (1'2»2) - (1;2,])6("1,]) — (m7j— 1) - =
(m,1) = (i1,1) in D of length at most 2+ (R —2) +2+(n-2)+1 =
2n + 1, where and are, respectively, directed ((¢4,1),(é2,1)) and
((32,7), (m, _%2 paths of length at most 2 in D; and Dj;. Note that for
m = 4, is a directed ((i2,7),(4,7))-path of length at most 2 in
D;. Hence, assume that m = 5. If (i1,i2) # (4,3), then —}3 is a
directed ((i1,1),(é2,1)) -path of length at most 2 in D;. So assume that
(1,%2) = (4,3). Consider the closed directed trail (4,1) = (4,2) = --- —
@HPGEHBG.G) = Gri-1) = - = (5,1) = (4,1) in D of length
mM-2)+2+2+(n—-2)+1 = 2n+1, where and are, respectively,
directed ((4,7),(3,7)) and ((8,7),(5,7)) paths of length at most 2 in D;.
Claim 6. For 11,43 € {1,2,...,m—1} with 4; # i and j € {2,3,...,n-1},
sdp((i1,7), (i2,n)) < 2n+1.
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For m # 4, Claim 6 follows from the closed directed trail
(i1,9) P (i,5) = (i, +1) = -+ = (iz,n) > (m,n) = (Mmyn—1) —
coo = (my3) @ (i1,7) in D of length at most 2+ (n—2)+1+(n—-2)+2 =
2n + 1, where and are, respectively, directed ((¢1,7),(%2,7)) and
((m, 5), (41,5)) paths of length at most 2 in D;. Hence, assume that m = 4.
If 7 # 3, then and are, respectively, directed ((i1,7), (i2,7)) and
((4,7), (i1,7)) paths of length at most 2 in D;. So, assume that i; = 3.
If i2 = 1, then and 3 are, respectively, directed ((3,7),(1,7)) and
((4,3), (3,7)) pathsoflength at most 1 and 3 in D;. So, assume that iz = 2.
Now, consider the strong subdigraph [(3,7) — (1,7) — (2,7) = 3,7)] U
[(2,5) = (2,5+1) = - = (2,n) = (4,n) = 4,n-1) = --- = (4,7) =
(1,7)] in D ofsize 3+ (n—-2)+1+(n—-2)+1 = 2n+1.

Claim 7. For i1,i € {1,2,...,m — 1} with ¢; # 43, sdp((¢1,1),(i2,n)) <
2n + 1.

If (¢1,1) — (i2,1) is in D, then consider the directed (2n + 1)-cycle
(il,l) — (iz,l) — (i2,2) - - = ('iz,n) - (m,n) b d (m,n— 1) -

+ = (m,1) = (41,1) in D; otherwise (i1,1) + (i2,1) is in D, and
hence (iy,m) — (iz,n) is in D, now consider the directed (2n + 1)-cycle
(1,1) = (61,2) = -+ = (i1,m) = (ig,n) = (myn) = (myn-—-1) -

- = (m,1) = (i1,1) in D.

By Claims 1-7, sdiam(D) < 2n +1.

This completes the proof. ]

In (7], Koh and Tay proved that for m > 4 and k > 1, d(KmOCary1) =
k + 2. We have:

Corollary 2.1 For m > 3 and k 2 1, 2k+ 3 < sdiam(K,; DCayq) <
2k + 4.

Proof. By Thoerem 2.1, sdiam(K,, O0Ca41) > 2k +3. Upper bound follows
from Propositions 7 and 8 in [7]. ]

In [3], Chen and Guo proved that sdiam(K.OK,) = 5 for n > 3,
5 £ sdiam(K,DOK,) < 6 for 3 < m < n, and conjectured that
sdiem(K,,OK,) = 6 for 3 < m < n. We disprove this conjecture for
the two pairs (m,n) = (3,3) and (3,4). The digraph D; in Figure 1 is an
orientation of K30 K3; the directed 5-cycles

