Decompositions of AK,, into LOE and OLE Graphs

Dinesh G. Sarvate and Li Zhang

ABSTRACT. Hein and Sarvate show how to decompose X copies of a
complete graph K, for some minimal value of A into so called LOE
and OLE graphs. In this paper, we will show that for all possible
values of A, the necessary conditions are sufficient for the LOE and

OLE decompositions.

1. Introduction

A graph G is an ordered pair (V, E) where V' is an n-set (the set
of points), and E is a subset of the set of the (3) pairs of distinct
elements of V' (the set of edges). This definition can be generalized
to that of a multigraph by allowing E to be a multiset, where edges
can occur with frequencies greater than or equal to 1. A complete
multigraph AK, (A > 1) is a graph on n points with A edges be-
tween every pair of distinct points. Decomposition of a AK, into
subgraphs is a well known classical problem. For an excellent survey
on graph decompositions, see [1]. Recently several people including
Chan, Hein, El-Zanati and Lapchinda have worked on decomposing
a AK, into multigraphs. In fact, similar decompositions have been
attempted earlier in various papers. For example, see Priesler and
Tarsi [8]. Ternary designs also provide such decompositions. For
a survey on ternary designs, see Billington [2, 3]. A well studied
combinatorial design, BIBD, which can be used to find graph de-
compositions is defined below. On the other hand BIBD itself can
be considered as a decomposition of AK), in complete graphs K.
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DEFINITION 1. Given a finite set V of v elements (also called
points) and integers k and A > 1, a balanced incomplete block design
(BIBD), denoted as BIBD(v,k, ), is a pair (V,B) where B is a
collection of subsets (also called blocks) of V' such that every block
contains exactly £ < v points and every pair of distinct elements is
contained in exactly A blocks.

1.1. LOE and OLE Graphs. Following definitions and exam-
ples are from Hein and Sarvate (7).

DEFINITION 2. Let V = {a,b,c,d}. An LOE graph (a,b,c,d) on
V is a graph where the frequencies of edges {a,b}, {b,c} and {c,d}
are 1, 2 and 3 (respectively).

EXAMPLE 1. Consider G; = (V,E) where V = {1,2,3,4} and
E = {{1,2},{2,3},{2,3}, (3,4}, {3,4}, {3,4}}. Then G, is an LOE
graph, denoted (1,2,3,4):

1 2 3 4
— e

DEFINITION 3. Let V = {a,b,¢,d}. An OLE graph [a,b,c,d] on
V is a graph where the frequencies of edges {a, b}, {b,c} and {c,d}
are 2, 1 and 3 (respectively).

EXAMPLE 2. Consider Go = (V, E) where V = {1,2,3,4} and
E={{1,2},{1,2},{2,3},{3,4}, {3,4}, {3,4}}. Then G, is an OLE
graph, denoted [1,2,3,4]:

1 2 3 __ 4
L ——]

DEFINITION 4. For any positive integers n > 4 and X\ > 3, an
LOE~decomposition of AK,, denoted as LOE(n,)) is a collection of
LOE graphs such that the multiunion of their edge sets contains X
copies of all edges in a K,,.

EXAMPLE 3. Considering the set of points to be V = Zs, the
LOE base graph (0,1,2,4) (when developed modulo 5) constitutes an
LOE(5, 3).

multiunion

decomposition




DEFINITION 5. For any positive integers n > 4 and A > 3, an
OLE-decomposition of AK,, denoted as OLE(n,\) is a collection of
OLE graphs such that the multiunion of their edge sets contains A
copies of all edges in a K,.

EXAMPLE 4. Considering the set of points to be V = Zs, the
OLE base graph [0,1,2,4] (when developed modulo 5) constitutes an
OLE(5,3).

multiunion

decomposition

THEOREM 1 ( [7]). An LOE-decomposition and an OLE-decompo-
sition of a AK, ezist for the minimum value of A. The minimum
value of A is

a) A=3, whenn=0,1,4,5,8,9 (mod 12)
b) A =4, whenn=3,6,7,10 (mod 12)
c) A=6, whenn =2,11 (mod 12)

THEOREM 2 ( [7]). An LOE(n,4) ezists and an OLE(n,4) ezists
forn=0,1 (mod 3) and n > 4.

