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Abstract
Let II be a finite polar space of rank n > 2 fully embedded into
a projective space L. In this note, we determine all tight sets of IT
of the form (Z; N P) U (X2 N P), where P denotes the point set of
IT and Z;, 2 are two mutually disjoint subspaces of ¥. In this way,
we find two families of 2-tight sets of elliptic polar spaces that were
not described before in the literature.
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1 Introduction

Let g be a prime power and n € N\ {0,1}. Suppose Il is one of the following
finite polar spaces of rank n:

W(2n-1,q), Q(2n,q), QT (2n-1,q), @~ (2n+1,q), H(2n—1,q), H(2n,q).

Throughout this note, we will implicitly assume that g is a square if Il is a
Hermitian polar space. Let P denote the point set of II and ¥ the ambient
projective space of II. With II, there is associated a polarity ¢ of ¥, which is
degenerate if I = Q(2n, q) and g is even. If ¥’ is a subspace of I, then £'NII
denotes the pair (Y,S), where Y [resp. S] denotes the set of points [resp.
subspaces| of II contained in ¥’. If £’ NP is not a subspace, then ¥’ NIl is
a (possibly degenerate) polar space. More background information on the
properties of quadrics and Hermitian varieties that we will use throughout
this note can be found in the book [9]. Now, put

n_1 n-l_l
n 1= g and Anoy = T
g—1 g-—1

Then A, is the number of points of a generator of II. If X is a set of points
of TI, then the number of ordered pairs of distinct collinear points of X is
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bounded above by

Mor-1x1- (B g - 1)),
n

If equality holds, then i := %l € N and X is called i-tight. The empty set
and P are examples of tight sets. We will call them the trivial tight sets.
Any other tight set will be called nontrivial. Tight sets were introduced by
Payne [12] for generalized quadrangles and by Drudge [7] for arbitrary polar
spaces. We refer to these references for proofs of the above-mentioned facts.
Drudge (7] also observed that the so-called Cameron-Liebler line classes of
PG(3, g) with parameter ¢ (as introduced in [4]) correspond via the Klein
correspondence to i-tight sets of the hyperbolic quadric Q7 (5, q).

This note arose from a successive attempt of the author to determine
those tight sets that can be obtained by intersecting the polar space II with
two disjoint subspaces ¥y and I5 of T, and the subsequent observation that
two families of tight sets that arise in this way had not yet been described in
the literature. The main difficulty in determining all these tight sets seems
to come from the fact that one needs to get control over the (initially
numerous) possibilities for the pair (¥, ;). Indeed, the dimensions of I;
and ¥z are not known in advance as well as their mutual position with
respect to the polarity ¢. Also the types of the intersections ¥; N II and
Y2 N1I are initially unknown. Here is our complete classification:

Theorem 1.1 Suppose X is a nontrivial tight set of I of the form (LN
P)U(Z2NP), where £y and Ty are two disjoint subspaces of &. Then one
of the following cases occurs:

(1) X is a generator. Then X is 1-tight.

(2) TI = Q(2n,q) and X is the point set of a hyperbolic quadric Q*(2n —
1,9) C Q(2n,q). Then X is (¢"~! + 1)-tight.

(3) I1 = H(2n,q) and X is the point set of a Hermitian variety H(2n —
1,q) € H(2n,q). Then X is ("% + 1)-tight.

(4) II = Q= (2n + 1,q) and X is the point set of a parabolic quadric
Q(2n,q) CQ™(2n+1,q). Then X is (g + 1)-tight.

(5) II = Q=(2n + 1,q) and X is the point set of a hyperbolic quadric
Qt(2n—-1,9) CQ (2n+1,q). Then X is (g"~! + 1)-tight.

(6) X is the the union of two disjoint generators. Then X is 2-tight.

(7) I = Q(5,9) and X is the union of a line L and the point set of a
hyperbolic quadric Q*(3,q) C Q~(5,q) disjoint from L. Then X is
(g + 2)-tight.
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(8) n = 2m is even, Il = W({dm — 1,q), dim(%;) = dim(Zz) = n -1,
o =% and S, NI 2T, NI W(2m—1,9). Then X is 2-tight.

(9) n = 2m is even, I = Q~(4m + 1,q), dim(Z;) = dim(Z;) = n,
T =% and ) NI = o N1 = Q(2m, ). Then X is 2-tight.

