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Abstract

Let G = (V,E) ,|V| = n, be a simple connected graph. An
edge-colored graph G is rainbow edge-connected if any two vertices
are connected by a path whose edges are colored by distinct colors.
The rainbow connection number of a connected graph G, denoted
by r¢(G), is the smallest number of colors that are needed in order
to make G rainbow edge connected. In this paper we obtain tight
bounds for r¢(G). We use our results to generalize previous results
for graphs with 6(G) > 3.
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1 Introduction

Graphs in this paper are considered as finite, simple, undirected and con-
nected. Let G be a graph G = (V, E) ,|V| =n(G) =n.

A colored graph G = (V, E) is a graph for which there is a function
f:E—{1,2,...,k}, k€ IN. A path P between any two vertices u and v,
is called a rainbow path if no two edges of P have the same color. We denote
by !(P) the number of edges on the path. A graph G is rainbow-connected
(with respect to f) if any two vertices u,v € V are connected by a rainbow
path. In that case f is called a rainbow coloring of G. In case k colors
are used it is called a rainbow k-coloring. The rainbow connection number
of G, r¢(G) (defined in [3] ), is the minimum k for which there exists a
rainbow k—coloring of the edges of G. A rainbow coloring of G using r¢(G)
colors is called a minimum rainbow coloring of G. Clearly, if a graph is
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rainbow connected, then it is also connected. Any connected graph has
a trivial edge coloring that makes it rainbow connected, where each edge
is colored with a distinct color. Furthermore an easy observation is that
r¢(G) < n—1, since one may color the edges of a given spanning tree with
distinct colors and color the remaining edges with one of the already used
colors.

The concept of rainbow coloring has received much attention during
the years (one may look at the recent survey of Li and Sun [5]). However,
since in this paper we deal with upper bounds for the rainbow connection
number, we shall concentrate here only on the relevant papers to our results.

Caro, Lev, Roditty, Tuza and Yuster [2] proved:

Theorem 1.1 If G is a connected graph with n vertices and 6(G) > 3,
then re(G) < 2.

They conjectured also,

Conjecture 1.2 If G is a connected graph with n vertices and 6(G) > 3,
then re(G) < 3.

Schiermeyer proved in [7] the conjecture by showing:

Theorem 1.3 If G is a connected graph with n vertices and §(G) > 3,
then re(G) < 371,

Krivelevich and Yuster in [4] determined the behavior of r¢(G) as a
function of §(G) by proving:

Theorem 1.4 IfG is a connected graph with n vertices, thenre(G) < 3"%00—).

In this paper we find bounds on rc(G) for general graphs. We start with
the following result for 2-edge-connected graphs:

Theorem 1.5 Let G be a 2-edge connected graph different from Cs. Then
re(G) < %(n -1).

We then turn to any connected graph and prove the following bound
for re(G):

Theorem 1.6 Let G be a connected graph with n(G) =n > 3, G # Cs.
Let s be the number of vertices that do not lie on a cycle of G. Then:

re(G) < %n + %s -1 (1)
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In particular if G # Cs and every vertex of G lies on a cycle then

re(G) < 3n— 1. 2)

The above bounds are tight, in the sense that there is an infinite family
{G:}32, of graphs, for which re(G;) meets the bound for every i € IN.

Definition 1.7 We call a mazimal 2-edge connected subgraph of G an e-
block of G.

Then we prove the following:
Theorem 1.8 Let G be a graph different from Cs. Assume G has m e-
blocks and s vertices which do not lie on a cycle. Then
1
re(G) < §n+ Ss+m)-1. 3)

In section 4 we shall apply our results to obtain an extension of Theorem

1.3.
For more basic definitions we follow [8].

2 2-Edge Connected Graphs
The following bound for the rainbow connection number of 2-connected
graphs was obtained in [6]:

Theorem 2.1 Let G be a 2-connected graph of order n (n > 3). Then
r¢(G) < [§], and the upper bound is tight forn > 4.

The following simple corollary of this theorem, shall be very useful to
the sequel.

Corollary 2.2 Let G be a 2-connected graph, such that G # C2,Cs. Then
re(G) < 2(n—1).

Proof Forn >4 and n # 5 we have [3] < 2(n—1).
For n = 5, since G # Cs, it is easy to check that r¢(G) <2 < %(5 -1).
The result is obvious for n = 3. |

Note that the bound in the corollary is the best possible since,

re(Cy) =4 = §(7 -1).