2. The Necessary Conditions

Since there are ﬂgﬂ) edges in a AK, and six edges in an LOE
or an OLE graph, in order for an LOE(n, ) or an OLE(n, ) to exist,
we must have An(n — 1) = 0 (mod 12) (where A > 3 and n > 4).
Specifically, for different A values, the necessary conditions for n are
as follows.

1) If A =0 (mod 6), there is no condition for n.

2} If A = 1,5 (mod 6), a necessary condition is n = 0,1,4,9
(mod 12).

3) If A = 2,4 (mod 6), a necessary condition is n = 0,1,3,4
(mod 6), i.e. n=0,1 (mod 3).

4) If A = 3 (mod 6), a necessary condition isn = 0,1 (mod 4).
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If A =3 (mod 6), i.e. A =6t+3=3(2¢t+1) (¢t >0), by taking
2t + 1 copies of an LOE- and an OLE-decomposition from Theorem
1 part (a), we have the following result.

THEOREM 3. If A = 3 (mod 6), the above necessary condition
for n is sufficient.

Since case 4 of the necessary conditions is proven to be sufficient
for both LOE- and OLE-decompositions in Theorem 3, we will focus
on the other three cases in the following sections.

3. LOE Decompositions

3.1. A=0,2,4 (mod 6). One of the powerful techniques to con-
struct combinatorial designs is based on difference sets and difference
families, for example, see Stinson [9] for details. We have modified
this technique to achieve our decompositions of AK,,. In general, we
exhibit the base graphs, which can be developed (modulo either n or
n — 1) to obtain the decomposition. We note that special attention
is needed with the base graphs containing the “dummy element” oo;
the non—oo elements are developed, while oo is simply rewritten each
time. We further note that the multiplicity of the edges is fixed by
position, as per the LOE graph.

THEOREM 4. An LOE(n, ) exists for A =0 (mod 6).

Proof: From case 1 of the necessary conditions in Section 2, there
is no condition for n if A =0 (mod 6). We first prove there exists an
LOE(n, 6).

Let n = 2t + 1(¢t > 2) and A = 6. We consider the set V as Zas11.
The number of graphs required for an LOE(n,6) is Sx(at+l)xat _

2x6
t(2t+1). Thus, we need ¢ base graphs (modulo 2¢+1). The differences
we must achieve (modulo 2¢ + 1) are 1,2,...,¢. One family of the

base graphs is {(¢t + 1,¢,0,2t — 1), (¢t + 1,t — 1,0,2¢t — 2), (¢t + 1,¢ —
2,0,2t - 3),...,(t+1,3,0,t +2),(t + 1,2,0,¢),(t + 1,1,0,2¢) }.

Let n = 2t(t > 2) and A = 6. We consider the set V as
Zgt—1 U {o0}. The number of graphs required for an LOE(n,6) is

22%)(%5—-1)- = t(2t —1). Thus, we need ¢ base graphs (modulo 2t —1).
The differences we must achieve (modulo 2¢ — 1) are 1,2,...,¢t — 1.
One family of the base graphs is {(¢t — 1,t —2,0,2¢t — 3),{t — 1,¢ —
3,0,2t —4),...,(t—1,3,0,t +2),{t — 1,2,0,t + 1), (t — 1,1,0,2¢ —
2),(t = 1,0,00,1), (c0,¢,0,¢t — 1)}. Thus, an LOE(n, 6) exists.
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Let A =0 (mod 6) = 6s. By taking s copies of an LOE(n, 6), we
have an LOE(n, A). O

THEOREM 5. An LOE(n, )) exists forn =0,1 (mod 3) and A =
2,4 (mod 6).

Proof: Let n = 0,1 (mod 3) and A = 2 (mod 6) = 6t + 2 =
6(t — 1) + 8 where t > 1. Combining an LOE(n, 6(t — 1)) (by Theo-
rem 4) and two copies of an LOE(n, 4) (by Theorem 2), we have an
LOE(n, 6t + 2).

