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Abstract

A theta graph is the union of three internally disjoint paths that have
the same two distinct end vertices. We show that every graph of order
n > 12 and size at least max{[32£72], | 112=33 |} contains three disjoint
theta graphs. As a corollary, every graph of order n > 12 and size at least
max{[ 224727, | L2=33 |} contains three disjoint cycles of even length. The

lower bound on the size is sharp in general.
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1 Terminology and Introduction

In this paper, we only consider finite undirected graphs, without loops or multiple
edges. We use [1] for the notation and terminology not defined here. A theta
graph is the union of three internally disjoint paths that have the same two distinct
end vertices. Let n be a positive integer, let K, denote the complete graph of or-
der n and K| be the graph obtained by removing exactly one edge from K. For
a graph G, we denote its vertex set, edge set, minimum degree by V(G), E(G)
and 6(G), respectively. The order and size of a graph G, is defined by |V (G)| and
|E(G)|, respectively. A set of subgraphs is said to be vertex-disjoint or indepen-
dent, if no two of them have any common vertex in G, and we use disjoint to stand
for vertex-disjoint throughout this paper. If u is a vertex of G and H is either a
subgraph of G or a subset of V{(G), we define Ny (u) to be the set of neighbors
of u contained in H, and dy(u) = |Ng(u)|. For a subset U of V(G), G[U]
denotes the subgraph of G induced by U. In particular, we often let (U] stand for
G[U), when U = {zy,z2," - ,z:}, we may also use [z1,Z2," -+ ,Z¢] to denote
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[{z1,z2,- - ,x¢}]. Let S denote a subgraph of G, we write G 2 S, it means that
S is isomorphic to a subgraph of G, in particular, we use mS to represent a set of
m vertex-disjoint copies of S. Let V;, V5 be two disjoint subsets or subgraphs of
G, we use E(V}, V) to denote the set of edges in G with one end-vertex in V3,
while the other in V3, for simplicity, let E(x, V2) stand for E({z},V2), E(V},z)
for E(V}, {z}).respectively. A path of order n is denoted by P;,.

Corradi and Hajnal [3] proved the following well-known result on the exis-
tence of vertex-disjoint cycles in graphs.

Theorem 1.1 ([3]) Let k be a positive integer and G be a graph with order n >
3k. If 6(G) > 2k, then G contains k disjoint cycles.

Later, Wang [11] and independently Enomoto [5] proved a result stronger than
Theorem 1.1 as follows.

Theorem 1.2 ([11]) Let k be a positive integer and G be a graph with order n >
3k. Suppose for any pair of nonadjacent w and v in G, dg{u) + dg(v) > 4k -1,
then G contains k disjoint cycles.

Given a cycle C of a graph G, a chord of C is an edge of G — E (C) which
joins two vertices of C. A cycle is called a chorded cycle if it has at least one
chord. A chorded cycle is a simple example of a theta graph but, in general,
a theta graph need not be a chorded cycle. It is obvious that K is the theta
graph with minimum order and every theta graph contains a cycle of even length.
Pésa [10] proved that any graph with minimum degree at least three contains a
chorded cycle. Motivated by these results, Finkel et al. [6] and Chiba et al. [3]
obtained the following results analogous to Theorem 1.2, respectively.

Theorem 1.3 ([6]) If G is a graph of order n > 4k and §(G) 2> 3k, then G
contains k disjoint chorded cycles.

Theorem 1.4 ([3]) Let r.s be two nonnegative integers and let G be a graph with
order n > 3r + 4s. Suppose for any pair of nonadjacent v and v in G, dg(u) +
dg(v) 2 dr + 6s — 1, then G contains r + s disjoint cycles, such that s of them
are chorded cycles.

In particular, Kawarabayashi [9] considered the minimum degree to ensure
the existence of disjoint copies of K in a general graph G, which can be seen
the specified version of disjoint theta graphs.

Theorem 1.5 ([9]) Let k be a positive integer and G be a graph with order n >
4k. If 6 (G) = ['—'%5] then G contains k disjoint copies of K.

