A Square Time Algorithm for Cyclic Edge
Connectivity of Planar Graphs

Dingjun Lou

Department of Computer Science
Sun Yatsen University

Guangzhou 510275
People’s Republic of China

Abstract

In this paper, we introduce an O(n?) time algorithm to determine
the cyclic edge connectivity of a planar graph, where 7 is the order
of the planar graph. This is the first correct square time algorithm
for cyclic edge connectivity of planar graphs.

Keywords: Square time algorithm; cyclic edge connectivity; pla-
nar graph

1 Introduction and terminology

All graphs in this paper are finite, undirected and connected. Our algo-
rithm only determines the cyclic edge connectivity of simple planar graphs.
For the terminology and notation not defined in this paper, the reader is
referred to [2].

Let G = (V, E) be a graph, where V is the vertex set of G and E is the
edge set of G. We denote |V| by n(G) and |E| by m(G). Let S C V(G).
The subgraph of G with vertex set S and edge set consisting of all edges in
G with both ends in S is called the induced subgraph of G on S, denoted
by G[S]. Let v be a vertex of G. We denote by d(v) the degree of v in G.

A graph G is called a planar graph if it can be drawn in the plane so that
its edges intersect only at their ends. Such a drawing of a planar graph G
is called a planar embedding of G. A planar embedding of G partitions the
rest of the plane into a number of connected regions. The closures of these
regions are called the faces of G. We denote by ¢(G) the number of faces
of G. Given a planar embedding of G, we can define another graph G* as

ARS COMBINATORIA 133(2017), pp. 69-92

follows: corresponding to each face f of G there is a vertex f* of G*, and
corresponding to each edge e of G there is an edge e* of G*; two vertices
f* and g* are joined by the edge e* in G* if and only if their corresponding
faces f and g are separated by the edge e in G. Then G* is called the dual
graph of G.

Let C = v,vp---vxv; be a cycle in a graph G. Then |V(C)| = k is the
length of C. A cycle of length & is called a k-cycle. A chord of C is an
edge zy in G such that z,y € V(C) but zy ¢ E(C). A minimal cycle C
of G is a cycle without chords. Let G be a connected planar graph and
be a planar embedding, and C be a cycle in G. If there is a vertex of G
in the inner region and outer region of C respectively, then C is called a
separating cycle of G.

Let G be a connected graph. A cut vertex w (cut edge e) of G is a
vertex (an edge) such that G —w (G —e) is not connected. The biconnected
components of G are those maximal subgraphs of G that have no cut vertex.
The connectivity (edge connectivity) of G, denoted by «(G) (A(G)) is
the minimum number of vertices (edges) whose deletion disconnects G. If
G = K, then (G) = n — 1. A cyclic edge cutset S of G is an edge
cutset whose deletion disconnects G such that at least two of components
of G— S contain a cycle respectively. The cyclic edge connectivity, denoted
by c¢A(G), is the cardinality of a minimum cyclic edge cutset of G. If no
cyclic edge cutset exists in G, we say that cA(G) = co.

By Lemma 2 in (8], deleting a pendant tree from a graph G does not
alter the cyclic edge connectivity of G. Let G be a simple connected graph
and let G’ be obtained from G by deleting all pendant trees (G’ is a single
vertex if G is a tree). We call the graph G’ the reduced form of graph G.
By Lemma 3 in [8], we have ¢A(G’) = cA(G).

The concept of cyclic edge connectivity was introduced by Tait [14] in
the proof of the Four Colour Theorem. Plummer [13] showed that the
cyclic edge connectivity of 5-connected planar graphs is at most 13, but
that of 4-connected planar graphs can be any natural number at least 4.
So it is important to find out the cyclic edge connectivity of a planar graph
fast. In (4] and [6], Holton, Lou and Plummer showed the relation between
cyclic edge connectivity and n-extendable graphs. In a paper of Peroche
[12], several sorts of connectivity, including cyclic edge connectivity, and
their relation are studied. Nedela and Skoviera [11] introduced the concept
of atom. If B is a cyclic edge cutset of size cA(G), then a subgraph P of G
such that each edge in B has exactly one incident vertex in P is called a
cyclic part. An atom is a cyclic part that is minimal under inclusion. In (3],
Dvorak, Kara, Kral and Pangrac obtained the first efficient algorithm to
determine the cyclic edge connectivity of cubic graphs. Lou and Wang (7]
and (8] obtained the first efficient algorithm to determine the cyclic edge
connectivity of k-regular graphs for k¥ > 3 and an efficient algorithm to

70

determine whether a general graph has infinite cyclic edge connectivity.

In {9], Yuntin Lu and Xiu Lu claimed to obtain an O(n?) time algo-
rithm to determine the cyclic edge connectivity of planar graphs. The idea
of their algorithm is correct, but the time complexity analysis is wrong,
which we shall explain in next section. In this paper, we shall introduce a
correct algorithm to determine the cyclic edge connectivity of simple planar
graphs, of which the time complexity is O(n?).

2 A simple algorithm for cyclic edge connec-
tivity

First, we show a theorem which is the base of the following simple algo-

rithm and our main algorithm.

Theorem 1: Let H” be a planar embedding of a planar graph H’. Then
any minimal cyclic edge cutset of H’' is an edge cutset S of H” such that
H” — S has two components C; and Cz each of which has a face of H”.
Proof. Let S be a minimal cyclic edge cutset of H'. Since S is a minimal
cyclic edge cutset of H”, H” — S has a bipartition of the plane with two
components C) and C, such that C; is on one side (region) and Cs is on
the other side (region), or C; is on outside (region) and C, is on inside
(region), and S consists of only edges from vertices of C) to vertices of Cy,
but not any edge with both ends in C) or Cj. Since C] has a cycle D and
C) is the induced subgraph of H” on V(C}), the induced subgraph of H”
on D and the vertices inside D remains in C;, so C; has a face of H". By
the same reason, C5 also has a face of H”. Notice that, in the case that
C) is on outside (region), C; has the outer face of H”. This completes the
proof of Theorem 1. O

Then we give a simple algorithm to determine the cyclic edge connec-
tivity of a planar graph.

Simple algorithm:
1. Use the algorithm in [5] to find a planar embedding G’ of the input
graph G and the set F of all faces of G;
2. IF, for any two faces C) and Cs in F, V(C;)NV(C3) # 0, THEN cA(G)
= o0, and the algorithm exits;
3. s — |E(G)|;
4. FOR any two faces C; and Cs in F DO
BEGIN

71

5. IF V(C,)NV(C;) = § THEN

6. Construct a new graph H such that V(H) = V(G) U {z,y}, where
z,y ¢ V(G), and E(H) contains all edges in E(G), and for each u € V(C,),
add d(u) — 2 multiple edges between z and v, and for each v € V(C3), add
d(v) — 2 multiple edges between y and v;

7. Use the algorithm in [10] to find the minimum edge cutset S;, to separate
z and y; :

8. s « min{s,|S;y|};

1

9. Then cA(G) = s and the algorithm exits.

Lus’ algorithm [9] is similar to the above simple algorithm, but at step
1, they try to find all minimal cycles, and hence is more complicated than
the above algorithm.