Let n = 0,1 (mod 3) and A = 4 (mod 6) = 6t + 4. Combining
an LOE(n, 6t) (by Theorem 4) and an LOE(n,4) (by Theorem 2),
we have an LOE(n,6t +4). O

3.2. A=1 (mod 6).

THEOREM 6. An LOE(n, ) ezists forn=0,1,4,9 (mod 12) and
A=1 (mod 6).

Proof: Let n = 0,1,4,9 (mod 12) and A = 1 (mod 6) = 6t +
1. Combining an LOE(n,3) (by Theorem 1) and an LOE(n,4) (by
Theorem 2), we have an LOE(n, 7). Combining an LOE(n, 6(t — 1))
(by Theorem 4) and an LOE(n, 7), we have an LOE(n,6(t—1)+7 =
6t +1). O

3.3. A =5 (mod 6).

THEOREM 7. An LOE(n, ) exists for n = 0,1 (mod 12) and
A =5 (mod 6).

Proof: Let n =0 (mod 12) and A = 5. We consider the set V as
Z12t-1 U {o0}. The number of graphs required for an LOE(n,5) is
%é—%’—l) = 5t(12t — 1). Thus, we need 5¢ base graphs (modulo
12t — 1). The differences we must achieve (modulo 12t — 1) are
1,2,...,6t — 1. For an LOE(12,5), one family of the base graphs
is {(5,0,00,1), (5,0,1,3),(5,0,2,10), (5,0,3,7), (5,0,4,3)}. For an
LOE(12t,5) where ¢t > 2, one family of the base graphs is {(1,s +
1,0,5+2),(2,5+2,0,5+3), (3,5s+3,0,5+4), (4,s+4,0,s+5), (5, s+
5,0,5+ 1), (6t — 1,0, 00, 1), (6t — 1,0, 6t — 5,12t — 9), (6t — 1,0, 6t —
4,12t —2), (6t —1,0,6t — 3,12t — 5), (6t — 1,0,6t — 2,12t — 7)} where
s=6i+1fori=0,1,...,t—2. Thus, an LOE(n, 5) exists forn =0
(mod 12).

Similarly, Let n = 1 (mod 12) and A = 5. We consider the set
V as Zyy4+1. The number of graphs required for an LOE(n,5) is
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M}%‘i’é)ﬂ = 5t(12t + 1). Thus, we need 5¢ base graphs (modulo
12t + 1). The differences we must achieve (modulo 12¢ + 1) are
1,2,...,6t. One family of the base graphsis {(1,s+1,0, s+2), (2, s+
2,0,5+3),(3,5+3,0,s+4), (4,s+4,0,5+5), (5,5s+5,0,5s+1)} where
s=6i+1fori=0,1,...,t — 1. Thus, an LOE(n, 5) exists for n = 1
(mod 12).

Let n = 0,1 (mod 12) and A = 5 (mod 6) = 6t + 5. Combin-
ing an LOE(n, 6t) (by Theorem 4) and an LOE(n,5), we have an
LOE(n, 6t +5). O

The following lemma shows that an LOE-decomposition may not
exist even if the necessary condition is satisfied.

LEMMA 1. An LOE(4,5) does not ecist.

Proof: Let V = {1,2,3,4} and A = 5. Notice that no edge say
{1,2} can occur singly (appear as a single edge in an LOE graph)
in a decomposition two or more times as then edge {3,4} will occur
more than five times. Also, no edge can occur triply (appear as triple
edges in an LOE graph) in a decomposition two or more times since
A = 5. For n = 4, there are six pairs of edges and five LOE graphs are
required in an LOE-decomposition, thus five of the six pairs should
appear singly once and five of the six pairs should appear triply
once. This implies that at least four pairs appear both singly once
and triply once. Since each of these four pairs can not appear singly
one more time, but A =5, an LOE(4, 5) does not exist. O