(10) n =2m~1is odd, Il = Q~(4m—1,q), dim(X;) = dim(Z;) = n, Lz =
%5 and there exists an i € {1,2} such that T; NI = Q*(2m — 1,q)
and Z3_; NI 2 Q~(2m —1,q). Then X is 2-tight.

Since £; and I, were allowed to be empty subspaces, Theorem 1.1 includes
the case of tight sets that can be obtained by intersecting P with only one
subspace. The nontrivial tight sets that can be obtained in this way are
described in (1)-(5) of Theorem 1.1. For the examples described in (6)-
(10), both X; and X3 need to be nonempty.

Several constructions of tight sets can be found in the papers [1, 2,
12, 13]. The straightforward examples mentioned in (1)-(7) of Theorem
1.1 are already described there (either explicitly or implicitly). The most
interesting examples in Theorem 1.1 seem to be those mentioned in (8), (9)
and (10). Those living in symplectic polar spaces (case (8)) were already
described in [5]. Although the constructions in (9) and (10) are similar to
those of (8), these examples had not yet been recognized as tight sets!. Via
the connection with minihypers, the classification in [5] required (among
other things) to look at tight sets that arise as unions of certain subspaces
of ¥ that are contained in II. The examples in (8) indeed arise in this way,
but not those of (9) and (10).

The examples described in (8), (9) and (10) are examples of 2-tight
sets that cannot be written as unions of two disjoint generators. In the
literature, there are a number of results stating that every i-tight set with
i < N where N € N\ {0,1} is some specific number should be the union
of i mutually disjoint generators. Results in this direction have been ob-
tained for the Hermitian polar space H(2n — 1, q) (5, Theorem 3.9] and the
hyperbolic polar space? Q*(2n—1,4q) [3, 6, 8, 10, 11]. Such a result cannot
be obtained for elliptic polar spaces in view of the above-mentioned 2-tight
sets in these polar spaces.

2 Basic definitions and properties

We continue with the notation of Section 1. With IT we associate a param-
eter ¢ which we call the indez of II:

1With exception of those living in the generalized quadrangle Q~ (5, q), see {12, I1.4].
2If n is odd, then Q*(2n — 1, ¢) does not have three mutually disjoint generators. In
this case, the result implies the nonexistence of i-tight sets with 2 < i < N.
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With II there is associated a polarity ¢. The polarity ¢ is symplectic if
II =W(@2n-1,9) or IT € {Q*(2n - 1,9),Q~(2n + 1,9)} with ¢ even,
orthogonal if IT € {Q(2n,q),@*(2n—-1,q),Q~(2n+1,q)} with g odd, and
Hermitian if Il € {H(2n — 1,q), H(2n,q)}. If Il = Q(2n, q) with g even,
then ¢ is degenerate: we have z¢ = I if  is the nucleus of Q(2n,q) and z¢
is a hyperplane of ¥ for any other point = of . If z is a point of II, then
z1 := 2¢ NP denotes the set of points of II collinear with (or equal to) z.

A set X of points of Il is called an m-ovoid for some m € N if it intersects
every generator of Il in precisely m points. A set X of points of I is called
intriguing if there exist constants hy,hy € N such that |zt N X| = A, if
z € X and |zt N X| = hy if £ € P\ X. If this is the case, then we say
that X is intriguing with parameters (hy,hy). If ® # X # P, then the
parameters (hj, hg) of the intriguing set X are uniquely determined. The
following was proved in [1, 2].

Lemma 2.1 ([1, 2]) The intriguing sets of points of Il are precisely the
tight sets and the m-ovoids for some m € N. If X is an i-tight set of II,
then X is an intriguing set with parameters (hy, hy), where

hy =i"\n—l+qn—l’ h2=i'An—l°

If X is an m-ovoid, then X is an intriguing set with parameters (hy, hy),
where

hi=(m—-1)(g"" 2 +1)+1,  hy=m(g" %t +1).

Corollary 2.2 Let X be a nonempty intriguing set of points of Il distinct
from P, and let (hy, ho) be the parameters of X. Then hy > hy if X is a
tight set and hy < hy if X is an m-ovoid for some m € N.

The following lemma is taken from Drudge {7, Theorem 9.1].

Lemma 2.3 ([7]) The 1-tight sets of Il are precisely the generators of II.

More generally, the union of i mutually disjoint generators of II is an i-
tight set. This can easily be proved, but it also follows from the following
property taken from (1, 12].