(1,1) - (1,2) - (2,2) - (3,2) = (3,1) = (1,1),

(1,2) » (2,2) = (3,2) = (3,3) = (1,3) = (1,2),

1,2) - (2,2) = (2,1) - (2,3) - (1,3) = (1,2),

1,2) - (3,2) - (31 = (33 — (1,L3) = (1,2),

2,1) = (2,3) - (2,2) - (3,2) — (3,1) = (2,1), and
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(2,1) = (2,3) = (3,3) = (,3) —» (1,1) = (2,1)
in D; shows that sdiam(D;) < 5, and hence sdiam(K30OK3) = 5. The
digraph D; in Figure 2 is an orientation of K30 Kj; the directed 5-cycles
(1,1) (1,2) (2,2) (2,4) (1,4) (1,1),

— — — — —
1,1 - (1,2) - (3,2) —» (3,3) — (1,3) —» (1,1),
(1,2) = (3,2) = (3,1) = (3,3) = (1,3) = (1,2),
L,2) = (2,2) = (2,1) = (2,3) = (1,3) = (1,2),
1,1) - (2,1) - (2,3) = (2,4) - (1,4) - (1,1),
(1,1) = (3,1) = (3,4) — (2,4) = (1,4) = (L,1),
(1L,2) - (2,2) - (2,9 - (1,4) = (1,3) = (1,2),
13 — (1,1) = (3,1) - (3,4) - (1,49) = (1,3),
(1,4) = (1,2) —» (3,2) — (8,3) = (3,4) — (1,4),
(2,1) = (2,3) = (3,3) = (3,4) = (2,4) = (2,1),
(2,1) = (2,3) = (2,2) - (3,2) = (3,1) = (2,1),
(2,2) = (3,2) = (3,4) = (L9 = (1,2) = (2,2),
2,2) - (3,2) =» (3,3) = (1,3) — (1,2) = (2,2), and
(2,4) = (1L,4) - (L,2) = (3,2) = (3,4) — (2,4),

in Dy shows that sdiam(D2) < 5, and hence sdiam(KsOKy) = 5.

BN
<

Figure. 1. An orientation D; of K30 Kj.
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Figure. 2. An orientation Dy of K30 Kj.

Theorem 2.3 sdiam(K3 O K3) = 5 = sdiam(K3 O Ky).

3 Lower orientable strong diameter and radius
for cycle vertex multiplications

Let G be a given connected graph of order n with vertex set
V(G) = {v1,ve,...,un}. For any sequence of n positive integers s;, let
G(s1, 82,...,5n) denote the graph with vertex set V* and edge set E* such

n
that V* = |J Vi, where V,’s are pairwise disjoint sets with |V;| = s;,
i=1
i € {1,2,...,n}, and for any two distinct vertices z,y in V*, zy € E*
if and only if z € V; and y € V; for some 4,7 € {1,2,...,n} with
i # j such that v;u; € E(G). Call the graph G(sy, s2,...,sn) a G -vertex
multiplication. For s = 1,2,..., denote G(s,s,...,s) by G).

In this section, we consider the lower orientable strong diameter and the
lower orientable strong radius for cycle vertex multiplications.

For the cycle Cy, on n vertices, let V(Cy) = {1,2,...,n} and E(C,) =
{{;,i +1} : 7« € {1,2,...,n — 1}} U {n,1}. Write, for i € {1,2,...,n},
Vi={(mi)lp € {1,2,...,s:}} and call (p,i) the p-th vertex in Vi.

In [9], Koh and Tay proved that for n > 5, J(CS.”) =dCc®)+1. In
[10], Ng and Koh proved that:
o for 6 <n <9 dCP) =dcCP)+1,
o for n > 10 and s; > 3, (17‘(01(;")) = d(C,(.s‘)),
e for n > 6, d(ctV) = d(ciM).
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Consequently, for n > 10 and s; > 3, sdiam(C,(f")) = 2d(C,(,")) and for

n > 6, sdiam(C¥) = 2d(C"). It is known from [11] that d(C) =
7oy -
dCWy = 3.

Theorem 3.1 sdiam(Cés) ) =6, sdiam(Cés)) = 8 and sdiam(Cs(,a) ) = 8.