In this paper, we determine the edge number for a graph to contain three dis-
joint theta graphs. Our research is motivated by the following conjecture which
was proposed by Gao and Ji [7]. They verified Conjecture 1.6 for the case k = 2.
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Conjecture 1.6 ([7]) Let k > 2 be an integer. Every graph of order n and size at
least f(n,k) + 1 contains k disjoint theta graphs, when

4k—1) 3

f(n,k):max{( 9 +§(n-—4k,+1),

[2(k —1)(2k - 1) + glk —1)(n — 2k + 1)J }

Theorem 1.7 ([7]) Every graph of order n > 8 and size at least f(n) contains
two disjoint theta graphs, if

f(n) = { fgn;mJ gz;g

In current paper, we completely solve Conjecture 1.6 for the case k = 3.

Theorem 1.8 Every graph of order n > 12 and size at least

«{[252) 252

contains three disjoint theta graphs.

Corollary 1.9 Every graph of order n > 12 and size at least

~{[252] 2252

contains three disjoint cycles of even length.

Note that Gao and Ma [8] obtained the following result.

Theorem 1.10 ([8]) Every graph of order n > 12 and size at least | 112718 |
contains three disjoint theta graphs.

2 Basic Lemma

Lemma 2.1 Let G be a graph of order 12 and size at least 57, then G contains
three disjoint copies of K .

Proof This is obviously true by Theorem 1.10. O

Lemma 2.2 Let G be a graph of order 13 and size at least 59, then G contains
three disjoint theta graphs.
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Proof Suppose that G does not contain three disjoint theta graphs. If 6(G) > 8,
then by Theorem 1.5, G 2 3K, a contradiction. Hence, we may assume that
0(G) £ 7. Let ygp € V(G) such that dg(vg) = 8(G) = . If i < 2, then
|E(G — {vo})| = 59 — 2 = 57, it follows from Lemma 2.1 that [V (G) — {vo}] 2
3K, a contradiction. Hence, we may assume that [ > 3 and let G/ = G ~ {wo}.
It is obvious that G’ can be obtained from K, by removing at most

66— (59 —-1)=7+1<14
edges. We divide the proof into two cases.
Casel G[U U {w}]| 2 K for someU € V(G') with |U| = 3.

In this case, for y1, y2,ys € U such that [vg, y1,¥2, y3] 2 K, we have

3
|E(G' -U))| 2 [EBG)|—1-(Q_do () -3)
i=1

> |E(G)-1-(11+10+9)
> 29-1 )
If | < 4, then by (1), |E(G’ — U)| > 25, applying Theorem 1.7 to G’ — U,
whose order is nine, G’ —U contains two disjoint theta graphs, so G contains three
disjoint theta graphs, a contradiction. Hence, 5 <! < 7. Label G* = G’ - U, that
is, G* denotes the graph which obtained from G by removing UU {vp}. Since G*
does not contain two disjoint theta graph, by Theorem 1.7, we have |[E(G*)| < 24
(remove at least 12 edges from Kp). If { = 5, recall that G’ can be obtained from
K3 by removing at most 66 — (59 — 1) = 7 + | < 12 edges, we obtain

o |[E(UDI =3
e foreachr € U, |E(z,V(G*))|=9;
o |E(G*)| =24;

e foreach U € V(G’) with |U| = 3 such that G[U U {vw}] 2 K, we have
> uev dor (1) = 33 by (1).

As ! = 5, label u;,us be two neighbors of vo in V(G*) and U = {y1,y2,¥a}.
By above, u; is adjacent to each vertex in V(G) — u;, when i € {1,2}. We prove
that G* — {u;,us} contains a path of order three. If not, then G* — {u;, u,} has
at most three independent edges, so

|E(G™)| <3+15=18 < 24,



a contradiction. Without loss of generality, let P* be one path of order three in
G* —{uj,uz} andlet W = V(G*) — V(P*) — {u1, uz}. Suppose that there exist
zy,x2 € W, such that

G* — (V(P*) U {u1,ug, x1,T2}) contains a theta graph,

as [z1,Z2, Y1, y2] 2 K and [u1, u2,v0,y3] 2 K, then G contains three disjoint
theta graphs, a contradiction. This implies that for each z € W,

LR A

Therefore, there are at most 4 edges between V (P*) and W if G*[V (P*)] = K3,
otherwise, there are at most 5 edges between V(P*) and W. Furthermore, as
G 2 3K, it follows that G*[W)] contains no path of order three. To summarize,

we have

* 3+4+24+144+1, ifG*V(P*)] = Ks
IE@E S{ 24+5+2+144+1. Otherwise

Thus, G*[W] is isomorphic to two independent edges, denoted by e; and es, then
[V(e1) U{y, m}] 2 K7, [V(e2) U {u2,v0,52}] 2 K and [V(P* U {ys}] 2
K, a contradiction.

