On the half of a Riordan array
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Abstract

The half of an infinite lower triangular matrix G =
(gn,k)n k>0 is defined to be the infinite lower triangular

matrix G = (g,(ll,)c) such that g,(lll = gon—kn fOT
") n,k>0 ’

all n > k > 0. In this paper, we will show that if G is a
Riordan array then its half G(!) is also a Riordan array.
We use Lagrange inversion theorem to characterize the
generating functions of G in terms of the generating
functions of G. Consequently, a tight relation between
G and the initial array G is given, hence it is possible
to invert the process and rebuild the original Riordan
array G from the array G(1). If the process of taking
half of a Riordan array G is iterated r times, then we
obtain a Riordan array G{"). The further relation be-
tween the result array G) and the initial array G is
also considered. Some examples and applications are
presented.
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1 Introduction

The concept of Riordan array was first introduced in [18, 20]
as a generalization of the Pascal triangle and Catalan triangle.
It has been proved that Riordan arrays constitute a natural
way of describing several combinatorial situations. Some of the
main results on the Riordan arrays and their applications to
combinatorial sums and identities can be found in [8,9,13,21].
An infinite lower triangular array D = (dnx)nk>o0 is called a
Riordan array if its column k has generating function g(t) f(¢)*,
k=0,1,2,---, where g(t) and f(t) are formal power series with
g(0) # 0, f(0) =0 and f'(0) # 0. That is, the general term of
array D is given by

dn = [t"]g(t) F(1)¥, (1)

where [¢t"] denotes the coefficient operator. The array corre-
sponding to the pair g(t), f(t) is denoted by (g(t), f(t)). The
set R of all Riordan arrays forms a group under ordinary matrix
multiplication. The group law is then given by

(9(2), F(£))(d(2), h(2)) = (9(t)d(f (2)), R(£(2)))- (2)
The identity is (1,t) and the inverse of (g(t), f(t)) is
(9(), F))" = (1/9(F(2)), £(2)), (3)

where f(t) is the compositional inverse of f(t), i.e., f(F(t)) =
FF@) =t

Many properties of Riordan arrays have been studied in the
literature in recent years, in particular their connection with
combinatorial sums. Actually if we multiply the array D =
(g(t), f(t)) by a column vector (bo, by, b, ...)T with generating
function b(t), then we get a column vector whose generating
function is given by g(¢)b(f(t)). If we identify a sequence with
its generating function, the composition rule can be rewritten
as

(9(2), £(£)b(t) = g(t)b(£(2)). (4)



Important subgroups of Riordan group R are [12,19]:
e Appell subgroup R 4, the Riordan arrays are of form (g(t), t);

e Lagrange subgroup R, the Riordan arrays are of form

(1, f(?));

e Renewal or Bell subgroup Ry, the Riordan arrays are of
form (g(¢),tg9(?));

e Derivative subgroup Rp, the Riordan arrays are of form
('), F®));
e Hitting-time subgroup Ry, the Riordan arrays are of form
(482 10);
HOR !
e Generalized hitting-time subgroup #[r, s], the Riordan ar-
rays are of form ((ﬁtﬂ) F1(2), f(t)).

An important feature of Riordan arrays is that one can ex-
tracts new Riordan arrays from a given Riordan array. There
are many related work can be found from the references [1-4,24].
Particularly, given a Riordan array D = (d,k)n k>0, for any in-
tegers p > 2, r > 0, Jpn+,,(p_1)n+,+k, for n, k > 0, defines a new
Riordan array [3]. In this paper, we first introduce the notion
of half array of a Riordan array. Then, by iterating r times,
we obtain the r-half array of a Riordan array, for any positive
integer 7. In next section, for a Riordan array G = (p(t), tq(t)),
we obtain an explicit representation for the r-half Riordan array
G™) in terms of a Riordan array G. Meanwhile, the r-half ar-
ray of some classical examples, such as Pascal matrix, Catalan
matrices, are investigated. In section 3, as applications, we con-
sider enumeration of a kind of generalized Dyck paths by using
Riordan arrays.