Let G be a 2-edge connected graphs. A block of G is a maximal 2-
connected subgraph of G. We start with the following useful proposition.
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Proposmon 2.3 Every 2-edge connected graph G may be presented as a
union G = U H;, where for each 1 <1i < k, H; is a block of G, such that

for each i # j, |[V(H;)NV(H;)| <1 and E(G) = U‘= E(H;) is a disjoint
union. This presentation of G as a union G = Uf H; is unique.

Proof Let H; be a block of G, (namely any vertex added to H; would
render it a subgraph which is not 2-connected). If G = H; we are done.
Otherwise, let H, be another block of G, different from H;. If H; and H;
share two vertices, then H; U H, is 2-connected, contradicting the maxi-
mality of H;. Therefore, |V(H,) N V(Hy)| < 1. Now, since G is 2-edge
connected, every edge lies on some cycle, and therefore belongs to a block.
Since we have shown that no two blocks of G have a common edge we obtain
E(G) = Uz_ E(H;) is a disjoint union. The uniqueness of the presentation
is easy to prove. ]

Notice that since G is 2-edge-connected a block of G can not be a single
edge.

We construct a graph T whose vertices represent the blocks of G, such
that two vertices of T are connected by an edge if and only if the correspond-
ing blocks of G have a common vertex. Evidently, T' cannot contain a cycle.
Indeed, if T' contains a cycle, then there are vertices vy, va,...,v € V(T)
whose induced subgraph in T is a cycle, and then the union of the corre-
sponding components, U:=1 H; is a 2-connected subgraph of G, contradict-
ing the maximality of the blocks Hy, Hs,..., H;. The tree T is called the
skeleton of the decomposition G = {J H;. ( See Figure 1 for an example).

We are ready now to prove Theorem 1.5:

Proof By proposition 2.3, 1t is possible to decompose G into maximal 2-
connected subgraphs, G = U‘_ H;, such that for each i # j H;, H; have at
most one common vertex, and such that the skeleton of the decomposmon
isatree T.

We now concatenate two components H; and H; of the decomposition,
that share a vertex, namely such that V(H,) N V(H,) = {v} C V(G).
Denote n; = |V(H;)|,i =1,2. If H; and H; are both different from Cs we
have by corollary 2.2:

’I'C(H1UH2)<TC(H1)+1‘C(H2) (n1 1)+ ('ng 1)-—-—((711"'7%2 1) 1),

yielding, 0
re(H, U Hp) < §(n(H1 U Hj) - 1).

Thus, if no maximal 2-connected subgraph H; is Cs, then using induction
we obtain re(G) < 2(n —1).
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(a) (b)

—

Figure 1: Decomposition of 2-edge-connected graphs. Each subgraph H; in
(a) represents a block of G. (b) the corresponding graph T

Now consider the case when H; # Cs and Hy = Cs. In this case only
two new colors are needed to color Hy to obtain a rainbow coloring (see
Figure 2(a)). Then

re(HiUHy) < re(Hy)+2< g(n1 1)+ -2-(712 ~1)

= 2(m+nz=1)=1) = 2(a(HyU Hy) - 1).

Thus, if Hy # Cs, the result r¢(G) < 2(n — 1) follows similarly by
induction.

Assume now that all components in the decomposition of G are Cs.
Then H; has 5 vertices and 3 colors, and each subsequent component
H;,,2 < i < k adds 4 new vertices and 2 new colors. Thus we obtain
7¢(G) = %(n + 1), which yields r¢(G) < (n — 1), since n > 9 in this case.
(See Figure 2(b)).

Following the above considerations, the proof of the Theorem is easily
obtained by induction on the number of blocks. ]

Remark 2.4 The bound in this theorem is best possible since if we consider
a 2-edge-connected graph all whose blocks are Cyq we get

re(G) = g(n —,
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(b)

Figure 2: (a) Concatenation in the case Hy # Cs, Ho = Cs. The edge
marked with '*’ is colored by any of the colors in H;. (b) An example
of coloring a 2-edge connected graph G where all maximal 2-connected
subgraphs are Cs.
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namely there is an infinite family {G:};o, of graphs such that rc(G;) meets
the bound of the theorem for alli.