Suppose ! = 7. Then recall that G’ can be obtained from K;2 by remov-
ing at most 14 edges, it follows that H contains a cycle of length 7. Clearly,
|E(w, H)| > 5, for otherwise, |[E(G)| £ 7+ 21 + 10 + 20 = 58, a contra-
diction. By the pigeonhole principle, we may assume that z, s, z3 are three
neighbors of w. By (1), if dg/(z1) + do'(2) + dgr(w) < 30, then it follows
from (1) that G 2 3K, a contradiction. Thus, we may assume that dg:(z1) +
der(z2) +dgr (w) > 31. Similarly, 35, de(z;) > 31and ¥7_ dov (z:) > 31.
Let 2y, 22,23,24 € V(G') — V(H) — {w}. Without loss of generality, assume
that 21,22 € Ny(z4) N Ny(zs). Then for each i € {3,4}, z; can not be both
neighbors of x¢ and z7, otherwise, [vo, 6, T7, z:) 2 K, €1, 72,73, w] 2 K
and (24, Ts5, 21, 22] 2 K, a contradiction. Thus, {z3,2z4} C Ny (z5) N Ng(z,)
and {21,22} C Nu(ze) N Ny(z7). If 2224 € E(G), then [z, 22, 24, w] 2
K, [vo,z3,74,25) 2 K and [21,29,76,27] 2 K, a contradiction. Thus,
T224 ¢ E(G) and z523 ¢ E(G). Then [w, 23, 24,21] 2 K since dg/(z,) +
dcl(xz) +d0'('w) > 31. Since [Uo,$3,$4,$5] 2 Kq_ and [21, Z2,$6,I7] 2 KZ,
a contradiction.

Suppose [ = 6. Then for each U € V(G’) with [U| = 3 such that G[U U
{vo}] 2 K, wehave 3 .., do(u) = 32 by (1). Recall that G’ can be obtained
from K2 by removing at most 13 edges, this implies that H contains a cycle of
length six. In this case, |E(w, H)| > 2 and we may assume that z,w, zow €
E(G). Furthermore, it is easy to see that there exist four vertices in V(G' —
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V{(H)~{w}), say 21, 23, 23, 24, such that z;x3, 2;x4, 2;25, 2;z¢ € E(G) for each
i € {1,2,3,4}. Thus, [V(G') — {z1,z2,w}] 2 2K, since [vo, T1, T2, w] 2
K7, a contradiction.

Case2 G[U U {w}]| 2 K] foreachU € V(G') with |U| = 3.

In this case, [Ng(vo)] 2 Ps, then [Ng(vo)] contains at most | £ | edges and so at
least (é) — | 4] edges does not exist in [Ng(vo)]. Then

(- 14

it follows from (2) that ! < 6.
Furthermore, Let z;,22 € Ng(uvo) such that ;22 € E(G), then z; and z,
has no common neighbor in V(G’), that is,

de/ (1) + der(x2) < 12.

That is, z; and x5 are incident to at most 11 edges and so there are at least 10
edges removed from z; and 3. Therefore, the lost numbers of x; and x5 are at