However, the time complexity of the simple algorithm is not O(n?). By
the Euler’s Formula, ¢ = m — n + 2, for a planar graph, m can be at most
3n -6, so ¢ is O(n). The FOR loop at step 4 is for the combination of
any two faces in F, so it is excecuted O(n?) times, and the algorithm at
step 7 takes O(mn) time. So the whole algorithm takes O(n®m) time. For
planar graphs, m < 3n — 6 and m is O(n). So the time complexity of the
simple algorithm is O(n?).

3 The main algorithm

Now we introduce our main algorithm to determine the cyclic edge con-
nectivity of a simple planar graph H. At steps 1 and 2, we deal with the
cases that cA(H) = co and cA(H) = 1. After step 3, by Theorem 2 in next
section, we claim that when A(H) > 2, the length c of a shortest separating
cycle in the dual graph G of the planar embedding H” of H is the cyclic
edge connectivity of H” and hence is cA(H). This is the main idea of our
algorithm.

We use pseudo PASCAL to describe the algorithm. For the meaning of
data structure in the algorithm, the reader is referred to the theorems of
correctness proof of the algorithms in next section.

Main algorithm

Input: A simple planar graph H.

Output: The cyclic edge connectivity cA(H) of H.

BEGIN

1. Use the algorithm in [8] to determine whether the cyclic edge connectiv-
ity of H is infinite. If it is, cA(H) = oo and the algorithm exits. Otherwise,
delete all pendent trees of H to get reduced form H' of H;

72

2. Use the DFS algorithm in [1] to find all biconnected components of H’,
if one of the components is an edge, then A(H’) = 1, and then cA(H) =1
and the algorithm exits (Since H’ does not have a pendent tree, any cut
edge is a cyclic edge cutset of H’, and hence it is a cyclic edge cutset of
size 1 in H);

/* If the algorithm reaches here, H' is 2-edge-connected */
3. Use the algorithm in [5] to determine whether H' is planar. If it is,
find a planar embedding H” of H’ , and return all faces F(1] ~ F[¢(H")],
each F[f] is a circular linked list of vertices on the boundary of face f in
clockwise order;
4. Use procedure Build AdjacencyList to build the dual graph G of H” and
to build the adjacency list AL[v] for every vertex v of G such that AL[v] is
a bidirectional linked list, and all vertices adjacent to v are listed in AL[v]
in the same order as they appear when we go around v clockwise in the
planar embedding of G, which is the dual graph of H”. Notice that if G
has multiple edges, for every edge uv, u appears once in AL[v]. That is, u
may appear multiple times in AL[v];
5. Use procedure Separating_2.Cycle to determine whether G has a sepa-
rating 2-cycle, if it returns true, then ¢cA(H) = 2 and the algorithm exits;
Otherwise, we go to step 6;
6. Use procedure DeleteMultipleEdges to delete all consecutive multiple
edges incident with v in AL[v] for every vertex v of G such that for con-
secutive multiple copies of each edge uv in AL[v], we keep only one copy of
uv. Notice that after step 5, G has no separating 2-cycle, so step 6 deletes
all multiple edges and keeps only one copy;

/* If the algorithm reaches here, G is a simple graph and every sepa-
rating cycle of G has length at least 3 */
7. ¢ — n(G); /* Assign initial value to ¢ */
8. Use procedure SeparatingCycle to find the length c of a shortest sepa-
rating cycle in G, then cA(H) = ¢ and the algorithm exits;
END.

PROCEDURE BuildAdjacencyList;
BEGIN
/* Assign initial values */
1. FOR u~1 TO n(H”) DO
2. FOR v<1 TO n(H”) DO
BEGIN
3. A[u,v].FirstVertex—O0;
4. Afu,v].SecondVertex«0;
5. Alu,v].EdgeNumber«0;
END;
6. EdgeNum«-0;

73

7. FOR face—1 TO ¢(H") DO
BEGIN
8. u«—the first vertex of F[face];
9. head«~u;
10. v—0; /* 0 is not any vertex */
11. WHILE v#head DO
BEGIN
12. vthe next vertex of F[face];
13. IF A[u,v].FirstVertex=0 THEN
BEGIN
14. A[u,v].FirstVertex«—face;
15. EdgeNum—EdgeNum+1;
16. A[u,v].EdgeNumber—EdgeNum;
17. A[v,u].FirstVertex« A[u,v].FirstVertex;
18. A[v,u].EdgeNumber«—A[u,v]. EdgeNumber;
END
19. ELSE
BEGIN
20. Alu,v].SecondVertex—face;
21. A[v,u].SecondVertex«—A[u,v].Second Vertex;
END;
22. ue—v;
END; /* WHILE */
END; /* FOR */
23. FOR face—1 TO ¢(H”) DO
24. AlL[face] is set to be an empty list;
25. FOR face—1 TO ¢(H”) DO
BEGIN
26. u«first vertex of F|face];
27. head«—u;
28. v—0;
29. WHILE v#head DO
BEGIN
30. vethe next vertex of F[face];
31. Set up a new record CV;
32. IF u=head THEN
33. CV.MARK«1 /* It is the first element of AL[face] */
34. ELSE
35. CV.MARKO0; /* It is one of the other elements of AL[face] */
36. IF Alu,v].FirstVertex=face THEN
BEGIN
37. CV.VERTEX—A[u,v].SecondVertex;
38. CV.EDGENUM«—A[u,v].EdgeNumber;

74

END
39. ELSE IF A[u,v].SecondVertex=face THEN
BEGIN
40. CV.VERTEX«+A|u,v].FirstVertex;
42. CV.EDGENUM«~A{[u,v].EdgeNumber;
END
42. ELSE ERROR;
43. IF face is not the outer face of H” THEN
44. Add CV to the tail of adjacency list AL[face] to make AL(face] a
bidirectional linked list
45. ELSE Add CV to the head of adjacency list AL[face] to make AL(face]
a bidirectional linked list;
46. uev;
END; /* WHILE */
47. IF face is the outer face of H” THEN
48. Let head pointer AL[face] point to the last element of the adjacency
list, of which the MARK field is 1;
END; /* FOR*/
END; /* PROCEDURE */

PROCEDURE Separating_2_Cycle;
BEGIN
1. ue1l;
2. foundcycle«—false;
3. WHILE u < n(G) AND NOT foundcycle DO
BEGIN

. FOR each vertex w in V(G) DO Visited[w]—false;
. head—MARK field of the first vertex in AL[ul;
. FVERTEX~VERTEX field of the first vertex in AL[u];
w.MARK~MARK field of the next vertex in AL[u];
. w.VERTEX«~VERTEX field of the above vertex in AL[u];
9. Visited[FVERTEX]«—true;
10. 2_Cycle«—false;
11. WHILE w.MARKs#head AND NOT foundcycle AND NOT 2_Cycle
DO
12. IF Visited[w.VERTEX| THEN

BEGIN
13. z—VERTEX field of the vertex prior to w in AL[u];
14. IF z#w.VERTEX THEN

BEGIN
15. /* Let w denote the current element w in AL[u]; */
16. 2_Cycle«—true;
17. x MARK—MARK field of the vertex next to w in AL[u];

o N OO

75

18,
19.
20.
21.
22.