Proof. Clearly, sdiam(Cés)) > 2d(C§3)) = 6. To prove sdiam(Cés)) < 8,
we have to obtain an orientation D of Céa) such that sdiam(D) = 6. Orient
the edges of Céa) as follows:

o (i,7) = (4,5 +1) if i € {1,2,3} and 5 € {1,2,...,6};

o (k,j+1) > (i,7) if i,k € {1,2,3}, k#1 and j € {1,2,...,6}.

Let Dg be the resulting digraph. As Ds is vertex-transitive, we only check
that sep,((1,1)) < 6. The existence of the directed 6-cycles (1,1) —
(1,2) -» (1,3) = (1,4) —» (1,5) — (1,6) = (1,1), (1,1) — (3,6) —
(2,5 — (3,4) = (2,3) = (3,2) =» (1,1), (,1) = (2,6) — (3,5) —
(2,4) = (3,3) = (2,2) - (1,1) and (1,1) = (1,2) = (2,1) = (2,2) >
3,1) = (3,2) — (1,1), in Dg, shows that sep,((1,1)) < 6.

Clearly, sdiam(C{®) > 2d(CY) = 8. To show sdiam(C{¥) < 8, we
have to find an orientation D of Cés) such that sdiam(D) = 8. Orient the

edges of C’és) as follows:

o (i,7) = (4,5 +1) if 2 € {1,2,3} and j € {1,2,...,8};

o (k,j+1) = (i,7) if i,k € {1,2,3}, k# i and j € {1,2,...,8}.

Let Dg bhe the resulting digraph. As Djg is vertex-transitive, we only check
that sepy((1,1)) < 8. The existence of the directed 8-cycles (1,1) —
(1,2) - (1,3) —» (1,4) - (1,5) — (1,6) — (1,7) = (1,8) — (1,1),
(1,1) — (3,8) — (2,7) — (3,6) = (2,5) = (3,4) = (2,3) — (3,2) —»
(L1, (1,1) - (2,8 — (3,7) — (2,6) = (3,5 — (2,4) — (3,3) —
(2,2) — (1,1) and the directed 6-cycle (1,1) — (1,2) = (2,1) = (2,2) —
(3,1) = (3,2) — (1,1), in Dg, shows that sep,((1,1)) < 8.

Clearly, sdiam(C$®Y) > 2d(C{¥) = 8. For sdiam(C§>) < 8, we exhibit
below an orientation D of Céa) such that sdiam(D) = 8. Orient the edges
of Cés) as follows:

(i) for i € {1,3,5,7},
{(,i+1),3,i+ 1)} = (1,4) = (2,i +1),
(2,4+1) = (2,7) = {(1,:+1),(3,: + 1)},
{(1,i+1),(3,i + 1)} — (3,3) = (2,i+1);
(i) for i € {2,4,6},
(3,i+1) = (i) = {(1,i+1),(2,:+ 1)},
(1,i+1) = (2,9) = {(2,i+1),(3,i + 1)},
{(1,i4+1),2,i+ 1)} = (3,%) = (3, +1);
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(24) {(1,1),(2,1)} = (1,9) — (3,1),
(1,1) = (2,9 — {(2,1),3, 1)},
(3,1) = (3,9) = {(1,1),(2, )}
(iv) 3,8) = (1,9) — {(1,8),(2,8)},
{(2,8),(3,8)} = (2,9) — (1,8),
{(1,8),(2,8)} = (3,9) — (3,8).

Let Dg be the resulting digraph.

For i € {1,3,5,7}, the strong subdigraph (2,i+1) — (2,i) & (2,i) —
(1,i4+1) = (1,79 = (2,i+1) & (2,%) = (3,i+1) = (3,%) = (2,i+1)
with 7 arcs, for i € {2,4,6}, the directed 6-cycle (2,i4+1) — (3,i) —
3,i+1) = (1,9 = (1,i+1) = (2,9 — (2,7+ 1), the directed 6-
cycle (1,1) = (2,9) — (2,1) - (1,9) = (3,1) = (3,9) — (1,1),
and the directed 6-cycle (2,8) — (2,9) — (1,8) — (3,9) — (3,8) —
(1,9) — (2,8) in Dy shows that sdp,(u,v) < 7 for uv,v € V; U Vi,
where ¢ € {1,2,...,9} and Vou1 = V1.