3 General Graphs

In this section we present bounds on the rainbow connection number of any
connected graph. We rely on the fact that if a vertex lies on a cycle then
it belongs to a maximal 2-edge connected subgraph of G.

The next proposition gives us a useful decomposition:

Proposition 3.1 If Hy, Hy are two different e-blocks of G then,
[V(H)NV(Hs)| =0.

Remark 3.2 Assume that H is an e-block of G and H # G. Then we can
extend H by attaching to it an edge Ty that does not belong to a cycle. Such
thatz € V(H) and y ¢ V(H).

Let G be a graph with m e-blocks and s vertices which do not lie on a
cycle. Then we can represent G by a tree T with s + m vertices, where m
vertices of T represent the e-blocks H; of G and the remaining s vertices of
T represent vertices of G which do not lie on a cycle. The tree T is called
the 2-edge-skeleton of G. The union U:’;l H; has a total of n — s vertices,
and the 2-edge-skeleton T has s + m — 1 edges. It is easy to see that for
any connected graph there corresponds a unique 2-edge-skeleton.

Proof of Theorem 1.8: Let M be the set of e-blocks of G. Then
M can be partitioned as M = M’ U M", where M’ contains all e-blocks
different from Cs and M’ contains all e-blocks that are Cs. We have (by
theorem 1.5):

re(H;) = —g(ni -1)= gni -= (4)

for each H; € M’, and n; = |V (H;)|.

Assume now that G has at least one e-block different from Cs. Since
the 2-edge-skeleton of G, T', is a tree, and since there is at least one e-block
which is not Cs, we may attach to each H; € M"” an adjacent edge e; as
describe in remark 3.2, such that if H; # H; are in M" than H; and H;
are attached distinct edges.

We now apply the following coloring to G: Each e-block is rainbow
colored, such that whenever H; # H; (H;,H; € M) different colors are
used. Each e-block H; € M" is colored using 3 colors, where the edge we
attached to it is colored with one of the three colors, (see Figure 3).

Thus, for each H; € M" we obtain

re(H;) =3 < §(5—1)+15 %(ni—1)+1. (5)
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Figure 3: Colorings for the case where the e-block is Cs and we attache to
it an edge.

Now, if we color all subgraphs H; € M according to the coloring de-
scribed above, then for every H; € M" the adjacent edge e; is colored with
one of the colors of H;. The remaining edges that have not yet been colored
are colored by additional new colors, so that we obtain a rainbow coloring
of G. The total number of colors used follows from (4) and (5) so that,

@) < ¥ fm-+ ¥ (Fm-n+1)

H.ieM’ H.eM"
(# edges not on a cycle, not attached to M” subgraphs)

< Y %(ni—l)'l's-l-TR—l

H,eM
2 2
= §(n—s)—§m+s+m-—1
2 1
= §n+§(s+m)—1
As required.

We still need to prove the result in the case where all the e-blocks H;
of G are Cs. As in the previous case we attach each e-block a neighboring
edge. If each e-block can be attached a different edge, then the previous
analysis holds, and we obtain the same result. If there is an e-block that
cannot be augmented with a unique edge (there is at most one such e-block)
then it is easy to see that we must have s = O (there are no vertices that do
not lie on a cycle) and m > 2 (we assumed G # Cs). Therefore, we have
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Figure 4: A chain of C, subgraphs.

in this case n = 5m and r¢(G) = 3m, hence:

2 1

2 1

§n+§(s+m)—1 = §5m+§m—1
= 3m+§m—1
> 3m=rc(G)

Remark 3.3 Notice that if G is 2-edge connected (m = 1, s = 0) we obtain
re(G) < #n+ 3-1= %(n — 1), which is the bound in Theorem 1.5

Remark 3.4 Let G be a graph composed of a linear chain of Cy where each
Cy4 is connected to each neighbor by a single edge, as shouwn in Figure 4.
Then we havem = 2, s =0 and 7¢(G) =2m+m -1 = %n-}- %(s +m)—1.
That is the bound of theorem 1.8 is tight.

The following lemma is easy to prove:
Lemma 3.5 Let G be a gmph in which every verter lies on a cycle then
there is a decomposition V(G) = -, Vi where the subgraph H; spanned

byV; (1<i<k)isane- block of G and all the e-blocks are disjoint.