23.
24.

25.

26.
27.

28.

29.
30.
31

32.

33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

43.
44.

45.
46.
47.

48.

x.VERTEX—VERTEX field of the above vertex in AL[u];
WHILE x.MARKs#head AND NOT foundcycle DO

IF x. VERTEX#w.VERTEX THEN

foundcycle«~true

ELSE

BEGIN

x.MARK«—MARK field of the next vertex in AL[u];
x.VERTEX—VERTEX field of the above vertex in AL[u];
END; /* WHILE */

END /* IF z#w.VERTEX */

ELSE /* z=w.VERTEX */

BEGIN

w.MARK~—MARK field of the next vertex of w in AL{u};
w.VERTEX—VERTEX field of the above vertex in AL[u];
END;

END /* IF Visited|w.VERTEX] */

ELSE /* NOT Visited[w.VERTEX] */

BEGIN

Visited{w.VERTEX] «true;

w.MARK~—MARK field of the next vertex in AL[u];
w.VERTEX«—VERTEX field of the above vertex in ALul;
END; /* WHILE */

IF 2_Cycle AND NOT foundcycle THEN

BEGIN

Redgenum—EDGENUM field of w in AL[u};
x.VERTEX—VERTEX field of the vertex prior to w in AL[u];
WHILE x.VERTEX#w.VERTEX DO
x.VERTEX—VERTEX field of the prior vertex in AL[u];
Ledgenum—EDGENUM field of x in AL[u];
x.MARK+—MARK field of the vertex x in AL[u];

WHILE x. MARKs#head AND NOT foundcycle DO

IF x.VERTEX#w.VERTEX THEN

foundcycle—true

ELSE

BEGIN

x.MARK—MARK field of the prior vertex in AL[u];
x.VERTEX«—VERTEX field of the above vertex in AL{u];
END; /* WHILE */

IF x. MARK=head AND x.VERTEX#w.VERTEX THEN
foundcycle—true;

IF NOT foundcycle THEN

BEGIN

v—w.VERTEX;

76

49. x EDGENUM—EDGENUM field of the first vertex in AL[v];
50. x. VERTEX«—VERTEX field of the above vertex in AL[v];
51. WHILE x.EDGENUM#Redgenum DO
BEGIN
52. x. EDGENUM—EDGENUM field of the prior vertex in AL[v];
53. x. VERTEX—VERTEX field of the above vertex in AL[v];
END;
54. IF x.VERTEX=u THEN
BEGIN
55. x. VERTEX—~VERTEX field of the prior vertex in AL[v];
56. x. EDGENUM~EDGENUM field of the above vertex in AL{v];
57. WHILE x. EDGENUM=#Ledgenum AND NOT foundcycle DO
58. IF x.VERTEX#u THEN
59. foundcycle«—true
60. ELSE
BEGIN
61. x.VERTEX—VERTEX field of the prior vertex in AL[v];
62. x EDGENUM~—EDGENUM field of the above vertex in AL[v];
END; /* WHILE */
END /* IF x.VERTEX=u */
63. ELSE ERROR,;
END; /* IF NOT foundcycle */
END; /* IF 2_cycle AND NOT foundcycle */
64. u—u+1;
END; /* WHILE */
65. IF foundcycle THEN RETURN(true)
66. ELSE RETURN(false);
END; /* PROCEDURE */

PROCEDURE DeleteMultipleEdges;
BEGIN
1. FOR each vertex w in V(G) DO
BEGIN
. head—MARK field of the first vertex in AL[w];
. prior—VERTEX field of the first vertex in AL{w];
. v.MARK+—MARK field of the next vertex in AL[w];
. v.VERTEX«~VERTEX field of the above vertex in AL[w}];
WHILE v.MARK#head DO
. IF v.VERTEX=prior THEN
BEGIN
8. Delete the vertex v from AL[w];
9. vMARK—MARK field of the next vertex in AL[w]
10. v.VERTEX«—VERTEX field of the above vertex in AL[w];

NO RN

77

END
11. ELSE
BEGIN
12. prior—v.VERTEX;
13. v.MARK—MARK field of the next vertex in AL[w];
14. v.VERTEX~VERTEX field of the above vertex in AL[w];
END; /* WHILE */
/* Now v MARK=head */
15. mark—MARK field of the vertex prior to v in AL[w];
16. IF mark#head AND v.VERTEX=prior THEN
17. delete the vertex prior to v in AL[w];
END; /* FOR */
END; /* PROCEDURE */

PROCEDURE SeparatingCycle;
BEGIN
1. FOR each vertex w in V(G) DO
/* For each vertex w in G, use the Breadth First Search strategy to find
a shortest separating cycle containing w, then find a shortest separating
cycle C in G among these cycles, and return ¢ = |V(C)| */
BEGIN
/* Assign the initial values to variables */
. FOR each vertex v in V(G) DO
BEGIN
. Ancestor[v]«0;
. Level[v]—0;
. Count[v]—0;
. Father[v]—0;
. Lbranch(v}«—false;
. Rbranch([v]—false;
. Visited([v]«false;
10. Newbranch([v]«—false; "
11. AL[v] points to the first vertex of the adjacency list of v of which the
MARK field is 1 ;
END;
12. Set Queue empty;
/* Process w first, and we shall build the BFS tree with root w at the
bottom and the tree above*/
13. counts«—1;
14. Visited[w]«—true;
15. Count[w]«counts;
16. Level[w]—0;
17. i—0; /* i marks the ith child (from left to right) of the root w */

]