We begin by recalling the Lagrange Inversion Formula, which
is an important element needed in our study. Several forms of



the Lagrange Inversion Formula exist in literatures (see [15,22]).
We summarize some of them below.

Lemma 1.1( LIF [6,11,22]). Let w = w(t) be a formal
power series which is implicitly defined by a functional equation
w = tp(w), where ¢(t) is a formal power series such that ¢(0) #
0, and let F(t) be any formal power series. Then we have

[t")F(w(t)) = Z[t" 1 F (1)g(t)" = ("] F()(2)" 1 ((2) — t¢'(2)).

2 Half of Riordan array

Let G = (gnk)nk>0 be an infinite lower triangular matrix. By
the central coefficients of this matrix we understand the terms
g2nn- The method of obtaining a generating function for cen-
tral coefficients of a given matrix is studied by several authors
recently [1,10,23]. We define the half array of G = (gnk)n k>0

to be the lower triangular matrix G = (gr(zl,i)c)n,kzo such that
95.1:1 = gan—kn foralln > k > 0.

9o,0
g16. 911
920 1 922
930 931 932 933
940 941 9&;2 _..géi;a 94,4
950 951 G52 k,g'sb',a 954 955
960 951 952 963 Gea G656

Figure 1: The isosceles triangle of matrix G

If the matrix G is represented as in Figure 1, then the central
coefficients (gonn)n>0 are located in the central column of the
isosceles triangle, and G\, the half array of G, is the right part
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of G, i.e.,

921 911 O 0 0
9a2 932 G22 0 O

M — = e ah
GY = (gan—kn) = 963 953 9a3 933 O

gs4a G974 G644 G54 G44

For a positive integer r, the r-half array of G = (gnk)n k>0
is defined as G = (GC-D)D), here G = @G, that is, G
is obtained by iterating the half process r times. The generic
element of G() is given by

gf:;c = (r+1)n—rk,rn—(r-1)k- (5)

For example, the twice half array of G = (gnk)n k>0 is

(90,0 0 0 0 0 -\
gs2 g1u O 0 O

964 943 g22 0 O
@ _ = ’ N
GY = (93n—2k,2n-k) = 996 915 G54 033 0

G128 4Ji,7 086 G665 G444 "
\ i )

Theorem 2.1. Let G = (p(t), tq(t)) = (gnk)n k>0 be a Rior-
dan array and let GV denote the half array of G. Then G(l) =

(L(f-)-’if—(m, f (t)) where f(¢) is the compositional inverse of % (t)

@)
Consequently, (G(M)! (%&%,h(t)) with A(t) = .

Proof. Differentiating the both sides of the equation f(t) =
tq(f(¢)) we get J;’(t) = iq (f(t))f’(t) +q(f(?)), from which we
have f'(t) = 47 = T tron-

Considering the relation f(t) = tq(f(¢)) and using Lemma

)t (A)p(f(t = [0
1.1, we have [t ]_fﬂt)_llf ()=t ]r;%tﬂ(}z()mf(t)k
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" D))+ t)q(t)t* -
= [t ZFREEBEs = [ 2550 (a(t) — ¢ (1))

= [ *p@)g(t)" = [t *|p(t)(tq(t))" = gon—kn- Since f(t) =

_t V-1 _ [gt)-td®) ¢ \ _ th(t) :
st we have (GO)™! = (L9500, o) = (5 hle)) with
h(t) = L O

14
q(t)”

From this theorem, we can obtain the following results im-
mediately.

Corollary 2.2. Let G = (p(t),tq(t)) and GV be the half
array of G, and let f(t) be the compositional inverse of ﬁ.
Then
(1) If G € Ry, ie., q(t) =1, then GV = G.

(2) If G € Ry, ie., p(t) =1, then GV = (%?,f(t)), hence
G ¢ Ruy.

(3) If G € Ry, p(t) = q(t), then GM = (f'(2), f(t)), hence
G0 € Rp. ,

(4) If p(t) = L4E then GO = (1, £()), hence GI) € Ry
(5) If p(t) = q(t) — tq(t)’, then GV = (ﬁtﬂ,f(t)), hence
G € Rn.