For a graph G in which every vertex lies on a cycle the vertices of the

2-edge-skeleton T of G are the e-blocks of G.
In the next theorem we shall focus our attention to connected graphs in

which every vertex lies on a cycle.

Theorem 3. 6 If G is a graph where every vertez lies on o cycle, G # Cs,
thenre(G) < 3n—1

Proof Since every vertex belongs to a cycle, we have by theorem 1.8:

re(G) < —n + -m— 1
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Recall that we denote n = n(G), m is the number of e-blocks of G, and
V(G) =L, V; is a disjoint union where, V; are the vertices of the e-block
H;. Let m = m; + my + m3, where m,; is the number of e-blocks which
are C3, mo is the number of e-blocks which are Cs and mg3 is the number
of the remaining e-blocks. Similarly let n = n; + ns + n3, where n; = 3m;
is the number of all vertices in the m; e-blocks, ny = 5my is the number
of all vertices in the mq e-blocks and n3 is the number of all vertices in the
remaining e-blocks.

If m; = 0 then 4m < n and r¢(G) < §n+ %m— 1< %n — 1. Thus, we
may assume that m; # 0.

Let M be the set of e-blocks which are not Cs or Cs. Then m3 = |M|.
Assume first m3 # 0. Since there are m; +mg +m3 —1 edges in the 2-edge-
skeleton of G, we may attach to each component H; ,which is either C3 or
Cs an adjacent edge, such that no two components are attached with the
same edge. We color each Cs with one color and the one edge attached to
it with another color and we color each Cs with three colors and the edge
attached to it with one of these colors (see Figure 3 for an example). All
other components are 2-edge connected different from Cs and according to
theorem 1.5 we use at most additional Z(¢; — 1) colors to color each 2-edge
connected block H; in M where t; = |V(H;)|. The remaining m3 — 1 edges
are colored with new colors. Thus we get:

2
re(G) < 2my +3mo+ E “(ti—-1)+m3-1
3
H;eM

31 52 33 3m3 ms3

2 1 3
—_ - -1 < = —
3n+3m3 1__4n 1

IA

since 4m3 < n.
The only case left is the one where m; # 0 and m3 = 0.
In this case we attach to each e-component an edge except one of the
C3 components. We color the graph as in the previous case yielding:
re(G) < 3mp+2(mi —1)+1=2np+%m-1<2n-1<3n-1.
]

Remark 3.7 The bound obtained in Theorem 3.6 is tight in the sense that
there is an infinite family of graphs {G;};2, such that re(G;) = 3n(G;i) -1
for each i € N. A graph G; in the family is defined by taking a chain of Cy
, connected to each other by a single edge. (See figure 4).

We are ready now for the proof of theorem 1.6



Proof Define the following contraction on G: In each step of the con-
traction, one of the s vertices that do not lie on a cycle is replaced by an
adjacent vertex of the 2-edge-skeleton T, while the edge connecting the two
is deleted.

At the end of this process a graph H with n — s vertices and |E(G)| —s
edges is obtained such that each vertex of H lies on a cycle. Then by
Theorem 3.6 it follows that rc(H) < 3(n—s) - 1.

Since G is obtained from H by adding s edges and s vertices we get:

re(G)<3(n—s)+s—1=3n+3s-1

as required [ ]

4 Extension of the results for §(G) > 3

In this section we extend the results of theorem 1.3.
We start with the following proposition:

Proposition 4.1 Let G be o 2-edge connected graph. Assume that there
is at most one vertez v € V(G) for which d(v) = 2 and d(u) > 3 for each
u € V(G)\{v}. Thenrc(G) < 3n-1

Proof From the assumptions it follows that G # Cjs and that it is 2-edge
connected. Therefore, by Theorem 1.5, 7¢(G) < 2(n—1). If n = n(G) > 13,
then 2(n — 1) < 3n — I as required. )

In table 1 we investigate the cases where n < 12.