The existence of the following strong subdigraphs, each with at most 8
arcs, in Dy :
for ¢ € {1,3},

(1,i) = (2,i+1) = (2,i+2) = (1,i+3) = (1,i+4) = (3,i+3) —
1,:+2) = 3,i+1) —» (1,7, L) - (2,e4+1) = (2,i+2) -
(1,i+3) = (2,i+4) —» (3,1+3) = (1,i+2) - B,i+1) = (1,9),

(1,9 = (2i+1) = B,i+2) - (1,i+1) = (1,3) & (3i+2) —
(2,i+3) = (3,i+4) > (1,i+3) = (3,i+2),

(2,d) = (1,i+1) = (2,i+2) = (1,i+3) » (1, +4) = (3,1 +3) —
(Li+2) - (2,:+1) = (2,4), (2,3) - (3i+1) = (3,i+2) —
2,i+3) = (2,i+4) = (3,i+3) = (1,i+2) = (2,i +1) = (2,4),

(2,d) = (3,i+1) = (3,i+2) = (2, +3) - (3,1 +4) = (1,i+3) =
(1,i+2) = (2,i+1) = (2,1),

Bi) = (2i+1) = (2i+2) = Bi+1) = (3,) @ (2i+2) —
(Li+3) = (Li+4d) > (2i+3) = (2i+2), (39 = (2i+1) =
(3,i+2) = (2,i+3) = (2,i+4) = (3,i+3) = (1,i+2) - (3,i+1) — (3,3),

3,9) = (2,i+1) — 3,i+2) —» (L,i+1) - (3,2) & (3,i+2) —
(2,i+3) = (3,i+4) = (1,i +3) = (3,i+2);
for i € {2,4},

L)) » (2,i+1) = (1,:4+2) - 3,i+1) = (1,7) & (1,i+2) -
(2,i+3) - (1,i+4) - (3,i+3) = (1,i+2), 1,73) » (1,i+1) -
(2,i+2) = (3,i+3) = (2,i+4) — (2,143} - (3,i+2) — (3,i+1) — (1,9),

(L,i) = (L,i+1) = (2,i+2) = (2,1 +3) - 3,i+4) = (1,i+3) =
3,i4+2) = (3,i+1) — (1,4),

(2,4) > (2i+1) = (1,i+2) = (2,i+3) = (1,i+4) = (1,i+3) -
(3,i+2) = (L,i+1) = (2,9), (2,1) » (Bi+1l) = (2,i4+2) -
(3,i+3) = (2,i+4) = (2,i+3) = 3,i+2) - (L,i+1) = (2,9,
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(2,i) = (3,i+1) = (2,i+2) = (2,i+3) = (3,i+4) > (3,i+3) -
(Li+2) = (1, +1) = (2,9),

(Bi) o 3i+1) = (2i+2) o (2i+1) > 3,9 @ (2i+2) -
(2i+3) = (L,i+4) = (1,i+3) = (2,i+2), (33 = (3,i+1) >
(2,i42) = (3,i+3) = (2,i+4) = (2,i+3) — (3,i+2) — (1,i+1) — (3,7),

3.3d) = (3i+1) = (2,i+2) - (2,i +3) = (3,i+4) —» (3,i+3) —
(1,i4+2) = (L,i+1) = (3,9);
for ¢ = 5,

(1,5) = (2,6) = (2,7) — (3,8) — (1,9) = (1,8) = (3,7) = (1,6) —
(1,5), (1,5) = (2,6) = (3,7) — (2,8) = (2,9) — (1,8) = (1,7) —
(3,6) — (1,5), (1,5) — (2,6) — (2,7) = (1,8 — (3,9) — (3,8) —
(1,7) = (3,6) = (1,5),