EXAMPLE 5. An LOE(9,5) exzists. LetV = {1,...,9}. The num-
ber of graphs required for an LOE(9,5) is % = 30. A BIBD(9,3,1)
has the following 12 blocks: {1,2,3}, {1,4,7}, {1,5,9}, {1,6,8},
{4,5,6}, {2,5,8}, {2,6,7}, {2,4,9}, {7,8,9}, {3,6,9}, {3,4,8},
{3,5,7}. For each block {a,b, c}, construct three LOE graphs (,a, b, c),
(*,c,a,b) and (x,b,c,a). Notice that each of the three pairs {a, b},
{a,c} and {b,c} appears five times in the three LOE graphs. Since
there are 12 blocks from the BIBD(9,3,1), we have 36 LOE graphs.
By removing siz LOE graphs and replacing * in each of the 30 re-
maining LOE graph with an appropriate vertez such that the edges
not containing x removed from the siz LOE graphs will appear in the
30 LOFE graphs with the same multiplicity. The siz LOE graphs to
be removed are (x,1,2,3), (,4,5,6), (x,7,8,9), (,8,1,6), (x,2,4,9)
and (*,5,7,3). The 30 LOFE graphs for an LOE(9,5) are as follows:
(7,3,1,2), (4,2,3,1), (1,6,4,5), (7,5,6,4), (4,9,7,8), (1,8,9,7),
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(2,1,4,7), (8,7,1,4), (9,4,7,1), (3,2,5,8), (9,8,2,5), (6,5,8,2),
(2,3,6,9), (4,9,3,6), (1,6,9,3), (6,1,5,9), (8,9,1,5), (7,5,9,1),
(4,2,6,7), (3,7,2,6), (5,6,7,2), (7,3,4,8), (1,8,3,4), (5,4,8,3),
(2,1,6,8 2 4,9 3,5 (8,7,3,5)

LEMMA 2. An LOE(16,5) exists.

Proof: Let n = 16 and A = 5. The number of graphs required
for an LOE(16,5) is 2‘2}—%—1-5-’ = 100. Let V) = {o01,...,009} and
Vo ={0,...,6}. An LOE(9, 5) for the points in V; results in 30 LOE
graphs. Obtain another 70 LOE graphs by developing the follow-
ing 10 base graphs modulo 7: (3,0, 001, 4), (3,0, 002,4), (3,0, 003,4),
(33 Oa 004, 4>a (23 Oa 05, 4)1 (2) 0, o0s, 4), (2: 0; 007, 4): (13 0, cos, 4))
(1,0,009,4) and (5,2,0,1). The total number of LOE graphs is
30 + 70 = 100 as required for an LOE(16,5). O

THEOREM 8. An LOE(n,)) ezists for n = 4,9 (mod 12) and
A =5 (mod 6).

Proof: Let n =9 (mod 12) = 12t + 9 and A = 5. The number of
graphs required for an LOE(n, 5) is 5"(12”293(2(12“*'8) = 5(4t+3)(3t+
2) = 60t% + 85t + 30. Let V; = {o01,...,0012:} and Vo = {0,...,8}.
Since an LOE(12t,5) exists by Theorem 7 and an LOE(9, 5) exists,
obtain an LOE(12¢,5) for the points in V) and an LOE(9, 5) for the
points in V,. As a result, there are 5¢(12t—1)+30 = 60t2—5t+30 LOE
graphs. Obtain another 90t LOE graphs by developing the following
10t base graphs modulo 9: (00s42,0,0044+1,1), {00s4+2,0,00443,1),
(0, 00542, 1,00544), {00s44,0,00545,1) and (00s44,0, 00546, 1) where
s =6i fori =0,...2¢ — 1. The total number of LOE graphs is
60¢2 — 5t +30+90t = 60£2+85¢+30 as required for an LOE(12¢+9, 5).

Letn =4 (mod 12) = 12m+4 = 12(m—1)+16 = 12t+16(t > 1)
and A = 5. The number of graphs required for an LOE(n,5) is
Sx(AHIGX(2413) _ 5(3¢ 4 4)(4 + 5) = 602 + 155t + 100. Let
Vi = {c01,...,0012} and Vo = {0,...,15}. An LOE(12t,5) for
the points in V; results in 5¢(12¢ — 1) = 60t? — 5¢ LOE graphs (by
Theorem 7) and an LOE(16,5) for the points in V5 results in 100
LOE graphs (by Lemma 2). Obtain another 160t LOE graphs by
developing the 10t base graphs modulo 16 (use the same 10t base
graphs as in the previous paragraph). The total number of LOE
graphs is 60¢2—5t+30+90¢ = 602 —5t+100+160t = 60t>+155¢+100

as required for an LOE(12¢ + 16, 5).
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Let n = 4,9 (mod 12) and A = 5 (mod 6) = 6k + 5. Combin-
ing an LOE(n, 6k) (by Theorem 4) and an LOE(n,5), we have an
LOE(n,6k +5). O

4. OLE Decompositions

In this section we will show that the first three cases of the nec-
essary conditions for OLE-decompositions in Section 2 are sufficient.
Note that the base graphs used in this section are corresponding to
OLE graphs, and the multiplicity of the edges is fixed by position,
as per the OLE graph.