(6) I p(t) = q(&)*', then G® = (L) /(t), £(1)), hence
G € H[r,1).

Example 2.1. Let P = (p(t),tq(t)) = (&5, ) be the

well-known Pascal triangle. From f(t) = tq(f (t; = 1_;“), we
get f(t) = 1=EE = 1C(t), and g(t) = LUIO) = L~

I_ch%f, where C(t) denote the generating function for the Cata-

lan numbers (see [22]). Therefore, P(!) = (V%ﬁ,tC(t)), and

(PM)=! = (1—2¢,t(1 —¢)). Since P~ = (&, &) and P2 =

(25, %5;) and by routine computation, we get (P~1)) =
- 1-y/I=8

( 71{!-4t’ @)’ a'nd (‘P2)(l) = (:7ll—§t’ 4 t)‘

In a sense, Theorem 2.1 is a characterization of half array of
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a Riordan array and we can also prove a sort of inverse property.

Theorem 2.3. Let H = (g(t), f(t)) be a Riordan array with
inverse H~! = (d(t), h(t)). If q(t) = 3, p(t) = f(':—)'g%, then H
is the half array of G = (p(t), tq(t)).

Proof. Let G be half of G = (p(t), tq(t)) . Then, by Theorem

2.1, (GW)~! = ({(i:;—,(,%,h(t)) = (d(t), h(t)). Therefore, G =

H. O

Remark 1. From Theorem 2.1 and Theorem 2.3, the assign-
ment to every Riordan array its corresponding half is a bijection.
One referee remain us to check if this map is a group isomor-
phism. From Example 2.2, we conclude that this map is not

group homomorphism.

Example 2.2. Let P = (t&, &), then P! = (&5, &)

1
s
From Theorem 2.3, P = (&, t%5) is the half of H = (1, + t2).

Example 2.3. Let H = (1,t +t2?), then H~! = (1, vithl),

Hence, H = (1,t + t?) is the half of G = (\/__’m ﬁ——l"l;‘““)

Theorem 2.4. Let G = (p(t),tq(t)) = (gni)nk>0 be a
Riordan array and let f(¢) be the compositional inverse of _.
Then the r-half of Riordan array G is given by

60 - (LU ).

Proof. Since f(t) is the compositional inverse of #, it fol-

lows that f(t) = tq(f(t))". From this relation we get f'(t) =

() ;
e ;((t)§,)_, 7@y Applying Lemma 1.1, we have

("] 7p(f () 75 (ba(f()))* = [£] AR U
= [t H B (6 D (g (8) - rq(t) ¢ (1)

. q(t)—rtq'(t) Dk
= [t"*p()a ()™ = ghrstynrkrn—(r-1k-
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Theorem now directly follows form (1) and (5) O

Let By,(t) be the generalized binomial series given by [7]

=1 mn+ 1\,
B'"(t)=2mn+1( n )t’

n=0

for which we have

B (8" = r mn+r\,,
"‘(t)=zmn+r n )b

n=0

for any real number r. In the special cases m = 0,1, and 2,
we have Bo(t) = 1 +1¢, Bi(t) = &, and Bo(t) = C(t) is the
generating function for Catalan numbers.

Example 2.4. Let G = (%‘t}, ﬁ—z“i*,;, It‘“) Then it can

be represented as G = (mt]i—(i)—_f, tB..l(t)), and its generic el-
ement iS gpx = (2:_',?) By Example 2.1-2.3, we have GV) =
(Lt(1+1)), G? = P = ({45, 14) is the Pascal matrix. Thus
G® = pQ) = (%g()gg,tC(t)). By applying Theorem 2.4, we
obtain G = p®@ — (%, tB3(t)), where Bs(t) is the gen-
eralized binomial series defined by Bs(t) = Yoo 725 (> e,
The first few rows of P(!) and P® are