least
10-14+2)+ ! - £ 3)
( (2) -1z}

If | = 6, then [Ng(vp)] is empty, for otherwise, let 1,22 € Ng(vp) with
z1z2 € E(G), then by (3), (10 — I + 2) + (5) — |§] < 14, a contradiction.
However, then [N (vo)] misses 15 edges, which contradicts the fact ! + 7 < 14.
If 1 = 5, it follows from (3) that [Ng(vo)] is empty, thus, G’ — Ng(vo) has
at least 9 edges, thus, G’ — Ng(vg) 2 P, as at most one vertex in Ng(vp)
misses at most four edges, there exist two vertices in Ng(vp) and two vertices
in G' — Ng(vp), such that these four vertices forms a subgraphs G* 2 K,
however, |[E(G -~ G*)| > 59— (11 4+ 10+ 6 + 6) = 26, by Theorem 1.7, G — G*
contains two disjoint theta graphs, so G contains three disjoint theta graphs, a
contradiction. If [ = 4, it follows from (3) that [N (vo)] contains at most one
edge, and so it is easy to find a subgraph G* of order 4 such that G* 2 K, such
that |E(G — G*)| > 25, a contradiction. The case ! = 3 is similar. This proves
Lemma2.2. O

Similarly, by applying Lemma 2.3 and the arguments likewise in proof of
Lemma 2.2, we can show the following lemma.

Lemma 2.3 Let G be a graph of order 14 and size at least 61, then G contains
three disjoint theta graphs.
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3 Proof of Theorem 1.8

If n = 12,13, 14, then Lemmas 2.1, 2.2 and 2.3 give us the required conclusion.
Hence, n > 15. Since
11n - 33 1ln - 34
|l—] 2 —5—
2 2
3n + 80
- 2
3n 4179
2 [ 2 ]’

it is sufficient to prove that every graph of order n > 15 and size at least | 115~ 33 |

contains three disjoint theta graph. We employ induction on n.

Assume that for all integers k with 14 < k < n, every graph of order k and
size at least |_-“—"2ﬁj contains three disjoint theta graphs. In the following proof,
we always let G be any graph of order n and size at least [ﬂ";ﬁj. By way of
contradiction, we suppose that

G does not contain three disjoint theta graphs. “)

Claim 3.1 6 < §(G) < 8.

Proof By Theorem 1.3, we have §(G) < 8. Suppose that §(G) < 5 and let
vo € V(G) such that dg(vg) = §(G). The graph G — g is of order n — 1
and size lnnz-saJ — dg(vo) > [%_-_3_” -5> 11n—g4-1o - ll(n—zl)—33 >
lmn_—zll;ééJ , by induction hypothesis, G—vp contains three disjoint theta graphs,
and so does G, which contradicts (1). Therefore, §(G) > 6. O

Let vg be a vertex in G such that dg(vo) = 6(G). In what follows, we always
assume that Ng(vo) = {v1,...,u} and H = {vy,..., v}, where | = dg(vo). By
Claim3.1,6 <1 <8.Ifl =6, thenletg; = 1;ifl = 7, thenletg; = 2;ifl = 8§,
then letg; = 3. Note thatl = 5 + ¢;.

Claim3.2 Foreachl <i <l dy(v;) 21 —¢.

Proof Suppose that there exists 1 < i < lsuch thatdy(v;)) <l —g -1 =
(! = 1) — &. Without loss of generality, we may assume that ¢ = [, and we
may also assume that v;u; ¢ E(G) for each 1 < j < ¢ (otherwise, we can
relabel the index of V(H)). Define the edge set X = {v;v;:1<j < ¢} and
construct the graph G’ = (G — vg) + X, which is a graph with order n — 1 and
IE(GI)l — l11n2—33J —l+e> lln2—34 —ltg = ll(n—211—33 > lll(n—zl)—SSJ'
because of { = 5 + ¢;. By induction hypothesis, G’ contains three disjoint theta
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graphs, say T}, T and T3, respectively. Clearly, at least two of them, say T} and
T>, do not contain vertex v, since 77, T> and T3 are disjoint theta graphs, then
EMNX=0,ET)NnX =0andby (1), E(T3)NX #0.

Suppose that |E(T3) N X| = 1, we may assume that E(T3) N X = {vv;}.
Then T3' = (T3 — {viv1}) + {v1vo, vivo} is a theta graph in G, T,T> and T3’ are
disjoint in G, which contradicts (1). Therefore, it remains the case E(T3) N X =
{vivi,vaur} or E(T3) N X = {vyvr, vavy, v3ui}, as €; < 3. Let

(T3 — {v1v1, vaui} H{vov1, vov2}, ifdry(v) =2
4 (T3 - {'U]vz, vgv;})-i-{vovl,vovg,vovg}, else E(Ts) N X={v1vz, 1)2’01}
(T3 — {v1v1, vavr, vaur } ) H{vov1, vove, vovs}, else.