(2,5) —» (1,6) = (2,7) — (3,8) = (1,9) — (1,8) = (1,7) — (2,6) —
(2,5),  (2,5) = (3,6) = (3,7) = (2,8) = (2,9) = (1,8) — (1,7) —
(2,6) — (2,5), (2,5) — (3,6) = (3,7) = (2,8 — (3,9) — (3,8) —
(1,7) = (2,6) = (2,5),

(3,5) = (2,6) = (2,7) — (3,8) — (1,9) — (1,8) = (1,7) — (3,6) —
(3,5), (3,5) — (2,6) — (2,7 — (3,8) — (2,9) — (1,8 — (3,7) —
(1,6) — (3,5), (3,5) = (2,6) —» (3,7) — (2,8 — (3,9) — (3,8) —»
(1,7) — (3,6) = (3,5);
for i« = 6,

(1,6) - (1,7) = (2,8) — (3,9) —» (1,1) = (1,9) - (1,8) — (3,7) —
(1,6), (1,6) — (2,7) — (3,8) = (2,9) — (2,1) = (1,9) — (1,8) —
3,7 = (1,6), (1,6) = (1,7) — (2,8) — (2,9) — (3,1) — (3,9) —
(3,8) - (3,7 — (1,6),

(2,6) = (3,7) = (2,8) = (3,9) — (1,1) —» (1,9) - (1,8) — (1,7) —
(2,6), (2,6) = (2,7) — (3,8) = (2,9) — (2,1) = (1,9) — (1,8) —
1,7) — (2,6), (2,6) —» (2,7) - (3,8) — (2,9) - (3,1) = (3,9) —
(3,8) = (1,7) — (2,6),

(3,6) - (3,77 —» (2,8 — (3,9 — (L,L1) = (1,9) - (1,8 -
(1,7 — (3,6), (3,8) = (3,7) — (2,8 = (2,7) - (3,6) @
(2,8 = (2,9) = (2,1) - (1,9) — (2,8), 3,6) = (3,7) — (2,8) —
(2,9) = (3,1) = (3,9) — (3,8) = (1,7) — (3,6);
for i =7,

(1,7) - (2,8) — (2,9) — (2,1) —» (1,2) = (1,1) = (1,9) = (1,8) —
1,7), 1,7 — (2,8) —» (3,9) = (1,1) = (2,2) = (2,1) = (1,9) -
(1,8 - (1,7, (L7 = (2,8) = (2,9 - (2,1) - (3,2) = (3,1) —
3,9) — (3,8) = (1,7),

(2,7) = (1,8) = (3,9) = (2,1) = (1,2) = (1,1) = (1,9) = (2,8) —
(2,7, 2,7 = (3,8 - (2,9) —» (3,1) = (2,2) = (2,1) = (1,9 —
(2,8) — (2,7), 2,7 - (1,8 — (3,9 - (2,1) —» (3,2) » (1,1) —
(1,9 = (2,8) = (2,7),

3,7) = (2,8 = (2,9) = (2,1) » (1,2) — (3,1) — (3,9) — (3,8) —
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3,7, 3,7 — (2,8 — (3,9) = (1,1) - (2,2) - (2,1) - (1,9) —
(1,8) — (3,7), (3,7 = (2,8) = (2,9) = (2,1) = (3,2) - (3,1) —
3,9) = (8,8) = (3,7);

for ¢ = 8,

(1,8) = (3,9) —» (2,1) = (1,2) = (1,3) = (3,2) = (1,1) =
(1,9 — (1,8), (1,8) — (3,9 — (2,1) - (1,2) - (2,3) = (3,2) —
(1,1) = (2,9) — (L,8), (1,8) — (3,9) — (2,1) — (3,2) — (38,3) —
(1,2) =» (1,1) = (1,9) — (1,8), (L,8) = (3,9) = (1,1) = (2,2) —
(2,1) - (1,9 = (1,8), (L,8) = (3,9) —» (L,1) = (1,9) = (1,8) &
(3,9) = (2,1) = (1,9) = (3,1) = (3,9),