O 00N Uk W

78

18. CL«1; /* CL is the current level to process in the BFS tree */
19. Put Lhead at the tail of Queue;
/* Lhead is a symbol to mark the head of one level of the BFS tree */
20. FOR each vertex v in AL[w] DO
BEGIN /* Put the vertices adjacent to w into Queue */
21, i—itl;
22. Ancestor|[v]—i;
/* We set the ancestor of the ith child v of w and all v’s descendants
to bei*/
23. Level[v]—CL;
24. Father[v]«w;
25. counts—counts+1;
26. Count[v]«—counts;
27. Visited|v]«—true;
28. Put v to the tail of Queue;
END;
29. Put Ltail to the tail of Queue;
/* Ltail is a symbol to mark the tail of one level of the BFS tree */
30. foundcycle—false;
31. Newbranch([w]«—true;
32. exits«false;
33. WHILE ¢ > 2CL+2 AND NOT foundcycle AND NOT exits AND i >
2 DO
BEGIN
/* Process the whole BFS tree rooted at w and the initial value of c is
n(G) at step 7 in the main algorithm*/
34. Take Lhead out of Queue;
35. Put it to the tail of Queue;
36. IF the first element in Queue is Ltail THEN exits«—true
37. ELSE
BEGIN
38. head«the first vertex of Queue;
/* It is not taken out of Queue */
39. ¢/ —¢;
END;
40, WHILE the first element of Queue is not Ltail AND NOT (¢’ < 2CL+1)
DO
BEGIN /* Process one level of the BFS tree */
41. Take one vertex v out from the head of Queue;
42. Search AL[v] until we find Father[v] in AL[v];
43. u—the next vertex of Father[v] in AL[v];
44. WHILE u is not Father[v] DO
BEGIN /* Process each vertex u in AL{v] */

79

45. IF NOT Visited[u] THEN
BEGIN
46. Ancestor[u]«—Ancestor[v];
47. Level[u]—Level[v]+1;
48. counts—counts+1;
49. Count[u]«—counts;
50. Father[u]«v;
51. Visited[u]—true;
52. Newbranch(v]«—true;
53. IF the vertex x prior to u in AL[v] is Father[v] OR (Level[x] = Level[v]
AND Count[x] = Count[v]—1) THEN
54. Lbranch[u]«Lbranch[v};
55. IF the next vertex x of u in AL[v] is Father[v] OR (Level[x] =
Level[Father[v]] AND Count[x] = Count[Father|v]]+1) THEN
56. Rbranch[u]«Rbranch[v];
57. Put u to the tail of Queue;
END
58. ELSE /* Visited[u]=true */
BEGIN
59. IF head=v AND the vertex prior to Ltail in Queue is u THEN
60. IF (the vertex x prior to u in AL[v] is Father[v] OR (x is Father[u]
AND the vertex prior to x in AL[v] is Father[v])) AND the next vertex of v
in AL[u] is Father[u] AND NOT Lbranch[v] AND NOT Rbranch[u] THEN
61. ¢’ « ¢’ /* we do nothing */
62. ELSE IF Count[u]=Count[v]+1 AND NOT Rbranch{v] AND NOT
Lbranch[u] AND (the next vertex x of u in AL[v] is Father{v] OR (x is
Father[u] AND the next vertex of x in AL[v] is Father[v])) AND the vertex
prior to v in AL[u] is Father[u] THEN
63. ¢’ — ¢’ /* we do nothing */
64. ELSE
BEGIN
65. foundcycle—true;
66. ¢’ — min{c’,2CL + 1};
67. IF Ancestor[u]#Ancestor[v] THEN
68. ¢ — min{c,c'};
END
69. ELSE IF Count{u|=Count[v]+1 AND Level[u]=Level[v] THEN
70. IF NOT Rbranch[v] AND NOT Lbranch[u] AND (the next vertex x
of uin AL[v] is Father{v] OR (x is Father[u] AND the next vertex of x in
AL([v] is Father(v])) AND the vertex prior to v in AL[u] is Father[u] THEN
71. ¢ — ¢ /* we do nothing */
72. ELSE
BEGIN

80

73. foundcycle—true;
74. ¢/ — min{c’,2CL +1};
75. IF Ancestor[u]#Ancestor[v] THEN
76. ¢ — min{c,c'};
END
77. ELSE IF Count[u] > Count{v]+1 AND Level{u]=Level[v] THEN
BEGIN
78. foundcycle—true;
79. ¢/ «— min{c’,2CL + 1};
80. IF Ancestor(u]#Ancestor(v] THEN
81. ¢ « min{c,c'};
END
82. ELSE IF Count[u]=Count[v]+1 AND Level[u]=Level[v]+1 THEN
/* v is the last vertex in Level[v] and u is the first vertex in Level[v]+1
*/
83. IF NOT Lbranch{u] AND NOT Rbranch[v] AND (the next vertex x
of u in AL[v] is Father[v] OR (x is Father[u] AND the next vertex of x in
AL[v] is Father[v])) AND the vertex prior to v in AL[u] is Father[u] THEN
84. ¢! — ¢’ /* we do nothing */
85. ELSE IF Count[u]=counts AND Count[Father[u]]=Count[v]-1 AND
NOT Rbranch{u] AND NOT Lbranch[v] AND (the vertex x prior to u in
AL[v] is Father[v] OR (x is Father[u] AND the vertex prior to x in AL[v]
is Father[v])) AND the next vertex of v in AL[u] is Father[u] THEN
86. ¢ — ¢' /* we do nothing */
87. ELSE
BEGIN
88. foundcycle—true;
89. ¢/ — min{c’,2CL + 2};
90. IF Ancestor[u]7#Ancestor[v] THEN
91. ¢ « min{c, c'};
END
92. ELSE IF Count{u]=counts AND Count[Father|u]]J=Count[v]-1 AND
Level[u]=Level[v]+1 THEN
93. IF NOT Rbranch[u)] AND NOT Lbranch{v] AND (the vertex x prior
to u in AL[v] is Father[v] OR (x is Father[u] AND the vertex prior to x in
AL[v] is Father[v])) AND the next vertex of v in AL[u] is Father[u] THEN
94. ¢/ — ¢' /* we do nothing */
95. ELSE
BEGIN
96. foundcycle—true;
97. ¢’ « min{c’,2CL + 2};
98. IF Ancestor[u]#Ancestor[v] THEN
99. ¢ « min{e,c'};

81

END
100. ELSE IF Level[u]=Level[v]+1 THEN
BEGIN
101. foundcycle—true;
102. ¢/ — min{c’,2CL + 2};
103. IF Ancestor{u]#Ancestor(v]| THEN
104. ¢ — min{c,c'};
END
105. ELSE ¢’ « ¢’ /* we do nothing because Count[u] < Count{v] and the
edge uv has been processed when we process AL[u] */
END; /* ELSE Visited[u] = true */
106. IF ¢/ <2CL + 1 THEN u«~Father[v]
107. ELSE u«the next vertex in AL[v];
END; /* WHILE at step 44*/
108. IF NOT Newbranch{v] THEN
BEGIN
109. x«the first element of Queue; /* x is not taken out of Queue */
110. IF x is not Ltail THEN Lbranch{x]—true;
111. y«the element at the tail of Queue; /* y is not taken out of Queue
*/
112. IF y is not Lhead THEN Rbranch[y]«true;
/* y is the last vertex of Level[v]+1 at the time */
END;
END; /* WHILE at step 40*/
113. IF NOT foundcycle AND ¢ > 2CL + 2 THEN
BEGIN
114. CL—CL+1;
115. Take out Ltail from the head of Queue;
116. Put Ltail to the tail of Queue;
END;
END; /* WHILE at step 33*/
END; /* FOR */
END; /* PROCEDURE */

4 Correctness and time complexity

In this section, we shall show correctness of the algorithms. Theorem 2
is the basis of the main algorithm, while Theorems 3, 4, 5 and 6 show
correctness of procedures BuildAdjacencyList, Separating.2_Cycle, Delete-
MultipleEdges and SeparatingCycle. Theorem 7 shows that the time com-

82

plexity of the main algorithm is O(n2).