4.1. A =0,2,4 (mod 6). Apply the same base graphs in The-
orem 4 to an OLE(n,6) and use the same arguments in the proof
of the theorem (and replace LOE with OLE), we have the following
result.

THEOREM 9. An OLE(n, \) ezists for A =0 (mod 6).

Use the same arguments in the proof of Theorem 5 (and replace
LOE with OLE), we have the following theorem.

THEOREM 10. An OLE(n,)) ezists for n = 0,1 (mod 3) and
A=2,4 (mod 6).

4.2. A = 1 (mod 6). Use the same arguments in the proof of
Theorem 6 (and replace LOE with OLE), we have the following the-
orem.

THEOREM 11. An OLE(n,)) ezists for n = 0,1,4,9 (mod 12)
and A =1 (mod 6).

4.3. =5 (mod 6).

LEMMA 3. An OLE(n, \) ezists forn =0,1 (mod 12) and A= 5
(mod 6).

Proof: Let n = 0 (mod 12) and A = 5. We consider the set V as
Zyat—1 U {00}. The number of graphs required for an OLE(n, 5) is
51127:%2_%1_) = 5t(12t — 1). Thus, we need 5¢ base graphs (modulo
12t — 1). The differences we must achieve (modulo 12t — 1) are
1,2,...,6t — 1. For an OLE(12,5), one family of the base graphs is
{[5,0,4, 00}, [0, 5,0,4], [5,0,4,1), 5,3,0,1],[2,3,0,9]}. For an OLE
(12t,5) where t > 2, one family of the base graphs is {[2s+1,s,0,s+
2),(2s+2,,0,5+3],[25+3, 5,0, s+4], [25+4, 5,0, s+5), [25+5, 5,0, s+
1], [6t—5,0,6t—1, 00}, [c0, 6t—1,0, 6t—5], [6t—4, 0, 6t—1, 12t — 4], [6¢—
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3,0,6¢ — 1,12t — 3], [6t — 2,0,6t — 1,12t — 5]} where s = 6 + 1 for
i=0,1,...,t — 2. Thus, an OLE(n, 5) exists for n =0 (mod 12).

Similarly, Let n = 1 (mod 12) and A = 5. We consider the set
V as Zjgi+1. The number of graphs required for an OLE(n,5) is
ﬂl}g:%& = 5t(12t + 1). Thus, we need 5¢ base graphs (modulo
12t + 1). The differences we must achieve (modulo 12¢ + 1) are
1,2,...,6t. One family of the base graphsis {[2s+1,s,0,s+2], 25+
2,5,0,s+3],[25+3,5,0,5+4],[25 +4,5,0,s+ 5], [2s + 5,5,0, s + 1]}
where s =6i+1fori=0,1,...,t—1. Thus, an OLE(n, 5) exists for
n=1 (mod 12).

Let n = 0,1 (mod 12) and A = 5 (mod 6) = 6t + 5. Combin-
ing an OLE(n,6t) (by Theorem 9) and an OLE(n,5), we have an
OLE(n, 6t + 5). O

LEMMA 4. An OLE(4,5) does not exist.

Proof: Let V = {1,2,3,4} and A = 5. Notice that no edge say
{1,2} can occur doubly (appear as double edges in an OLE graph )
in a decomposition two or more times as then edge {3,4} will occur
more than five times. Also, no edge can occur triply (appear as triple
edges in an OLE graph) in a decomposition two or more times since
A = 5. For n = 4, there are six pairs of edges and five OLE graphs are
required in an OLE-decomposition, thus five of the six pairs should
appear doubly once and five of the six pairs should appear triply
once. This implies that at least four pairs appear both doubly once
and triply once. Also, it is impossible to have five pairs appear both
doubly once and triply once since this would imply that the sixth
pair appears singly five time (i.e. appears as a single edge in each of
the five OLE graphs in the decomposition).