Lemma 2.4 ([1, 12]) Suppose X, is an i-tight set of Il and X, is a j-

tight set of IL. If X, N X3 =, then X, U X, is an (i + j)-tight set of IL. If
X1 € X3, then X2\ X, is a (j — i)-tight set of II.
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In the following lemma, we collect a well-known property of quadrics and
Hermitian varieties of finite projective spaces, see [9].

Lemma 2.5 (1) Let Q be a (possibly degenerate) quadric of the projec-
tive space PG(m, q), m > 2. Then every plane meets Q nontrivially.

(2) Let H be a (possibly degenerate) Hermitian variety of the projective
space PG(m,q), m > 1 and q square. Then every line meets H

nontrivially.

Lemma 2.6 Suppose X is a set of points of PG(m,q), m > 1, with the
property that every hyperplane intersects it in a constant number of points.
Then X is either the empty set or the whole set of points of PG(m, g).

Proof. Suppose every hyperplane intersects X in precisely a points. The

number of incident point-hyperplane pairs (z,7) with z € X is then equal
m m+1 m

to | X|- ﬂq_—'ll = ﬂ—q_—l“l -a. Since the greatest common divisor of 9q_—'ll and

9% is equal to 1, we should have that % is a divisor of a. Since

0<ac< fmT“ll-, this implies that either a = 0 or a = 9’"7';1, respectively
corresponding to the cases where X is empty or the whole set of points. =

3 Proof of Theorem 1.1

We continue with the notation of Sections 1 and 2. This section is devoted
to the proof of Theorem 1.1. So, we will suppose that X = (; nP)U
(22 N P) is a nontrivial tight set of I, where £, and X, are two disjoint
subspaces of ¥.

Lemma 3.1 Suppose X’ is a nonempty set of points of Il and ¥’ is a
subspace of ¥ containing X'. Then X' is a tight set of Il if and only if one
of the following two cases occurs:

(1) X' is a generator of Il;

(2) II" := ' N II is a nondegenerate polar space of rank n, and X' is a
tight set of II'.

Proof. We first observe that the point sets described in (1) and (2) are
indeed examples of tight sets of II. We already know this for the generators
of II. In the case II’ is a nondegenerate polar space of rank n, this follows
from the fact that two points of I’ are collinear in IT’ if and only if they
are collinear in II, and so the conditions for X’ to be tight sets of II and
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IT' are the same, namely that the total number of ordered pairs of distinct
collinear points of X’ should be equal to A,_; - | X'| - (%{"—[ +(g— 1)).

Suppose now that X’ is a tight set of points of II. If X’ is a set of mutually
collinear points, then X’ is contained in some generator = and it follows
that 0 < | X’| | 7| = An. The fact that 1 € N then implies that X’ = .
We will therefore suppose that X' contams two distinct noncollinear points.
Then IT' is a (possibly degenerate) polar space.

We show that IT' is nondegenerate as a polar space. Suppose z* is a
point of IT' that is collinear with all remaining points of IT". If z* € X',
then as z* is collinear with all | X’| —1 other points of X', every point of the
intriguing set X’ should be collinear with all | X’| — 1 other points of X', in
contradiction with the fact that X’ contains two noncollinear points. We
must therefore have that £ ¢ X’. But then the fact that z* is collinear
with precisely |X’| points of X’ would imply by Corollary 2.2 that every
point y € X' is collinear with more than |X’| points of X’, an obvious
contradiction.

Suppose X' is intriguing with parameters (h;, h2). Then k; > 1 by
Lemma 2.1. So, X’ contains two distinct collinear points and the rank n'
of the nondegenerate polar space IT' must be at least 2.

We show that X' is a tight set of II'. This is obviously the case if
X' coincides with the whole point set P’ of II. So, we may suppose that
0 # X' #£ P'. By Corollary 2.2, hy > hy. Since every point of X’ is
collinear with k; points of X’ and every point of P’ \ X' is collinear with
hy points of X', the set X’ must be an intriguing set of points of II’. Since
hy > ha, X' is a tight set of II' by Lemma 2.1 and Corollary 2.2.

In order to finish the proof of the lemma, we still need to show that
n’ = n. Since X’ is a tight set of II', we have |z NX'| = \_;- l—l-l-q -1
for every point z € X’. Hence,

! l
ﬂ,

ie.,

Since the maps N\ {0,1} = Q : m (5 - af——ﬁ) |X’| and N\ {0,1} —
Q:m > g™ ! are two increasing functions, we should have n’ = n. .