Theorem 2: In the main algorithm, after step 3, the length c of a shortest
separating cycle C in the dual graph G of H” is the cyclic edge connectivity
ceA(H”) of H”.

Proof. First, we prove that, for any separating cycle C = v vz ---v.v;
in G, there is a cyclic edge cutset S corresponding to C in H” with ¢ =
v(C)i=15|.

Since C is a separating cycle, G — V(C) has two components D; and
D, with D, inside C and D5 outside C. Let « be a vertex of D;. As u # v;
(i =1,2,---,¢), the face f of H” corresponding to u has its boundary
inside C. Suppose not. Then f has one boundary edge e, going out C by
crossing the edge v;v;41 of C. But f surrounds u, so f has another edge
ez going back to inside of C. Hence v; or vj4; is surrounded by f, by the
definition of dual graph, f surrounds only one vertex of G, hence u = v;
or u = v;41, which is a contradiction. So the face f of H” corresponding
to u has its boundary inside C. By the same reason, Dy has a vertex v
and the face f/ of H” corresponding to v has its boundary outside C. Now
S = {e;le; € E(H”) and e; crosses v;vi4+1,t=1,2,---,c—1, and e, crosses
vcv; } is an edge cutset of H” such that H” — S has two components each of
which has a cycle (face). So S is a cyclic edge cutset of H” corresponding
to C with ¢ = |V(C)| = |S|.

Then we prove that , for any minimal cyclic edge cutset S of H”, there
is a separating cycle C of G corresponding to S with ¢ = |V(C)| = |S|. Let
S = {e1,€z, -, €c} be a minimal cyclic edge cutset of H”. By Theorem 1,
we know that H” — S has two components C) and C, each of which has a
face. Without loss of generality, assume that in the planar embedding H”,
ey, es, - +,e. appear in turn. Since, after step 3 in the main algorithm, H”
is a 2-edge connected simple graph, each e; will not appear on the boundary
of only one face. So each e; lies on the common boundary of two faces f;_;
and f;. Notice that, between e, and e;, there is the outer face of H” if
H” — S has two components on two sides or there is an inner face of H” if
H” — S has two components on inside and outside respectively. Let v; be
the vertex of G corresponding to f;, ¢ =1,2,-.-,¢ — 1 and v, corresponds
to the face between e, and e;. Now, if G[{v1,vs,--,v.}] is a cycle C, then
C is a separating cycle in G since H” — S has two components each of
which has a face by Theorem 1, so G — V(C) has two components inside C
and outside C respectively, each of which has at least one vertex, and each

e; in S crosses v;_1v; of C,i=1,2,---,c, where vo=v, corresponds to the
face between e, and e; in H”. So ¢ = |V(C)| = |S|. If G[{vi,v2, -, vc}]
is not a cycle, by the construction of G[{v1,vs,---,v.}), it is a closed trail,

then G[{v1,v2,---,v.}] has a subgraph to be a separating cycle C’ of G.
By the argument before, C’ corresponds to a cyclic edge cutset ' C S in

83

H”, which contradicts the minimality of S. So, for any minimal cyclic edge
cutset S of H”, there is a separating cycle C of G corresponding to S with
c=V(C)| =1S].

By the above argument, the length c of a shortest separating cycle C of
G corresponds to a minimum cyclic edge cutset S of H” with ¢ = |V(C)| =
|S|. Hence Theorem 2 is proved. O

Theorem 3: Procedure BuildAdjacencyList builds the dual graph G of
H” and builds the adjacency list AL[v] for every vertex v of G such that
ALlv] is a bidirectional linked list, and all vertices adjacent to v are listed
in AL[v] in the same order as they appear when we go around v clockwise
in the planar embedding of G, which is the dual graph of H”.

Proof. Procedure BuildAdjacencyList input all faces f numbered from 1
to ¢(H”), where ¢(H”) is the number of faces in H”. For each face f,
F[f] is a circular linked list of the vertices on the boundary of face f in
clockwise order.

All--n(H”),1.-n(H")] is 2 2 dimensional array of records. For each edge
uv of H”, Alu,v] (and A[v, u]) records the edge of G crossing uv , where
the fields FirstVertex and SecondVertex record the two faces of H” beside
the edge uv (the two end vertices of the edge crossing uv in G). Different
edges of G have different numbers in the field EdgeNumber, which can
distinguish different edges, especially multiple edges.

In BuildAdjacencyList, steps 1—5 assign initial value to each array ele-
ment A[u,v]. Insteps 7—22, for each face, we search the boundary F'[face)].
For each edge uv on the boundary of the face in H”, if it is the first time
to process uv, then the face is the first end vertex (First Vertex) of the edge
crossing uv in G, otherwise the face is the second end vertex (Second Ver-
tex) of the edge crossing wv in G, and each edge in G is assigned a different
number to EdgeNumber field. So we complete array A.

In steps 23—24, for each face (vertex of G), we set up an empty initial
adjacency list AL[face].

In steps 25—46, for each face of H” (vertex of G), we search the bound-
ary F|[face| clockwise. For each edge uv on the boundary, we put the other
end vertex than the face into AL[face] according to the edge recorded in
Alu,v] (or Afv,u]). So we list all vertices adjacent to (the end vertices of
all edges incident with) the face in G in AL[face] clockwise. Notice that,
if the face is the outer face of H”, since F[face] is in clockwise order, but
when we go around the vertex face clockwise in G, the vertices in F[face]
will appear in reverse order. So, in steps 43—45, if the face is the outer
face of H”, we build up AL[face] in reverse order, otherwise in clockwise
order. Steps 47—48 adjust the head pointer AL[face] to the proper first
element of the adjacency list of the vertex face in G, of which the MARK

84

field is 1. Notice that, for each vertex v in G, the MARK field of the first
element in AL{v] is 1 and the MARK fields of the other elements in AL[v]
are 0.

So we complete the proof of Theorem 3. O

Theorem 4: Procedure Separating.2_Cycle succeeds to find a separating
2-cycle and returns true if G has such a cycle; otherwise it returns false.