It is obvious that Ty, T and T3’ are three disjoint theta graphs in G, which
contradicts (1). O

By Claim 3.2, Theorem 1.5 and the definition of ;, when 7 < [ < 8, for each
subset S of V(H) with |S| > 7, we obtain

[{vo}US] 22K, . (5
In particular, if ] = 6, then

[{vo} UV (H)] = K. (6

We take a vertex v € V(G — H — {vo}) such that |E(v, V(H))| is maximum
and fix it. When [ = 6, by (3) and the definition of v, denote W = V(H) U {v},
we claim that

[{wo} UW] 22K . Q)

Proof By way of contradiction, suppose that [{vp} U W] does not contain two
disjoint K5 . By (6) and the assumption that [{vo} U W] 2 2K, for each w €
V(G — {vwo} — V(H)), there is at most one edge between w and V(H). If n =
13, then 55 < |E(G)| < I3 + 6 + &5 = 42, a contradiction. If n = 15,
then 66 < |E(G)| < 7’2‘6 + 8+ 87 = 57 a contradiction. If n = 16, then
71 < |E(G)| £ 7"6 +9+ 28 = 66 a contradiction. Therefore, we see that
n > 17. By Theorem 1.7, we have



|E(G)] |E(G = {vo} = V(H))| +21 + (n—1T7)

T(n-7)—13
< Lﬁ—a)———1+n+14
On—34

2
11n — 34

2
11n — 33

2 )
this is an obvious contradiction. O

Let

IA

<

< 1

G*_{ G- ({wo}UV(H)), if7<1<8
Tl G- ({v,v}VV(H)), ifl=6.

Let F* be the set of components of G*. By (5) and (7), it follows from (4)
that every graph in F* contains no theta graph. In the following proof, let F'
denote arbitrary component in F*, then, each block of F is either a K or a cycle.
Likewise in the same proof in [8], the following Claim 3.3 is obvious.

Claim 3.3 |V (F)| £ 2 foreach F € F™>.

Claim 3.4 For each graph F € F such that |V (F)| = 2, there exists S C V(H)
with |S| =2and [V(F)U S) 2 K.

Proof Let F € F such that |V(F)| = 2, label V(F) = {u1,uz}. Since
|[E(ui, V(H))| 21 -1if7 <! < 8and |E(u;, V(H)U {v})] 2 ! -1 for
each i with 1 < ¢ < 2if ! = 2, it follows from the pigeonhole principle that there
exists a subset S C V(H) with |S| =2 and S C Ny (u;) N Ny (uz2). By (6), we
know [V(F)US] 2 K;. O

Claim 3.5 Forany u € V(G*), |E(u, {vo} UV(H))| = |E(wq, V(H))| <1 -1
¥ <1< 8 | B, V(H) U (o)) SLifl =6,

Proof Suppose that there exists « € V(G*) such that |E(u, V(H))| > L if
7 <1 <8 and|E(u,V(H)U{v})| =1+ 1ifl = 6. By Claim 3.3, we may
assume that F™* contains two components F and F; with |[V(F;)| < 2 for each
1 <1< 2,suchthatu € V(F;). Suppose that |V (F3)| = 2 and label F2 = uqus.
Note that |E(u;, V(H))| > | — 1 for each ¢ € {2,3}. By Claim 3.4, there exists
v;,v; € V(H) such that [ug, uz, vi,v;] 2 K;. If 7 <1 < 8, combining with (5)
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and (6), [V(H — {vi,v;}) U {u,v}] 2 2K, which contradicts (4). Therefore,
I = 6. By the choice of v, |E(v, V(H))| = 6. Since F* \ (F} U Fy) # 0, choose
ug € V(F* \ (F1 U F,)). By Claim 3.3, | E(ug4, V(H))| 2> 4, choose {vp,vg} C
Ny (ug) N Ng(v) — {vi,v;} such that p # g. Now, [vp, vg,u4,v0] 2 K and
[V(H — {vi,vj,vp,v4}) U {u,v}] 2 K, which contradicts (4). This shows the
order of each component of F* \ F} is one. Now, note that | F™* \ F}| > 3, we can
choose three different vertices u;, ua, u3, such that |E(u;, V(H))| = 5 for each
1 <1 < 3. As above, it is obvious that [V (H) U {v, u,vo,u1, u2,u3}] 2 3K, a
contradiction. O

Claim 3.6 Foranyu € V(G*), |[E(u, V(H)U{v})| <l-1ifl=86.