In order to prove Theorem 1.1, it suffices - in view of Lemma 3.1 - to prove
the following proposition.
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Proposition 3.2 Suppose L; and Lq are two complementary nonempty
subspaces of L. Let X;, i € {1,2}, denote the set of points of Il contained
in &; and suppose that I; = (X;). Then X := X, UX; is a tight set if and
only if one of the following cases occurs:

(1) II = Q(5,9), one of £1, X2 is a line of Q(5,q) and the other
intersects Il in a Q% (3,q);

(2) Me {(W2n-1,9),Q*(2n - 1,9), H2n — 1,q)} and X,,% are two
disjoint generators of II;

(3) n = 2m is even, Il = W(4m — 1,q), dim(Z;) = dim(X2) = n -1,
L= and S NI 2 SN2 W(2m - 1,g);

(4) n = 2m is even, Il = Q~(4m + 1,q), dim(Z,) = dim(Z3) = n,
T2 =5 and £, NI 2 T, N1 Q(2m, q);

(5) n=2m—11isodd, Il = Q~(4m-1,q), dim(Z,) = dim(X2) =n, L =
2% and there ezists an i € {1,2} such that ;NI = Q*(2m — 1,q)
and L3_; NII = Q= (2m —1,q).

In the sequel, we will suppose that X;, 5, X; and X5 are as in Proposition
3.2. We suppose that X = X;UX} is a tight set of II. Put n; := dim(%;)+1
and np := dim(Z;)+1. Note that X; and X, are nonempty since £; = (X1)

and £ = (X5) are nonempty.
We will first prove the validity of Proposition 3.2 in the case where II

is a symplectic polar space.

Lemma 3.3 IfII = W(2n — 1,q), then precisely one of the following two
cases occurs:

(1) X, and X, are two disjoint generators of I;

(2) n =2m is even, dim(Z;) =dim(Z3) =n—1, T, = 5§ and £, NI =
LonII=W(2m -1,q).

Proof. Clearly, ny + ng =2n and 1 < nj,ny < 2n—1. Let , 7 € {1,2},
denote the remainder of the division of n; by n. Now, | X| = 9% + ’%
must be divisible by A,, = 9;_—"11-. So, g® —1 is a divisor of (g™ —1)+ (g™ —1)
and hence also of (g™ — 1) + (g™ —1). Since 0 < (¢ — 1)+ (g™ —1) <
2(g" 1 -1) < g"—1, we must have r; = 75 = 0. It follows that n; = ng =n.

If z, is a point of W{(2n — 1,4) not contained in X = X; U X3 and z»
is a point of X, then each of |z N X|, |z3 N X| is equal to either 2,
or Ap + Ap—1. Since |z3 N X| > |z{ N X| by Corollary 2.2, we should have
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|z N X| = 2),—1 and |zF N X| = Ap + An—1. The latter equality implies
that either £; C x5 or £ C za. Let U; denote the set of all points z € T
for which £; C zt and let U, denote the set of all points z € £, for which
2 € zt. Then U, and U, are two disjoint subspaces of £; such that
E, = Uy U U,. 1t follows that either (U; = @ and Uy = X;) or (Uy = %,
and U, = ).

Suppose Uy =0 and U; = X,. Then X C E‘l;. It follows that ¥o = 2§.
Since X; and ¥, are disjoint, X; NII and X5 NII are two nondegenerate
polar spaces. Hence, n = 2m iseven and 5, NII & T, NI W(2m —1,q).

Suppose Uy = X, and U; = . Then L, is a generator of II. So, it is
no longer true that n =2m iseven and 5, NI 2 T, NI = W(2m - 1,q).
By reversing the roles of ; and ¥, we then see that also £, should be a
generator in this case. [

In view of Lemma 3.3, we can now make the following assumption.

Assumption 1: [T # W(2n - 1, q).

For every i € {1,2}, put II; = &; nIL U; = L; N Ec_i and let R; denote
the set of all points z € X; for which Z; C z¢. Also, put n! := dim(l4;) +1.
Observe that if II; is a (possibly degenerate) polar space, then R; is its
radical.

Lemma 3.4 For every i € {1,2}, R;NU; = 0. Moreover, if § £ R; # Z;,
then X; \ (R: UU;) # 0.

Proof. If z were a point of R; NU;, then 2¢ would contain £; and T,
and hence also £ = (¥1,%,), in contradiction with the fact that IT is a
nondegenerate polar space.