Since r¢(G) is always a natural number, we see from the table that the
claim is satisfied for n < 12 except the cases n = 4,6, 7, 10 which should be
examined separately. The cases n = 4, n = 6 and n = 7 are simple. The
case n = 10 is treated in the appendix [

Let now G be a simple graph satisfying 6(G) > 3. Let T be the 2-
edge-skeleton of G. In particular, since 6(G) > 3 we get that each leaf of
T represents an e-block of G. We denote by I the number of leaves of T'.
Then we have the following:

Theorem 4.2 Let G be a graph with 6(G) > 3. Then

1. If G is 2-edge connected then re(G) < 3n — %

2. If G is not 2-edge connected then (using the notation above):
3 1, 3

'I"C(G) S Zn— -2~l— 5
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n [Zn-1)[3n—1
4 2 13
5 22 2
6 3-2- 2%
7 4 3
8 4% 4%
9 51 5
10 6 53
11 62 6i
12 7% 7%

In particular we get the following corollary:

Corollary 4.3 Let G be a graph with 6(G) > 3. Then
1. If G is 2-edge connected then re(G) < %n -1

2. If G is not 2-edge connected then re(G) < 3n — 3.

We start by proving the corollary which follows directly from the theo-
rem:
Proof Case (1) is case (1) of the theorem. In case (2) we observe that the
2-edge-skeleton of G has at least two leaves, hence r¢(G) < %n -3:2- % =
3 5
zn - 3- | |

Case (2) of Corollary 4.3 was also proved in [7].

Remark 4.4 The bound of case (1) of the theorem is tight, since forn =5,
re(G) =2 = %5 - %, as demonstrated in figure 5.

Remark 4.5 The bound of case (2) of the corollary is tight. Indeed, let
G = (V,E) be the graph as in Figure 6, where |V| = 4k + 10. One can
easily observe that r¢(G) =2+1+3k+2=3k+5=3n-§.

We are ready now for the proof of theorem 4.2:
Proof Part (1) of the theorem (when G is 2-edge connected) follows from
proposition 4.1.

We now prove part (2). Let T be the 2-edge-skeleton of G. Denote by
k the number of vertices of T' (k > 2). Each vertex of T is either a single
vertex of G or an e-block of G. Let ! be the number of leaves of T and m
the number of vertices in T' which are not leaves (namely k =1 + m). We
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Figure 5: See remark 4.4

(X X J

K terms

Figure 6: A family of graphs, parameterized by the number k of C} e-
components.
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denote by V* the set of vertices of T" which are not leaves. Thus, we have
for the tree T

I= ) (dv)—2)+2. (6)
veV*"
(This expression for the number of leaves is valid for every tree with at
least two vertices). Notice that since §(G) > 3, the leaves of T cannot
correspond to single vertices of G and therefore they must correspond to
2-edge connected subgraphs of G.
Now in order to prove part (2) we begin first with a special case, namely,
all vertices in V* are single vertices of G. Then, since §(G) > 3, we have
d(v) > 3 for every vertex v € V* and from (6) we get:

I>m+2. (7)

Now, every leaf L of T is a non trivial 2-edge connected subgraph of G,
and since §(G) > 3 we get d(v) > 3 for every vertex v € L, except (maybe)
for a single vertex whose degree is 2. We thus get by Proposition 4.1, that
every leaf L of T satisfies

re(L) < S VD] - 7. ®
We now color G as follows:

e Every leaf L of G is rainbow colored, such that the number of colors
at most 2 |V(L)| - % (which is possible according to (8)).

o We use different colors for different leaves.

e The remaining [ + m — 1 edges of G are colored using ! + m — 1 new
colors.

Then, we obtain a rainbow coloring of G. If we denote the leaves of T
by L;,j =1,2,...,1 we get, by the arguments above that

re(G) <

M...

3 7
SWA(L) — £ —
1 <4| (L)) 4) +l+m-—-1

: 3, 1
(Z |V(LJ)| +m) - Zl + Zm -1

<.
i

]
NS

j=1

Observe that the total number of vertices of Gis n = Z;=1 V(L) +m
and that from inequality (7) one has m <[ — 2 so that,



re(G) < §-n——l+ (l— )—-1

namely: 3 3
re(G) £ = i —l -3 (9)

as stated in the Theorem.

In the general case let o be the number of vertices of T' which are e-
blocks of G. We notice that in part (2) of the theorem a > 2. Now, if
o = 2, then T is a path with two leaves which are 2-edge connected, and
all the other vertices (if there are other vertices) are vertices of G. We then
get that part (2) is a consequence of the special case we previously proved.