1 0 000 1 0 0 00
2 1 0 00 3 1 000
POU=] 6 3 1 00| ,P@=] 15 4 1 00
20 10 4 1 0 8 21 5 10
70 35 15 5 1 495 120 28 6 1

Using the generalized binomial series, we can give following
characterization for the r-half array of Pascal matrix.
Theorem 2.5. Let P = (1, 1&), then

By (t)
") = +1
P (1 — rtBr+l(t)"+1 , tBr+1(t)>

414



and its inverse is

_ 1-7rtB(t)" t
P~ = :
e = (55 - Ew)
Proof. We apply Theorem 2.4 for p(t) = g(t) = 5. Let
f( ) - tQ(f(t))r = (]-.__ft(t-_))7’ Then 1- (1 - f(t)) = (l—ft(t))’" a'nd
hence 1y = 1 + g=zGy=r- Consequently, = = Br(?),
and f(t) = tB,+1(t)' It follows from Theorem 2.4 that P =
(f th(Jt)ft t ) ( —rtB:,.ll(tt))_fT+ ’t3r+1(t))
Since P) is the half of P~V = (I(TB;)QW’ tB, (t)) it fol-

lows from Theorem 2.1 that (PM)~! = (l (’%%:f'(‘)r 'L’;g), h(t))
with h(t) = -Brt_(t)" By a straightforward computation we obtain
(PO = (T, o). -

B B
The generic term of (P()~! is (m_"r(,':i',g(':_('r‘;_k,)c ) ("“"c —k

while generic term of P) is (""1=¥) " Hence, we get the
following inverse relation

- n(k+1) —ri(n —k) m—rk—k
_g(rn—rk-k)(rn—rk—k—l)( n—k )ak'

Using Lemma 1.1 and Theorem 2.4, we can obtain the fol-
lowing results:

Corollary 2.6. Let A = (1”2%"'“, 1""21“'“) = (C(t),tC(¢)),
then | — £2B, ,q(t)2
r) - - r+2
A (1 —(r+ 1)tBr+2(t)’”+2’tBr+2(t)> '

A(r))—l - 1-— (7" + ]‘)tBT+1 (t)r+1 t
1= 2B (t)>+2 ' Brya(t))
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Corollary 2.7. Let B = (C(t)%,tC(t)?), then

Bar2(t)3(1 — tBorya(t)?2) )
") — 2r+2 + 2
5 ( T— (r + DiBppa(p e 20

-1 _ [ (2r+2) = (2r+ 1)Ba,41(2) t

(B = ( Bor(t)2(2 — Bar(t)) 32r(t)2) ‘
Particularly, the half array of (C(t), tC(t)) is ((¢tBa(t))', tBs(t)),

while the half array of (C(¢)2,tC(t)?) is ((¢Ba(t)?), tB4(2)?).

3 Applications

In this section, we present an application of our construction to
count those lattice paths starting from (0, 0) that use the step set
Sy ={E=(1,0),N = (0,1),U = (1,1),D = (1,-1)}, where
each step is labeled with weights a, b, u and v, respectively.
These paths generalize both Dyck paths which consist of steps
U and D and Delannoy paths which consist of steps £, N and
U. Let G(n, k) be the set of all weighted lattice paths ending at
the point (k,n — 2k). Let gnx be the sum of all weights w(P)
with P in G(n, k). The first few rows of matrix (gn)nken are
illustrated in Figure 2.

The last step of any path from G(n, k) is one of S, = {F =
(1,0), N = (0,1),U = (1,1),D = (1,-1)}, as shown in Figure
3. Therefore, the number g, » = |G(n, k)| satisfies the following
recurrence relation

In+1k+1 = UGnk + GGn-1k + UGn—2k + bGn k11, (6)

with n, k > 0 and boundary conditions g, ¢ = b" and g, . = V™.

For k > 0, let gi(t) = 3 oo, gnxt™. Then go(t) = T-IR and by
(6), we have

r+1(t) = vtge(t) + at?ge(t) + utsgk(t) + btgi41(t).
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g3,

924 Y i
91,8 N Nee oo

I ‘o 'gx'i""
o X

d4.4

Figure 3: Recurrence relation of (gn x)

By iterating, we obtain

(t)_'vt+at2+ut3 (0 = vt +at? +ut\ 1
Gertl®) =T Y E\T 1o 1—bt

In view of definition (1), we have the following theorem.