Thus, if a decomposition exists, it must be the case that exactly
four pairs appear both doubly once and triply once, and the fifth
pair (say es) appears doubly once and singly three times, and the
sixth pair (say eg) appears singly two times and triply once. Since
e¢ appears triply once, it has to appear in one of the OLE graphs
which contains es as the single edge in the decomposition since eg
can not appear triply once and singly once in the same OLE graph.
This implies that es and eg share a common vertex. Without loss of
generality, let es = {1,2} and eg = {1,3}. One of the OLE graphs in
the decomposition must be [4,2, 1, 3]. Notice that edge {4,2} appears
doubly in the OLE graph, which implies that it must appear triply
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once in one of the other four OLE graphs, and that OLE graph must
be [3,1,2,4]. This is contradictory to the assumption that eg = {1,3}
appears singly two times and triply once. Therefore, an OLE(4, 5)
does not exist. [J

EXAMPLE 6. An OLE(9,5) ezists. Let V = {1,...,9}. The
number of graphs required for an OLE(9,5) is 5—’2‘-2—’(;—8 =30. A Ky
can be decomposed into 12 P, paths. Obtain a P, decomposition
on V such that the middle edges of siz Pys appear as single edges
and double edges in six OLE graphs and the middle edges of the
other siz Pys appear as triple edges in the same siz OLE graphs.
The remaining 24 OLE graphs can be constructed as follows: For
each Py (a,b,c,d) from the path decomposition, construct two OLE
graphs [a, b, ¢, d] and [d, ¢, b, a). Notice that edges {a,b} and {c,d} ap-
pear five times in these two OLE graphs, and edge {b,c} appears two
times in these two OLE graphs. Since edge {b,c} is the middle edge
of the path (a,b,c,d), it appears three times in the six OLE graphs
constructed earlier. The 30 OLE graphs for an OLE(9,5) are as fol-
lows: [9,4,1,2], [2,1,4,9), [5,4,2,8], [8,2,4,5], [7,4,3,9], [9,3,4,7],

1,8,5,6], [6,5,8,1], [4,8,6,9], [9,6,8,4], [9,8,7,1], [1,7,8,9], [3,1,6,4],
(4,6,1,3],[9,2,7,5], [5,7,2,9], [8,3,5,9], [9,5,3,8], [2,5,1,9)], [9, 1,5, 2,
(7,6,2,3], 3,2,6,7], [9,7,3,6], [6,3,7,9], [1,4,2,7], [2,4,3,5], [3,4,1,6],
[5,8,6,2], [6,8,7,3] and [7,8,5,1].

LEMMA 5. An OLE(16,5) exzists.

Proof: Let n = 16 and A = 5. The number of graphs required
for an OLE(16,5) is 32]8%13 = 100. Let V; = {oocy,...,009} and
Vo ={0,...,6}. An OLE(9,5) for the points in V; results in 30 OLE
graphs. Obtain 7 OLE graphs by developing the base graph [0, 2, 3, 6]
modulo 7. Obtain the remaining 63 OLE graphs by developing
the following 9 base graphs modulo 7: [001,0, 1, 002, [002,0, 1, 003],
[0031 0,1, 004]1 [004) 0,1, 005]1 [0051 0, 2) 006], [006’ Oa 21 007]1 [0077 0,2, 008]1
[008,0, 3, 009}, and [00g,0, 3,001]. The total number of OLE graphs
is 30 + 7 + 63 = 100 as required for an OLE(16,5). O

LEMMA 6. An OLE(21,5) exists.