Proof Suppose that there exists u € V(G*) such that |E(u, V(H) U {v})| > L if
I = 6. By Claim 3.3, |F*| > 4 and let F), ..., F4 denote four components in F'*,
such that V' (F;)| < 2 foreach 1 < ¢ < 4 and u € V(F}). By the choice of v,
\E(v, V(H))| > 5.

We show that the order of each component in F* is two. On the contrary, with-
out loss of generality, we may assume that 5 = u;. By Claim 3.5, | E(u;, V(H)U
{v})| = 6. Swap the role of u, and vy, it follows from induction hypothesis and
(6) that

[{u1} U Ng(v1)] = Ko. (8)

In this section, we always choose u3 € V/(F3) and choose u4 as follows: If
|F3| = 2, then let Uy = V(F3) — {us}; otherwise, let ug € V(Fy). If uyv ¢
E(G), then V(H) = Ng(u1) and so V(H) C Ng(v) by the maximality of
|E(v, V(H))|. Suppose that |F3| = 2, then by Claim 3.4, [u3, uq, vi,v;] 2 K7
for some v;,v; € V(H). Since [V(H) U {v,u,u;,v}] 2 2K, then G 2
3K, , which contradicts (4). Thus, F3 = u3 and similarly Fy = uyg, that is,
|E(us, V(H))| > 5 and |E(u4, V(H))| 2 5, so [Ny (u3z) N Ng(uq)| > 4. Thus,
there exists X' € V(H) with |X| = 4 such that [X U {u,u1,u3,u4}] 2 2K,
since [V(H \ X) U {v,v}] 2 K, a contradiction. This show that u;v € E(G)
and we may assume that u;v; € E(G) foreach i € {1,2,...,5}. By 8), vv; €
E(G) for each i € {1,2,...,5}. Swap the role of u; and u, by the similar
arguments as above, we see that uv € E(G). Suppose that |F3] = 2 and so
F3 = uguy by our choice. Then by Claim 3.4, there exist v;,v; € V(H) such
that (v, vj,us,u4] 2 K;. As |E(u,V(H))| > 5, we choose v € V(H) —
{ve,vi,v;} such that uv, € E(G), then [v,u,u;,v¢] 2 K, furthermore, as
{vo} UV (H)\ {vi,v;,vx}] 2 K, which contradicts (4). Thus, F3 = u3 and
so |E(us, V(H) U {v})| = 6 by Claim 3.5. Similarly, we can show that F} = u
and Fy = u4. Swap the role of u; and uz, we have uzv € FE(G) and similarly
uqv € E(G). Since [Ny (ua)NNy(ug)| > 4, we choose v; € Ny (uz)N Ny (uq)
with 1 < i < 5, such that uzv;, uqv; € E(G), that is, [uz, u4,v,v;] 2 K . Since
| N (u)N Ny (u1)| > 4, we can choose v;, vk € Ny (u)NNy(uy)\{vi, ve}, then



[vj, vk, w,u1] 2 K, as [{vo} U V(H)\ {vi,vj,ux}] 2 K, which contradicts
(4). This shows that the order of each component in F™* is two, as required.