(2,8) = (3,9) — (2,1) =» (1,2) —» (1,3) = (3,2) — (1,1) = (1,9) —
(2,8), (2,8) = (3,9 — (2,1) = (1,2) = (2,3) — (3,2) = (1,1) —
(1,9) - (2,8), (2,8) = (2,9 — (3,1) = (2,2) = (3,3) = (1,2) —
(1,1) = (1,9) — (2,8),

(3,8) = (2,9) = (2,1) = (1,2) = (1,3) = (3,2) = (3,1) = (3,9) -
(3, 8), (3,8) = (2,9) = (3,1) = (3,9) - (3,8) & (3,1) — (2,2) —
(2,3) = (3,2) = (3,1), 3,8) — (1,9) — (3,1) = (3,9) — (3,8) &
G = (22 - 33 - (L2 » G, (38 = (2,9 = (2,1) -
(1,9) = (3,1) = (3,9) = (3,8) & (3,9) — (1,1) = (1,9);
for i =9,

(L,9) - 3,1) = (2,2) = (2,3) - (1,49 - (3,3) - (1,2) —

(1,1) = (1,9), (1,9) = 3,1) = (2,2) = (3,3) - (2,4) - (2,3) —
(3,2) = (1,1) — (1,9), (1,9) - (3,1) = (2,2) = (2,1) —» (1,9) &
) = (2,3) = (3,4) — (1,3) = (2,2),
(2,9) - (3,1) - (2,2) - (2,3) - (1,4) = (1,3) = (3,2) —
) (2,9), (2,9 - (1) = (3,2) = (L1) = (2,9 @&
) 3,3) = (2,4) —» (2,3) = (3,2), (2,9 = (3,1) = (2,2) —
(3,4) = (3,3) = (1,2) = (1,1) = (2,9),

3,9 - (1,1) = (2,2) - (2,3) - (1,4) = (1,3) = (3,2) —
(3,1) — (3,9), 3,9 = (21) - (3,2) - (31) —» (3,9 &
(3,2) = (38,3) » (2,4) - (2,3) - (3,2) and 3,9 - (1,1) -
(2,2) = (2,3) = (3,4) - (3,3) = (1,2) - (8,1) = (3,9)
shows that sdp,(u,v) < 8 for u € V;, v € Vi U Viua U Vigy,
where i € {1,2,...,9}, and in suffix 8 +2 = 74+3 = 6+4 =
942 =843 =744 =2, 943 = 8+4 = 3, and 9+4 = 4.
Thus, for u,v € V(Dy), sdp,(u,v) < 8 and hence sdiam(Dyg) < 8.

This completes the proof. |
Theorem 3.2 For n > 2, sdiam(C;_(,i)_,_l) = 2n+1.

Proof. Suppose there is an orientation D of Cz(i)“ such that sdiam(D) <
2n. If, in D, (1,1) = {(1,2),(2,2)}, then as, dp((1,n+1),(1,1)) > =n,
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we have sdp((1,1),(1,n + 1)) > 2n, a contradiction. Also, if, in D,
{(1,2),(2,2)} — (1,1), then as, dp((1,1),(1,mn + 1)) > n, we have
sdp((1,1),(1,m + 1)) > 2n, a contradiction. Hence, by symmetry, assume
that, in D, (1,7) = (1,i+1) - (2,3) = (2,i +1) = (1,7) for all
i € {1,2,...,2n} andeither (1,2n+1) = (1,1) = (2,2n+1) = (2,1) —
(L2n+1) or I,2n+1) = (2,1) = (2,2n+1) = (1,1) = (1,2n+1).
Then, as dp((1,1),(2,n+ 1)) > n, we have sdp((1,1),(2,n+ 1)) > 2n, a
contradiction. Thus, sdiam(C’éiLl) 2 2n+1.

Now, orient the edges of Céf,)_,_l as follows:
@ 1,1) - (1,2) » (1,b3) » --- = (1,2n+1) — (1,1);
(@) (2,1) + (2,2) « (2,3) « -+ + (2,2n+1) « (2,1); and
(#8) (1,2) = (2,7+1) and (2,7) = (1,i+1), where ¢ € {1,2,...,2n+1}
and 2n+1)+1 = 1.
Let D be the resulting digraph.