Proof. In the procedure, we simulate the planar embedding of every vertex
u and its neighbours in G to find a separating 2-cycle, where u takes the
numbers of all vertices in G from 1 to n(G), foundcycle is true if we find a
separating 2-cycle in G; otherwise foundcycle is false. The 2_cycle is true
if we find a 2-cycle which surrounds at least one vertex but we have not
found vertices outside it yet; 2_cycle is false if we do not find such a cycle.
In the WHILE loop at step 3, we search every vertex u in G until we find
a separating 2-cycle or we have searched all vertices in G but we have not
found any separating 2-cycle. In the WHILE loop at step 11, we search
the adjacency list AL[u] until we find a separating 2-cycle or we find a
2-cycle which surrounds a vertex or we have searched up the whole AL{u]
and find no such a 2-cycle. At step 12, if we find that w is already visited,
it means that we find that the end of current edge uw is the end of another
edge vw formerly processed. Then we find a 2-cycle. If the prior vertex z
of the current w is not w, then the 2-cycle surrounds at least one vertex
z. Then we search AL[u] to see if there is a vertex z(# w) adjacent to
u after the current edge uw. If there is such an z, then we have found
a separating 2-cycle with z ouside it. If, after the current edge uw, we
have not found any edge ux with z # w, we come to step 32. We mark
the edge uw right edge with u at the bottom and w at the top. Then we
search AL[u] reversely to find the edge uw we first encounter, where w is
previously visited, and mark this edge left edge. Notice that, between the
left edge and the right edge, there is at least a vertex z(# w) adjacent to
u which is surrounded by the 2-cycle. Then in the WHILE loop at step 39
we search for a vertex z(# w) adjacent to u before (on the left of) the left
edge in AL[u]. If there is such a vertex z, then we find a separating 2-cycle.
If we have not found a separating 2-cycle, let v be the w at step 48. Then
we search AL[v] anticlockwise. First, we find the right edge in AL[v] in the
WHILE loop of steps 51—53. Then we search AL{v] anticlockwise until we
find a vertex z(# u) adjacent to v or we find the left edge. If we find a
vertex z(# u), then z is outside the 2-cycle that we found before, so the
2-cycle is a separating 2-cycle. If we have not found such an z until we find
the left edge, then the search of AL[u] does not find any separating 2-cycle,
and u takes another vertex at step 64 and we go back step 3. At steps 65
and 66, if, in the whole procedure, we have found a separating 2-cycle, then

85

it returns true; otherwise it returns false.
So we complete the proof of Theorem 4. O

Theorem 5: Procedure DeleteMultipleEdges deletes all consecutive mul-
tiple edges incident with v in AL[v] for every vertex v of G such that for
consecutive multiple copies of each edge uv in AL[v], we keep only one copy
of uw.

Proof. In the FOR loop at step 1, for each vertex w in G, we search AL[w)
clockwise. At step 7, for each current vertex v in AL{w], if v is equal to
the prior vertex in AL[w], then we find a consecutive multiple edge, and we
delete this vertex v from AL[w]. In steps 15-17, if the last vertex in AL[w]
is equal to the first vertex in AL[w], then we find a consecutive multiple
edge, and we delete the last vertex in AL[w]. For consecutive muitiple
copies of each edge wv, we keep only one copy of wv.

Notice that, after step 5 of the main algorithm, G has no separating 2-
cycle, so procedure DeleteMuitipleEdges deletes all multiple edges incident
with w for each vertex w in G.

Notice that for multiple edges uv, the only one copy of uv remained in
AL[u] may not have the same EDGENUM (edge number) as the only copy
of uv remained in AL[v]. But it does not matter. In the following steps of
the main algorithm, we are only concerned about whether there is such an
edge uv but not which copy of the multiple edges. O

Theorem 6: Procedure SeparatingCycle succeeds to find a minimum sepa-
rating cycle C in G and returns its length ¢ = |V(C)|, and hence cA(H) = ¢
at step 8 in the main algorithm.

Proof. In the procedure, for each vertex w, we build a BFS tree T rooted
at w (at the bottom) to simulate the planar embedding of graph G and
to find a shortest separating cycle containing w, then we find a shortest
separating cycle C of G among these cycles, and return ¢ = |[V(C)|.

We have several arrays, for a nonnegative integer i, Ancestor(v]=i means
that the vertex v is a decendant of the ith (i > 1) child (from left to right
in clockwise orientation) of the root w in the BFS tree T'; Level[v]=i means
that v is at the ith level of T; Count[v]=i (i > 1) means that v is the ith
visited vertex; Father[v|=i means that vertex i is the father of vertex v in
T'; Lbranch[v]=true means that, in the BFS tree T (root w is at the bottom
and T is above), there is a branch on the left of v, but it does not grow
up a new branch at higher level; Rbranch[v]=true means that, in the BFS
tree T, there is a branch on the right of v, but it does not grow up a new
branch at higher level; Visited[v]=true means that the vertex v has been
visited; Newbranch|v]=true means that, in the BFS tree T', when we visit
vertex v, it grows up a new branch. We have a Queue to help the breadth

86

first search. The value of variable CL is the number of current level to
process in the BFS tree T'; foundcycle=true means that we have found a
separating cycle in T'; exits=true means that the current level to process
in T has no vertex, that is, we have processed all vertices in G, so we shall
exit the loop.

In the FOR loop at step 1, for each vertex w, we build the BFS tree
T rooted at w to find a shortest separating cycle containing w, then find
a shortest separating cycle C among these cycles for all w and return ¢ =
|[V(C)|. By Theorem 2, c is ¢cA(H”) and hence is ¢A(H) since cA(H) =
cA(H') = cA(H").

For each w € V(G), we do the following. In steps 2—12, we assign initial
values to the arrays and variables. In steps 13—16, we visit the root w and
w is at the Oth level of the BFS tree T. (Notice that the root w is at the
bottom and the tree T is above). At step 17, the variable i marks the ith
child of w, the ith child and all its descendants in T have Ancestor[v]=i .
At step 18, CL=1, now we shall process the 1st level of T. We put the head
mark Lhead of a level to the Queue. In steps 20—28, we visit every child
of w in T and put them in the Queue. Then we put the tail mark Ltail of
a level to the Queue. Notice that ¢ is the length of a shortest separating
cycle that we have currently found. Its initial value is n(G).

In the WHILE loop at step 33, we build the whole BF'S tree T rooted at
w until we find a separating cycle (foundcycle = true), or we have visited
all vertices of G (exits = true), or the length ¢ of the shortest separating
cycle that we have currently found is less than or equal to 2CL+1. Notice
that, when we process the current level CL of T, the shortest separating
cycle C containing w that we can find has length |V(C)| > 2CL + 1. So we
exit the loop when ¢ < 2CL+1. Also notice that now i is the number of the
children of w, if i <1, then we cannot find a separating cycle containing w,
so the WHILE loop at step 33 will not be executed. At step 36, if the new
level of T is empty, then exits = true; otherwise the variable head records
the first vertex of the current level of T, and ¢’ = ¢ (initial value).

