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Abstract

A graph G is list k-arborable if for any sets L(v) of cardinality
at least k at its vertices, one can choose an element (color) for each
vertex v from its list L(v) so that the subgraph induced by every
color class is an acyclic graph (a forest). In the paper, it is proved
that every planar graph with 5-cycles not adjacent to 3-cycles and
4-cycles is list 2-arborable.

Key words: planar graph; cycle; vertex arboricity; arborable; list
coloring

1 Introduction

All graphs considered in this paper are simple, finite and undirected, and we
follow [1] for terminologies and notations not defined here. Let G = (V, E)
be a graph. For a vertex v € V, let N(v) denote the set of vertices adjacent
to v and let d(v) = |N(v)| denote the degree of v. We use V(G), E(G),
A(G) and §(G) to denote its vertex set, edge set, maximum degree and
minimum degree, respectively. A k-vertezr, k~-vertex or a k*-verter is a
vertex of degree k, at most k£ or at least k, respectively. If a vertex v is
adjacent to a d-vertex u, we say that u is a d-neighbor of v. We denote by
ng(v) the number of d-neighbors of v. A k-cycle is a cycle of length k.
Let G be a plane graph. Denote by F or F(G) the face set of G. For
a face f € F, the degree d(f) of f is the length of the boundary walk
of f. A k-face, k= -face or a k*-face is a face of degree k, at most k or
at least k, respectively. For convenience, a k-face f = (v1,v2,- - , %) with
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consecutive vertices vy, vg, - -+ , v along its boundary in the clockwise order
is often said to be a (d(v1),d(vz),--- ,d(vk))-face. For a face f, let n;(f)
and n;+(f) denote the number of i-vertices and i*-vertices incident with
f, respectively. Denote by fs(v) and fy+(v) the number of d-faces and
d*-faces incident with v, respectively. We say that two cycles (or faces) are
intersecting if they share at least one common vertex or adjacent if they
share at least one common edge.

A forest k-coloring of a graph G is a mapping ¢ from the vertex set
V(G) to the set {1,2,.--,k} such that each color class induces an acyclic
subgraph, i.e., a forest. The verter arboricity va(G) of G is the smallest
integer k& such that G has a forest k-coloring. This version of vertex ar-
boricity was first introduced by Chartrand et al. [5] in 1968, who named
it point-arboricity. They proved that va(G) < [-l-i'-%-@] for any graph G
in [5] and va(G) < 3 for any planar graph in [6] . A graph G is called
d-degenerate if every subgraph H of G contains a vertex of degree at most
d. It is easy to see that va(G) < [(d + 1)/2] for any d-degenerate graph
G. So va(G) < |'-1-+—A2@'| for any graph G. Since every planar graph has
a vertex of degree at most 5, va(G) < 3 for any planar graph G. It is
well known that every planar graph without 3-cycles is 3-degenerate. It
was shown in [13] that every planar graph without 5-cycles is 3-degenerate
and in [8] that every planar graph without 6-cycles is 3-degenerate. These
facts imply that va(G) < 2 if G is a planar graph without 3-,5- or 6-cycles.
Raspaud et al. [12] proved that every planar graph G without 4-cycles has
va(G) < 2 and Huang et al. [9] further proved that every planar graph
G without 7-cycles has va(G) < 2. Raspaud et al. [12] also proved that
va(G) < 2 if G is a planar graph such that any two triangles of G are at
distance at least 3. It was shown in [10] that every planar graph G without
chordal 6-cycles has va(G) < 2. Chen et al. [7] proved that va(G) < 2 if
G is a planar graph without intersecting triangles. Cai and Wu [4] proved
that va(G) < 2 if G is a planar graph without intersecting 5-cycles.

We say that L is an assignment for the graph G if it assigns a list L(v) of
possible colors to each vertex v of G. If G has a forest k-coloring ¢ such that
|L(v)| > k and ¢(v) € L(v) for any vertex v, then we say that G is forest L-
colorable or ¢ is a forest L-coloring of G. The graph G is list k-arborable
if it is forest L-colorable for every assignment L satisfying |L(v)| > k for
any vertex v. The list vertex arboricity va;ise(G) of G is the smallest k
such that G is list k-arborable. We also have that vai;s.(G) < [(d +1)/2]
for any d-degenerate graph G, vais:(G) < 3 for any planar graph G and
vay¢(G) < 2 for any planar graph G without 3-,5- or 6-cycles. Borodin and
Ivanova [2] proved that every planar graph with no triangles at distance
less than two is list 2-arborable, and later they [3] proved that every planar
graph without 4-cycles adjacent to 3-cycles is list 2-arborable. This paper
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prove that planar graphs without 5-cycles adjacent to 3-cycles and 4-cycles
are list 2-arborable.

2 Main result and its proof

Theorem 1. If G is a planar graph with 5-cycles not adjacent to 3-cycles
and 4-cycles, then vayit(G) < 2.

Proof. Suppose, to the contrary, that Theorem 1 is false. Let G be a
counterexample to Theorem 1 with the fewest vertices. Then

(1) 6(G) > 4 (see [2)).

(2) G does not contain a 6-cycle (vi,vs,- - ,vg) such that vovg € E(G)
and d(v;) = 4 for every i € {1,2,-.- ,6}. (see [3]).

By the Euler’s formula |V| —| E| + |F| = 2, we have

S () - 4) + 3 (d(f) —4) = ~4(\V| ~| E| + |F|) = -8 < 0

veV feF

We define ch to be the initial charge by letting ch(z) = d(x) —4 for each
z€VUF. So Y cyurch(z) <O0. In the following, we will reassign a new
charge denoted by ch/(z) to each x € V U F according to the discharging
rules. Since our rules only move charges around, and do not affect the sum.
If we can show that ch'(z) > 0 for each 2 € VU F, then we get an obvious
contradiction 0 < 3"y, pch’(2) = 3 ey ch(z) < 0, which completes
our proof.