By the nature of orientation, we compute strong eccentricity only for the
vertices (1,1) and (2,1) in V(D). The existence of the directed (2n + 1)-
cycles

1) -01,2- 13 == 1Q,2n+1) = (1,1),

1,1) - (2,2) - (1,3) > (1,4) = --- = (1,2n+1) = (1,1),

11y) - 12 - 5 Li-1) > (2,3 - (L,i+1) - (1,i+2) -

- (L2n+1) = (1,1), i € {3,4,...,2n -1},

L) ->01,2)>--- > 1Q,2rn-1) = (2,2n) - (1,2n+1) - (1,1),

®L1)—=1,2) > --- - (L,2n) = (2,2rn+1) - (1,1),
and the directed 4-cycle

(1,1) = (2,2) - (2,1) = (2,2rn+1) - (1,1),
in D, shows that sep((1,1)) < 2n+1.

Now the existence of the directed (2n + 1) -cycles

(2,1) « (2,2) « (2,3) &~ -+ « (2,2n+1) « (2,1),

(2,1) - (1,2) » (1,3) = (1,4) = --- = (1,2n+1) = (2,1),
and the directed 4-cycle

(2,1) - 2,2n+1) - (1,1) = (2,2) - (2,1),
in D, shows that sep((2,1)) < 2n+ 1.

Hence sdiam(D) < 2n +1. Consequently, sdiam(Cng) < 2n+1.

This completes the proof. ]

Recall that: Juan, Huang and Sun (5] proved that 2rad(G) < srad(G).
As rad(Qn) = n, srad(Qn) = 2n for n > 4 ({12], see Theorem 1).

Theorem 3.3 For each s; > 2 and n > 4,

n if n is even,

srad(c"(s"”"”’s"))z{n-l if n is odd.
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Proof. Clearly, srad(Cn(s1,52,...,5n)) = 2rad(Cn(s1,82,...,5:)) = 2|3].
To prove srad(Cn(s1,82,...,5,)) < 2| 5], weonly need to give an orientation
D of C,(s1,s3,...,5.) such that srad(D) = 2|2]. Orient the edges of
Cn(s1,82,...,8n) as follows:

() (1,1) = (1,2) = (1) - (4,2) =» (1,1) if i € {2,3,...,5} and
VA3 {2,3,...,82};

(i) for each i € {2,3,...,1%]}, (L)) = (Gi+1) — (2,9 if
je{1,2...,84}

(#4i) for each i € {|3)+2,[5][+3,...,n=2}, (1,i+1) = (j,%) = (2,i+1)
if je {1,2,...,3,‘};

() {(I,n) > (G,n-1) if je{1,2,...,s};

(w) (f,n=1) = (4,n) if i€{2,3,...,8,-1} and j € {2,3,...,8.};

(vi) (G,n) = (1,1) = (1,n) if j€{2,3,...,5.};

(vii) orient the remaining edges of C,(s1,s2,...,8,) arbitrarily.

Let D be the resulting digraph.

Claim. sep((1,1)) = 2|3].

The existence of

o theset {(1,1) - (1,2) = (5, 1) = (4,2) = (1,1) : i € {2,3,...,51} and
j€{2,3,...,52}} of directed 4 -cycles,

o for i € {2,3,...,|%]}, theset {(1,1) - (1,2) = (1,3) = -~ =
(Li) > (Gi+1) = (2,1) = (2i-1) > - = (2,2) = (1,1) : j €
{1,2,...,si41}} of directed (2:)-cycles,

o the set {(1,1) = (1,n) = (@(,n-1) = (G,n) = (1,1) : i €
{2,3,...,5.-1} and j € {2,3,...,5,}} of directed 4-cycles, and

o for i € {|3]+3,[3]+4,...,n—1}, the set {(1,1) = (1,n) —
ILn-1)>--21)->00i-1)—=>2,9) = (2,i+1) > - = (2,n) -
(1,1) : 5e{1,2,...,s:-1}} of directed (2n — 2i +4)-cycles in D proves the
claim.

This completes the proof. ]
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