Theorem 3.1. The infinite lower triangular array (g; ;)i jen
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has a Riordan array expression given by

G- ( 1 vt+at2+ut3).

1-bt 1-0bt

Theorem 3.2. The general terms of the arrays G is given
by

2 %) n—m k m—1 k4i—m m—2i ibn—k—m
nik = Z Z —i i v a u '

m=0 i=0

Proof. By the definition and the binomial theorem, we have

gy 1 [vt+at® +ut\"
Ik = UNTH T 1-n

1 f1 k
= n—ky [ __ - t2
[t ]<1—bt) (v + at + ut?)
= [t""‘](v + at + ut?)*(1 — bt) "+

— [tn—k] Z Z (m_;) (mi—i) vk+i—mam—2iui§ (k;—j) bjtm-!-j

2 LF) n—m m—i\  k . .
= Z (ﬂ—k—m) (m—l)( )rv +1—'mam ) ;bn_ -m

m=0i=0
2k |3) , _ o
— Z ( ) ( ) (mi—i) prti-mgm=2iyipn—k-m
m=0i=0
This complete the proof. a

Obv1ously, when a = u = 0, we obtain the generalized Pascal
vt

matrix (3, 125;); When u = 0, we obtain the Riordan array

with weighted Delannoy numbers {5, 16, 23] ( —m ”—"_'—‘_%:1) If
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a =b=v=u=1, then the first few terms of this array are

1.0 0 000 -
110000 -
13 1 000
Gz(l’t+t2+t3)= 16 5 100
-t 1-t 19 15 7 10
112 33 28 9 1 .-
NG )

Let D(n, k) be the set of all weighted lattice paths starting
from (0,0) and ending at the point (n, —k), see Figure 4 below.
Let d,  be the sum of all w(P) with P in D(n,k). Then d, =
99n—kn, hence the matrix (dn k)n k>0 is the half array of G. By
Theorem 3.2, _
dn,k = 22" 1Z] (271‘:-"1)( n )(‘m_—i)vn+i-mam—2iuibn—k—m.

m=0 £Li=0 m—i i
Y
4
doo | 910 dao d3o dso X
________ 11 oy sy day
...... 2. A3 @49
..... daz dy3
4.4

Figure 4: Combinatorial interpretation of the matrix (dn )n, keN

Theorem 3.4. The array D = (d,k)nk>0 is given by the
following Riordan array

D= 1 1—at—+/(1—at)2 —4vt(b+ut)
~ \V(i—at2-avt(b+ut)’ 26+ ud) :
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Proof. Since (dn x)n k>0 is the half array of G = (Iilﬁv %ﬁ) ,

it follows from Theorem 2.1 that D = (T(ﬂ%lf:&%)ﬂ-tﬁ’ f (t)), where

f(#) is the compositional inverse of % Then we get f(t) =

1—at—4/(1—at)2—4vt(ut+b) d tf'(t) _ 1
2(ut+b) ’ FOA=bF(®) | /(1—at)?—dvt(ut+b)

1-at—/1—(2a+4bv)t+a?t?
Ifu= 0, then D = (\/l—(2a+tbv)t+a222’ 5b ) ’
the first column is consist of generalized central Delannoy num-
bers [5,23].
1—at—4/1-2at+(a2~4uv)t?
Ifb=0,then D = ( ﬁ2at+zaz_4w)t2, yi-%t )
the first column is consist of generalized central trinomial coef-
ficients [8,14,17].

fa=b=v=u=1,then D= ( - 14_2(%;?;“& )

V/(1-6t-3e2’
and the first few terms of this array are
[ 1 0O 0 0 0 00 - \
3 1 0 0o 0 0 0 ---
15 5 1 0 0 0 O
81 28 7 1 0 00
D=1 450 161 4 9 1 0 0
2673 946 281 66 11 1 0
15894 5642 1742 449 91 13 1

\ssszs;s:::)
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