Let w(z — y) be the charge transferred from z to y for all z,y € VUF.
We define the discharging rules as follows.

R1. Let f be a 3-face (u,v,w) of G. If f is not adjacent to a 3-face, then
f receives -;- from each of its adjacent 5% -faces; Otherwise, without
loss of generality, assume that uv is incident with two 3-faces and
d(u) < d(v). If d(u) = d(v) = 4, then f receives % from each of its
adjacent 6% -faces; Otherwise, f receives % from each of its adjacent
6% -faces and % from v.

R2. Let f be a 5-face (v1,v2,-+- ,vs5) of G and f; be the another face in-
cident with vviyy for i € {1,2,---,5}, where all the subscripts here
are taken modulo 5.

R2.1. Suppose that for any i(1 < i < 5), f; is a 3-face (vi,vit1,ws). If
na(f) =5, that is, f is a (4,4,4,4,4)-face, then f receives § from u;
Jor any i(1 < i < 5); Otherwise, f receives 2/(3ns+(f)) from each of
5% .vertices incident with f.
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R2.2. Suppose that f is adjacent to four 3-faces, without loss of generality,
fi is a 3-face (vi,vig1,ui) of G, where i = 1,2,3,4. If ny(f) = 5,
then f receives % from u; for any i(2 < i < 4); Otherwise, f receives
1/(3ns+(f)) from each of 5% -vertices incident with f.

In the following, we will check that ch’ (r) > 0foreachz € VUF.
Claim 1. Let f € F(G). Then ch'(f) 2 0.

Suppose that d(f) = 3. Note that if f is adjacent to another 3-face,
then f must be adjacent to two 6*-faces since every 5-cycle of G is not
adjacent to 3-cycles and 4-cycles at the same time. So ch/(f) > ch(f) +
max{§x2, £ x3} = 0by R1. Ifd(f) = 4, then ch/(f) = ch(f) = 0. Suppose
d(f) = 5. Note that if f is adjacent to a 3-face f’, then f is not adjacent
to a 4-cycle and it follows that all faces incident with f’ must be 5*-faces.
If f is adjacent to at most three 3-cycles, then ch/(f) > ch(f) —3 x3=0
by R1; Otherwise, ch’(f) > ch(f) + min{} x 5 — 1 x 5, ’?E%Tf_) x ng+(f) =
3x5,% x3—§x4,-3ns+(ﬁ x ng+(f) — 3 x 4} = 0 by R2. Suppose that f
is a k-face (v1,vq,- - , ), where k > 6. We denote by f; the face adjacent
to f and incident with v;v;+; where all the subscripts are taken modulo &.
If w(f = fi) =}, then d(v;) = d(vi+1) = 4 and f;_1( or fi+;) must be a
6*-face since every 5-cycle of G is not adjacent to 3-cycles or 4-cycles, and
this can be equivalent to say that f sends } to f; and § to fi_i(or fit1,
respectively). According to this averaging, every f; receive at most % from
f. So ck'(f) 2 ch(f) — L x d(f) > 0.

Claim 2., Let v € V(G). Then ch/(v) > 0.

If d(v) = 4, then ch’'(v) = ch(v) = 0 by R1 and R2. Suppose d(v) =
k > 5. Let N(v) = {v1,---,v} and fi, f2, -+, fr be faces incident with
v such that f; is incident with v; and vy, for i € {1,2,--- , k}, where all
the subscripts here are taken modulo k.

Suppose that ¥ = 5. Then f3(v) < 3, that is, v is incident with at
most three 3-faces. If fz(v) = 3, then v is incident with two 6*-faces,
and it follows from R1 and R2 that ch’/(v) > ch(v) — 1 x 2 — é > 0. If
fa(v) < 1, then we also have ch'(v) > ch(v) — § x 2 — % > 0 by R1 and
R2.2. So we assume that f3(v) = 2. If f; and f;;; are two 3-faces for some
i €(1,2,---,5}, then ch'(v) > ch(v)—} x2 > 0 by R1; Otherwise, without
loss of generality, assume that f; and f3 are the two 3-faces. We denote
a 5-face f by 5%-face if f is a (5,4, 4,4,4)-face and adjacent to k 3-faces,
where k > 4. If f, is a 5%-face or f5 is 5%face, then the 5*-face fio incident
with v1v; must not be a (4,4, 4, 4, 4)-face for k € {4,5}. This means that if
w(v = fa) = 3 or w(v — f5) =, then w(v = fi2) = 0. Similarly, if f; is
a 55-face or f, is 5%-face, then the 5+-face incident with vavs must not be



a (4,4,4,4,4)-face. At the same tlme, at most one in {f4, fs} is a 5%-face.
So ch'(v) > ch(v) —max{% +},3 x 2+ x 2} 0.

Suppose k£ > 6. By R2.1, if w(v — f;) = 2 for some i(1 < i < k),
then f;_i, fiy1 are 3-faces and w(v — f._l) = w(v — f,+1) = 0, that can
be equlvalent to say that v sends to f;, & 5 to fia and 1 § to fiy1. Every
charge of 1 ¢ by vtoa5*-face 1nc1dent with v;v;4+, can be looked at as giving
s to fi. Accordmg to this averaglng, every face receive at most 3 5 from v.
So ch/(v) > ch(v) —d(v) x £ > 0.

Hence we complete the proof of the theorem. O
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