Proof: Let n = 21 and A = 5. The number of graphs required
for an OLE(21,5) is 3%21x20 = 175, Let V; = {(I,0),...,(I,8)}
and Vo = {({1,0),...,(/1,11)}. An OLE(9,5) for the points in V}
results in 30 OLE graphs, and an OLE(12,5) for the points in V
results in 55 OLE graphs. Notice that there are 108 pairs between
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a vertex in Vi and a vertex in V5. Define the difference of each
pair (({,7),(I1,7)) to be (j — ¢) modulo 12 where i = 0,...,8 and
j = 0,...,11. There are exactly 9 pairs for each difference from
0 to 11: 9 pairs ((I,2),(I1,7)) where ¢ = 0,...8 have difference 0,
9 pairs ((1,%),(I1,i + 1)) where ¢ = 0,...8 have difference 1, ...,
and 9 pairs ((Z,%), (/1,7 + 11)) where 2 = 0,...8 have difference 11
(note that 7 + 11 sums modulo 12). Developing the following 10 base
graphs such that each base graph is used to develop eight more OLE
graphs (so nine OLE graphs total including the base graph), where
the vertex in V] is developed modulo 9 (only develop the second
component of a vertex) and the vertex in V3 is developed modulo 12
(only develop the second component of a vertex and it’s partially de-
veloped since only eight more OLE graphs are developed from a base
graph): [(I1,8),(I,0),(I1,11),(I,2)], [(II,6),(I,0),(I1,11),(I,4)],
[(I1,4),(1,0),(11,11),(1,6)], [({1,2),(I,0),(I1,11),(I,8)],
((II,2),(1,2),(I1,1),(I,0)], [({,2),(II,11),(I,1),(I1,9)],

[(1,4), (I1,11),(1,1), (I11,7)], [({,6), (/1,11),(,1), ({1, 5)],
[(1,8),(II,11),(1,1),(I1,3)], and [(,0),(I1,1),(I,3),({1,3)]. As a
result, we have 90 OLE graphs. The total number of OLE graphs is
20 + 55 + 90 = 175 as required for an OLE(21,5). O

LEMMA 7. An OLE(28,5) ezists.

Proof: Let n = 28 and A = 5. The number of graphs required
for an OLE(28,5) is 3X2X27 = 315. Let V; = {oo1,...,009} and
Vo = {0,...,18)}. An OLE(9,5) for the points in V; results in 30
OLE graphs. To obtain the remaining 285 OLE graphs, develop the
following 15 base graphs modulo 19: [3,0,1,4], [4,0,1,5], [5,0,1,6],
6,0,1,7], [7,0,1,8], [8,0,2,10], [c01,0,2,002], [002,0,2,003],

[003; 0,2, 004]’ [004, 0,2, 005]! [0057 0,9, 006]) [006: 0,9, 007]1
[007,0,9, 00s], [008, 0,9, 00g], and [00g, 0,9, 001]. The total number of
OLE graphs is 30 + 15 x 19 = 315 as required for an OLE(28,5). O

THEOREM 12. An OLE(n, ) ezists for n = 4,9 (mod 12) and
A =5 (mod 6).

Proof: We use the same idea as in Lemma 6. Let n =9 (mod 12) =
12t + 9 and A = 5. The number of graphs required for an OLE(n, 5)

jg SXUATNXUANTE) _ 541 4 3)(3t + 2) = 60t + 85t + 30. Let

Vi = {(,0),...,(I,8)} and Vo = {({1,0),...,(II,12t — 1)}. Since
an OLE(12t,5) exists by Lemma 3 and an OLE(9, 5) exists, obtain
an OLE(9, 5) for the points in V; and an OLE(12t¢, 5) for the points in
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V3. As aresult, there are 5¢(12t—1)+30 = 60¢2—5t+30 OLE graphs.
Obtain another 90t OLE graphs by developing the following 10t base
graphs such that each base graph is used to develop eight more OLE
graphs (so nine OLE graphs total including the base graph), where
the vertex in V] is developed modulo 9 and the vertex in V5 is devel-
oped modulo 12¢: [(II,12s—4),(I,0),(I1,125-1),(,2)], [(I1,12s~-
6),(1,0),(11,12s-1),(1,4)), [(II,12s-8),(I,0),(I1,125-1), (I, 6)],
[(11,125-10),(1,0),(I11,12s-1),(,8)], [(I1I,12s—10), (I,2), (IT,12s+
1),(1,0)], (({,2), (11,125 — 1),(I,1), (11,125 — 3)), [(Z,4), (11,125 —
1),(1,1),(11,12s - 5)}, [(1,6), ({I,12s - 1), (1,1), (11,125 — 7)],
((1,8),(I1,125-1), (1,1), (11,125-9)], and [(I,0), (II,12s+1), (I, 3),
(I1,125—9)] where s = 1, ...t (note that when s = ¢, the third point
(I1,12s5+1) in the fifth and the tenth base graphs should be replaced
by (I1,12s — 11)). As a result, we have 90t OLE graphs. The total
number of OLE graphs is 60t2 — 5t + 30 + 90t = 60t2 + 85¢ + 30 as
required for an OLE(12t + 9, 5).