The WHILE loop at step 40 process one level (the current level) of T
until we find the tail mark Ltail of a level in the Queue or we have found
a separating cycle of length less than or equal to ¢/ € 2CL + 1. As we
mentioned before, when we process the current level CL of T, the shortest
separating cycle C containing w that we can find has length |V(C)| >
2CL + 1, so we exit the loop if ¢/ < 2CL + 1. In steps 42, 43 and in the
whole procedure, we try to simulate the planar embedding of G when we
build the BFS tree T and notice that AL[v] is in clockwise order.

In the WHILE loop at step 44, we visit all vertices u adjacent to the
current vertex v at level CL by searching forward AL[v] clockwise starting
from the next vertex of Father|v] in AL[v] and ending at Father[v]. At steps
106, 107, if we have found a separating cycle of length less than or equal

87

to ¢/ < 2CL + 1, then we exit the loop at step 44 immediately; otherwise,
we search forward AL[v].

In steps 45—57, when we search AL[v], if we find a vertex u adjacent to
v which is not visited before, then we build a new branch vu on the tree T
and put u in the Queue. In steps 53—56, if u is the left most new branch of
v, then Lbranch{u] remembers the branch on the left of v; if u is the right
most new branch of v, then Rbranch(u] remembers the branch on the right
of v. In other cases that u does not remember the left branch or the right
branch of v, we have already found a separating cycle. If we find a vertex
u adjacent to v which has been visited before at step 58, then we have the
following cases to study.

At step 59, if v is the first vertex and u is the last vertex at the current
level CL, then we find a cycle C; if there is no vertex outside C at step 60,
then C is not a separating cycle and we do nothing; if there is no vertex
inside C at step 62, then C is not a separating cycle and we do nothing;
otherwise C has vertices both inside and outside it at step 64, then C is a
separating cycle. Notice that at steps 64, 72, 77, 87, 95 and 100 when we
find a separating cycle C, C may not contain the root w, then ¢’ is assigned
min{c’,2CL+1} or min{c’,2CL+2}, where 2CL+1 or 2CL+2 is the length
of the currently found separating cycle if it contains w. But the length of C
is always less than or equal to ¢’. If Ancestor[u] # Ancestor[v] at steps 67,
75, 80, 90, 98 and 103, then u and v are descendants of different children
of w, so C contains w. Then c is modified to be ¢’ if ¢’ < ¢. Notice that
if C does not contain w but C is a shortest separating cycle in G, then it
must contain another vertex w’, when we build the BFS tree rooted at w’,
we shall find C at last and ¢ will be the length of the shortest separating
cycle C in G, and notice that a separating cycle C containing w may not
be found when we build the BFS tree rooted at w, but it will be found
at last when we build a BFS tree rooted at another vertex w’ which is
also contained in C, or we have found a separating cycle shorter than C.
Also notice that ¢’ has initial value c at step 39, then in the loop at step
40, whenever we find a separating cycle of length less than or equal to ¢’
< 2CL + 1, we shall stop processing the current level of T, and because
foundcycle = true or ¢ < 2CL + 1, the loop at step 33 will also exit.

Now we continue our case study. At step 69, v is adjacent to the next
vertex u at the same level CL and we have a cycle C. If above cases does
not happen, then there must be a vertex outside C. If there is no vertex
inside C at step 70, then we do nothing; otherwise C is a separating cycle
at step 72 and we do the same process as that at step 64. At step 77, C
has vertices both inside and outside it, then C is a separating cycle, and
we do the same process as that at step 64. At step 82, v is the last vertex
at Level[v] and u is the first vertex at Level{v]+1. Then we have a cycle C.
If there is no vertex outside C at step 83, then C is not a separating cycle

88

and we do nothing; If there is no vertex inside C at step 85, then C is not
a separating cycle either; otherwise C is a separating cycle at step 87 and
we do the similar process to that at step 64. At step 92, u is Father[u]’s
right most child and v is Father[u]’s next vertex at the same level and we
have a cycle C. If the last case does not happen, then there must be a
vertex outside C. If there is no vertex inside C at step 93, then C is not a
separating cycle and we do nothing, otherwise, at step 95, C is a separating
cycle and we do the similar process to that at step 64. At step 100, C has
vertices both inside and outside it, so C is a separating cycle and we do
the similar process to that at step 64. In the other cases at step 105, we
do nothing because now Count[u] < Count[v] and the edge uv has been
processed when we process AL[u].

At step 108, after processing AL[v], if v does not grow up a new branch
in the BFS tree T, then we set Lbranch(x] = true for the = on the right
of v and we set Rbranch[y] = true for the y at Level[v]+1 on the left of v.
(Notice that the vertex at Level[v] on the left of v has been processed). So
v is a branch on the left of £ and on the right of y. In the cases that v is
not a branch on the left of z or on the right of y, we have already found a
separating cycle.

At step 113, after we search the current level CL of T, if we have not
found a separating cycle in searching the level of T and the length ¢ of
the shortest separating cycle that we already found before is greater than
2CL+2 (i. e. ¢ > 2(CL + 1) + 1), then the value of CL increases by 1, and
we shall search the higher level of T'.

Hence we complete the proof of Theorem 6. O

Theorem 7: The time complexity of the main algorithm is O(n?), where
n = |V(H)|.
Proof. Now we analyze the time complexity of the main algorithm.

According to (8], step 1 needs O(|V|| E|) time. Notice that H is a planar
graph, || < 3|V - 6, s0 O(|V||E)=O(|V[*)= O(n?).

According to [1}, the DFS algorithm to find all biconnected components
of H' needs O(|E(H')|) time. But |E(H’')| < |E(H)| and by the above
argument, O(|E(H)|) = O(|V(H)|). So step 2 needs O(|V(H)|) = O(n)
time.

According to {5], it takes O(|V(H')|) time to find the planar embedding
H” of H'. But |V(H')| < |V(H)|. So step 3 needs O(n) time.

Now let n(H”) = |V(H”)|, m(H") = |E(H")|, ¢ = the number of faces
of H”. We have |V(G)| = n(G) = ¢, |E(G)| = m(G) = m(H”) and n(H")
< n.

In procedure BuildAdjacencyList, steps 1—5 take O(n(H")?) = O(n?)
time. The FOR loop at step 7 is executed ¢ times. The WHILE loop at

89

step 11 takes at most O(d(face)) time, where d(face) is the degree of the
face, it is also the degree of the vertex face in G. So the whole FOR
loop at step 7 takes O(>_d(face)) = O(2m(G)) = O(m(G)) = O(m(H"))
time. But m(H”) < 3n(H")-6, so O(m(H")) = O(n(H”)) = O(n). The
FOR loop at step 23 takes O(¢) = O(n) time. The FOR loop at step
25 is executed ¢ = O(n(G)) times and the WHILE loop at step 29 takes
O(d(face)) time. By the same argument as above, the whole FOR loop at
step 25 takes O(m(G)) = O(m(H")) = O(n) time. Steps 47, 48 take O(1)
time. Hence the whole procedure at step 4 of the main algorithm takes
O(n?) time.