We continue by induction over . Assume that o > 3, and that part (2)
of the theorem is valid for every graph G for which the number of vertices
of T which correspond to e-blocks of G is less than « (but larger or equal
to 2). We notice that since & > 3, there exists in T at least one vertex
that is not a leaf. If all the non-leaf vertices of T are vertices of G then the
result was proved earlier. Thus, there is in T a non-leaf vertex H, which is
an e-block of G. We consider two cases:

case 1: Assume that the degree of H in T is at least 3. We replace H
by a single vertex, vy and get a graph G;, with n(G1) = n, =
n— |V(H)| + 1, and the number of e-blocks is & — 1. Any vertex of
T that was previously adjacent to H will be adjacent to vy. Now,
since the degree of H in T was at least 3, the degree of vy in G is
also at least 3, and it is easy to see that all the conditions of the
theorem m case ( ) hold for G;. Therefore, by induction, we get
re(Gy) = 4n1 l — 4. (We notice that the number of leaves of T is
identical to the number of leaves in the 2-edge-skeleton of G).

Now, since H is 2-edge connected and in particular every vertex of
it lies on a cycle, we get by Theorem 3.6 that re(H) < 3|V(H)| - 1.
Thus, we have

re(G) < re(Gy) +re(H)

3 1. 3 3
< Sppe-cl-Z24Z _
< Sm-gi-g+3vani-1

3 1., 3 1
< = S B Wl A
< Sm+veni-n-z-3-7
3,17
T4 2" 4

3 1., 3
< Tpe-1=-2
< "malta

and claim (2) of the theorem is satisfied.
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case 2: The degree of H in T is 2. (It cannot have a degree 1, as H is
not a leaf of T'). Then H has exactly two neighbors in T. We now
omit H from T and connect its two neighbors by an edge. We denote
the graph obtained by G;. If one of the neighbors of H is a 2-edge
connected subgraph of G (or possibly, both neighbors), then the edge
added will connect the vertices which were connected to H. Now,
G, satisfies condition (2) of the theorem and n(G;) = n — |V(H)|.
Furthermore, the number of leaves in the 2-edge-skeleton tree of G; is
also !, and the number of non-leaf e-blocks in G, is o — 1. Therefore
we obtain from the induction’s hypothesis:

3 1, 3
re(Gh) £ 7 (n = |V(H)]) - 3t— 3 (10)
Thus,
re(G) < 7re(Gy)+7re(H)+1
3 i, 3 3

S a-VE) -5l 5+ IVE) - 141

= 3,53

T4 2 2
as required.

5 appendix

Let G be a 2-edge connected graph, with n(G) = 10. We assume that there
is at most one vertex v € V(G) for which d(v) = 2 and d(u) > 3 for each
u € V(G)\{v}. We need to show that 7¢(G) < 5 (so that we shall have
re(G) < 3n—1.

We decompose G into its e-blocks, obtaining the 2-edge-skeleton T in-
duced by this decomposition. Evidently, T cannot have a leaf which corre-
sponds to an e-block which is C3 (otherwise the constraint on the degrees is
violated). We analyze G according to the number of vertices in its largest

e-block, G*

e n(G*) = 4. In this case since it is impossible that any leaf of the 2-
edge-skeleton T corresponds to a Cs e-block, the only possible struc-
ture of T is a 3 chain, where each vertex in the chain is an e-block
with 4 vertices. By the degree constraints at least one of the e-blocks
must be K4. Thus we get r¢(G)=2+2+1=5.
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e n(G*) = 5. The only possibility in this case is that T is constructed of
e-blocks of sizes 5,4 and 3. Since the C3 component cannot be a leaf,
it has to be the middle e-block in the 3-chain T. Then, by the degree
constrain the 4-node e-block is K4, and since for the G* e-block less
than 3 colors are required, we finally get r¢(G) <1+143=5.

e n(G*) = 6. The only possibility in this case is that T has two ver-
tices that correspond to e-blocks with 6 and 5 vertices. Then using
proposition 4.1 for 6 and 5-vertex e-blocks we get r¢(G) < 2+3 =5.

e n(G*) = 7. The only possibility in this case is that T has two vertices
that correspond to e-blocks with 7 and 4 vertices. For the 7 vertex
2-edge connected subgraph G; we have rc(G;) < 37— % = 31, namely
r¢(G;) < 3. The 4 vertex e-block requires no more than 2 colors, so
we get re(G) < 3+2=35.

e n(G*) = 10, namely that G has a single e-block. In other words G is a
2-connected graph. Using Theorem 2.1 we get r¢(G) < 5 as required.
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