Let n =4 (mod 12) = 12m+4 = 12(m—1)+16 = 12t+16(¢t > 1)
and A = 5. The number of graphs required for an OLE(n,5) is
Sx(12e10)x(121+19) — 5(3t + 4)(4t + 5) = 60¢2 + 155¢ + 100. Lemma
7 proves the existence of an OLE(28,5) when t = 1. For ¢t > 2,
let Vi = {(1,0),...,(1,15)} and V5 = {({1,0),...,(I1,12t—1)}. An
OLE(12t, 5) for the points in V5 results in 5¢(12t—1) = 60t2—5¢ OLE
graphs (by Lemma 3) and an OLE(16, 5) for the points in V; results in
100 OLE graphs (by Lemma 5). Obtain another 160t OLE graphs by
developing the 10t base graphs such that each base graph is used to
develop 15 more OLE graphs (so 16 OLE graphs total including the
base graph), where the vertex in V} is developed modulo 16 and the
vertex in V; is developed modulo 12¢ (use the same 10t base graphs
as in the previous paragraph). The total number of OLE graphs is
60t2 — 5¢ + 30 + 90t = 602 — 5t -+ 100 + 160t = 60t2 + 155t + 100 as
required for an OLE(12t + 186, 5).

Let n = 4,9 (mod 12) and A = 5 (mod 6) = 6k + 5. Combin-
ing an OLE(n,6k) (by Theorem 9) and an OLE(n,5), we have an
OLE(n, 6k +5). O

5. Summary

In this paper, we addressed the necessary conditions for the ex-
istence of LOE and OLE decompositions in general (for all possible
A values), and we proved that an LOE(4, 5) does not exist and an
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OLE(4, 5) does not exist. For all other cases, we proved that the nec-
essary conditions established in Section 2 are sufficient for the LOE
and OLE decompositions.

References

[1] P. Adams, D. Bryant, and M. Buchanan, A survey on the existence of G-Designs,
J. Combin. Designs 16 (2008), 373-410.

[2] E. J. Billington, Balanced n-ary designs: a combinatorial survey and some new
results, Ars Combin. 17 (1984), A, 37-72.

[3] E. J. Billington, Designs with repeated elements in blocks: a survey and some re-
cent results, eighteenth Manitoba conference on numerical mathematics and com-
puting (Winnipeg, MB, 1988), Congr. Numer. 68 (1989), 123-146.

(4] H. Chan and D. G. Sarvate, Stanton graph decompositions, Bulletin of the ICA
64 (2012), 21-29.

[5] C. J. Colbourn, The handbook of combinatorial designs, second edition, edited by
C. J. Colbourn and J. H. Dinitz, Chapman/CRC Press, Boca Raton, Fl., 2007.

(6] S. El-Zanati, W. Lapchinda, P. Tangsupphathawat and W. Wannasit, The spec-
trum for the Stanton 3—cycle, Bulletin of the ICA, 69 (2013), 79-88.

(7] D. W. Hein and D. G. Sarvate, Decomposition of AK,, using Stanton-type graphs,
JCMCC, 90 (2014), 185-195.

[8] M. Priesler and M. Tarsi, Multigraph decomposition into stars and into muitistars,
Discrete Math. 296 (2005), no. 2-3, 235—244.

[9] D. R. Stinson, Combinatorial designs: constructions and analysis, Springer, New
York, 2004.

(A. One) COLLEGE OF CHARLESTON, DEPT. OF MATH., CHARLESTON, SC, 29424
E-mail address: sarvated@cofc.edu .

(A. Two) THE CITADEL, DEPT. OF MATH. AND COMPUTER SCIENCE, CHARLESTON,
SC, 29409
E-mail address: 1i.zhang@citadel.edu

105