Label F; = u;u] foreach 1 < i < 4and u; = u, then |E(u;, V(H))| > 4 and
|E(ul, V(H))| > 4. Suppose that uyv ¢ E(G). Then V(H) € Ng(u) and so
|E(v, V(H))| = 6. In this situation, by Claim 3.4, it is easy to check that [V (H)U
V(F1) UV(F2) U {v,v}] 2 3K, a contradiction. Thus, ujv € E(G) and so
|E(u1, V(H))| 2 5, |E(v, V(H))| 2 5. By symmetry, say {vz,v3,v4,v5} C
Ny (v) 0 Ng(w,) and vuv; € E(G). By Claim 3.4, there exist v;,v; € V(H),
such that [v;,v;,up,up) 2 K, furthermore, since |[Ny(v) N Ny (uj)] > 3,
we can choose vx € {v2,v3,v4,vs} \ {vi,v;}, such that wjvx € E(G), thus,
[v,u1,u},v6) 2 K, as [{vo} UV (H)\ {vi,vj,u}] 2 K, which contradicts
(4). This proves Claim 3.6 O

Now we are in the position to complete the proof of Theorem 1.8. By Claim 3.3
and Claim 3.6, |V (F)| = 2 for all F’ € F*, we have

ne=l if7<1<8
Fg. |B(F)| = { "—;é, ifl =6.

Suppose that 7 < | < 8. We may assume that u;u2 and uzuy are two com-
ponent of G*, since |E(u;, V(H))| 2 | — 1, by Claim 3.2, it is obvious that
[V(H) U {vo, u1,u2,u3,u4}] 2 3K, a contradiction. Thus, ! = 6, and accord-
ing to Claim 3.6, we obtain

IE@)| = |E([{vo,v} UV(E) +|E(V(G"), {vo, 0} UV(H)| + ) |E(F)|
FeF-

IN

27+ 5[V(G")| + Y |E(F)|
FeF-
n—8

27 +5(n —8) +

11n - 34

—5 @
since |E(G)| = [-1-12{&] > i’-‘;—“-, thus, the equality in (9) holds each place.
That is, for any u € V(G*), |[E(u, V(H) U {v})| = 5. Let F; = u;u] denote the
component of F*, where ¢ > 1.

Suppose that ;v ¢ E(G). Then |E(u;, V(H))| = 5 and we may assume
that vy, v,,. .., vs are the neighbors of u;. By the induction hypothesis and (6),
N}, V(H)U {v}) = V(H) — {vs}. If ugv € E(G), then by the induction
hypothesis and (6) again, ubv € E(G). Then we can find a common neighbor of
v, up and u in V(H), denoted by vy. Since (v, ug, uy, vx] 2 K and there exist
vi,v; € Nyg(uy)N Ny (u)) such thati # k and j # k, then [v;,v;,u,u}] 2 K
and [{vo }UV (H)\{vi,v;,vc}] 2 K, which contradicts (4). Thus, upv ¢ E(G)
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and upv ¢ E(G) by symmetry. Similarly, for each F; € F*, u;v ¢ E(G) and
uv ¢ E(G). Thus, Ng(v) = V(H) and by Claim 3.4, there exist v;,u; €
N (u2)N Ny (ub) such that [v;, vj, ug, up) 2 K . Since we can choose two dis-
tinct vertex in {vy, v, v3, v4, vs } \ {vi, v;}, say vk, vy, such that [vg, vs, u, u]] 2
Ky ,thus, G D 3K, because of [{vo, v}UV (H)\{v:,vj, vk, v5}] 2 K, thisis
a contradiction. This proves that u;v € E(G) and by symmetry, u;v, ulv € E(G)
foreachi > 1.

By Claim 3.4, we may assume that [vy, v3, u;,uj] 2 K, . If v and uj has
one common neighbor in V' (H) \ {v2, v3}, without loss of generality, say v;, then
[v,v1,u2,u5) 2 K, since [vo,v4,vs,v6) 2 K, a contradiction, thus, v and
uy has no common neighbor in V(H) \ {v2,v3}. By symmetry, v and «} has no
common neighbor in V(H) \ {vz,v3} for each 2 < ¢ < 4, and so does v and u;
for 2 < i < 4. This implies that vov, v3v € E(G) and also

|E(v, V(H))| = 4,|E(uz, V(H))| = 4and |E(uy, V(H))| = 4.

Without loss of generality, say vvy, vvg € E(G). Then, {vs,v6} C Ng(uz)N
Ny (ub) and so [vs,ve,u2,up] 2 K;. Note that [vo,v,v1,v4] 2 K, then
G 2 3K, which contradicts (4). This proves Theorem 1.8. |

Acknowledgements We thanks for the referee for his/her valuable comments and
suggestions, who found a mistake in the original proof of Lemma 2.2.
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