In procedure Separating.2_Cycle, the WHILE loop at step 3 is exe-
cuted at most O(n(G)) = O(¢) times. By the Euler’s Formula, ¢ =
m(H”)—n(H”)+2, but m(H”) < 3n(H")—6, so ¢ = O(n(H”)) = O(n).
The FOR loop at step 4 takes O(n(G)) = O(n) time. Steps 5—10 take
O(1) time. The WHILE loop at step 11 searches the adjacency list AL[u],
the WHILE loop at step 19 completes the search, the other parts take O(1)
time. So the whole loop at step 11 takes O(d(u)) time. The WHILE loop
at step 35 takes at most O(d(u)) time. The WHILE loop at steps 39—44
also searches AL[u], it takes at most O(d(u)) time. The WHILE loop at
step 51 searches AL([v], it takes at most O(d(v)) time and the WHILE loop
at step 57 also searches AL[v], it takes at most O(d(v)) time. The other
parts take O(1) time. So the body of the WHILE loop at step 3 takes at
most O(max{n,d(v) + d(v)}) time, where v is a vertex adjacent to u by
multiple edges. In the WHILE loop at step 3, u takes all vertices of G until
we find a separating 2-cycle. Notice that AL[v] will not be searched more
than two times in the whole procedure otherwise we shall find a separating
2-cycle and the loop will exit. So the loop at step 3 takes O(max{n(G)?,
23 vev(c) 4(v)}) = O(max{n(G)?, 4m(G)}) = O(max{n(G)?, n(G)}) =
O(n(G)?) = O(n?) time since G is a planar graph and O(m(G)) = O(n(G)).
Hence the whole procedure at step 5 in the main algorithm needs O(n?)
time.

In the procedure DeleteMultipleEdges, for each vertex w in V(G), we
search AL[w]. So it takes O(3 ¢y (q) d(w)) = O(m(G)) = O(n) time at
step 6 in the main algorithm.

Step 7 in the main algorithm takes O(1) time.

In the procedure SeparatingCycle, the FOR loop at step 1 is executed
O(n(G)) = O(n) times. The FOR loop at step 2 needs O(n(G)) = O(n)
time. The FOR loop at step 20 takes O(d(w)) time. The WHILE loop
at step 33 builds the BFS tree T rooted at w, the WHILE loop at step
40 processes one level of T, and for each vertex v at the current level, the
WHILE loop at step 44 searches AL[v]. So the whole loop at step 33 does
a BFS search and needs O(m(G)) = O(n) time. What we only need to

S0

explain is that, at steps 59, 60 and 62, only when v is the first vertex and
u is the last vertex at the current level, we need to search AL[u] besides
AL[v]; at steps 69 and 70, only when Count[u] = Count(v]+1 and Level[u]
= Level[v], we need to search AL[u] besides AL[v]; at steps 82, 83 and
85, only when Count([u] = Count[v]+1 and Level[u] = Level{v]+1, we need
to search AL[u] besides AL[v]; at steps 92 and 93, only when Count[u] =
counts, Count[Father[u}] = Count[v]—-1, Level{u] = Level[v]+1, we need to
search AL[u] besides AL[v]. These AL[u] will not be searched more than
once besides that time at the loop of step 44 when v = u. But it may happen
that when we search AL[v], we need also search AL[u] with u on the left
of v and Level[u] = Level[v]+1 and also search AL[w] with w on the right
of v and Level[w] = Level[v] and Count{w] = Count[v]+1. So the WHILE
loop at step 44 needs at most O(d(v)+d(u)+d(w)) time for different u, v
and w. For each vertex v in G, d(v) is used at most 3 times. Then the
whole loop at step 33 needs at most O(3)_,cv(q) d(v)) = o(6m(G@)) =
O(m(G)) = O(n) time. To sum up, the whole procedure at step 8 in the
main algorithm needs O(m(G)n(G)) = O(n(G)?) = O(n?) time.
Hence the whole main algorithm needs O(n?) time. O

Remark: The space that the main algorithm needs is also O(n?) since we
use the array A[l--n(H”), 1--n(H”)] in the procedure BuildAdjacencyList.
The other data structures need only O(n) space.

References

(1] A.V.Aho, J. E. Hopcroft and J. D. Ullman, The design and analysis of
computer algorithms, Addison-Wesley Press, Reading, Massachusetts,
(1976).

[2) J. A. Bondy and U. S. R. Murty, Graph theory with applications,
MacMillan Press, London, (1976).

(3] Z. Dvorak, J. Kara, D. Kral and O. Pangrac, An algorithm for cyclic
edge connectivity of cubic graphs, SWAT 2004, Lecture Notes in Com-
puter Science 3111(2004), 236—247.

[4) D. A. Holton, Dingjun Lou and M. D. Plummer, On the 2-
extendability of planar graphs, Discrete Math. 96(1991), 81-99.

(5] J. E. Hopcroft and R. E. Tarjan, Efficient planarity testing, J. ACM
21:4(1974), 549—569.

91

(6]

[7
(8]

(9l

[10]

[11]

(12)

Dingjun Lou and D. A. Holton, Lower bound of cyclic edge connec-
tivity for n-extendability of regular graphs, Discrete Math. 112(1993),
139-150.

Dingjun Lou and Wei Wang, An efficient algorithm for cyclic edge
connectivity of regular graphs, Ars Combinatoria 77(2005), 311—-318.

Dingjun Lou and Wei Wang, Characterization of graphs with infinite
cyclic edge connectivity, Discrete Math. 308(2008), 2094—2103.

Yuntin Lu and Xiu Lu, An efficient algorithm for cyclic edge connec-
tivity of planar graphs, Proc. 2009 Asia-Pacific Conference on Infor-
mation Processing, 2009, 193—198.

H. Nagamochi and T. Ibaraki, Computing edge connectivity in multi-
graphs and capacitated graphs, SIAM Journal on Discrete Mathemat-
ics 5(1992), 54—66.

R. Nedela and M. Skoviera, Atoms of cyclic connectivity in cubic
graphs, Math. Slovaca 45(1995), 481—499.

B. Peroche, On several sorts of connectivity, Discrete Math. 46(1983),
267-277.

[13] M. D. Plummer, On the cyclic connectivity of planar graphs, in: Y.

Alavi, D. R. Lick and A. T. White eds. Graph Theory and Applica-
tions, Springer-Verlag, Berlin (1972), 235-242.

[14] R. G. Tait, Remarks on the colouring of maps, Proc. Soc. Edinburg

10(1880), 501—503.

92