Suppose @ # R; # I;. If U N X; = @, then the fact that (X;) = &;
implies that X;\ (R;Ul;) # 0. IfU;NX; # O, then the fact that R;NU; = 0
implies that there exists a point of X; \ (R; UY;) on a line joining a point
of R; with a point of U; N X;. s

Lemma 3.5 IfR; #  for some i € {1,2}, then dim(Z;) < dim(Z3-;).

Proof. Without loss of generality, we may suppose that i = 2. If X,
is a subspace, then dim(Z;) < n — 1 and hence dim(Z;) > n — 1 since
dim(%,) + dim(X;) = dim(X) — 1 > 2n — 2. In this case, we thus have
dim(Z;) < dim(%,;).

So, suppose that X, is not a subspace. Then § # Ry # Ij, so Il is
a degenerate polar space. By Lemma 3.4, there exist points z; € R, and
Tg € Xz\(RzUUz). Then Ixf‘nXﬂ—I:L‘é‘ﬂXz‘ = |X2|—II%0X2| = q"2_2+6,

where § = 0 if IT is a polar space of quadratic type and § = -;— ifIlis a
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Hermitian polar space. Indeed, on each of the g"2~2 lines of T, through x2
not contained in x5, there are g% points of X, \ {z2}. Since X = X; U X
is an intriguing set, we must have that |z3- N X;| —| z{ N X;| = g"2~2+%,
Since z;,z2 & Uz, the subspaces azgﬂEl and :rf NE; are two hyperplanes of
%, (i.e. subspaces of dimension n; — 2) and hence |23 N X;| —|z{ N X;| <
[(z§ N T1) \ (z$ N Zy)] < ¢ ~2. Tt follows that ny < ny. "

Our next goal will be to treat the case where at least one of X3, Xz is a
subspace. This goal will be achieved in Lemmas 3.6, 3.7 and 3.8.

Lemma 3.6 If both X; and X, are subspaces of Il, then they are also
generators of I1.

Proof. We have 0 < |X;| < A, and 0 < |X3| £ A,, implying that
0 < |X| £ 2\n. So, X is either 1-tight or 2-tight. However, X cannot
be 1-tight by Lemma 2.3. So, X is 2-tight. But then we necessarily have
|X1]| = |X2| = An, implying that X; and X3 are two generators. n

Lemma 3.7 If X, is a subspace, then X, is a generator.

Proof. Suppose that X; is not a generator. Then X, is not a subspace
by Lemma 3.6, implying that ¥, N1l is a (possibly degenerate) polar space
whose radical R, has co-dimension at least 2 in 5. Since X is not a
generator, we have n; < n — 1 and hence ns > n + 1 since n; + ny =
dim(Z) + 1 > 2n. By Lemma 3.5, R; = 0. So, £, NI is a nondegenerate
polar space, implying that [z1 N X3 is independent of z € X,. Since
X = X; U X, is an intriguing set, also |z N X;| is independent of z € X,.
Since X is a subspace, there are then two possibilities:

e y+ N X, = X, for every y € Xo;
e y1 N X, is a hyperplane of T; for every y € X».

The former case cannot occur, since this would imply that 26 = I for
every z € ¥j, contrary to the fact that Il is nondegenerate as a polar
space. Hence, y* N X, is a hyperplane of T, for every y € X. Since the
subspace £ N T2 has dimension at least dim(Z;) — dim(Z;)—1 > 1 and is
disjoint from X5, Lemma 2.5 implies that II is a polar space of quadratic
type and dim(Z;) —dim(Z;) = 2. Since dim(X;) < n—2 and dim(Zz) = n,
we thus have dim(X;) = n — 2, dim(X2) = n and dim(X) = 2n — 1. So,
Il = Q*(2n — 1,q). If n is even, then as £y NI is a parabolic quadric, we
must have
n—-1 __ 1 qn -1

q
X| = ,
X1 g-1 +q—1
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which is impossible since ljf—nl would then not be integral. If n is odd, then

_qn—l_l qn_l

+ 7

where 1 = q'"‘-rl if X is a hyperbolic quadric of ¥, and n = ——q"ﬁ—_l' if Xo is
an elliptic quadric of £,. Also in this case the number | X| is not divisible
by A\, = gq:;_—ll-. So, our original assumption was wrong and X; should be a
generator of IL .

Lemma 3.8 If X; or X2 is a subspace of I, then one of the following two
cases occurs:

(1) X1 and X3 are generators;

(2) II=Q~(5,q), one of X1, X2 is a line of Q~(5,q) and the other is a
Q*(3,9) € Q(5,9).
Proof. Without loss of generality, we may suppose that X, is a subspace.
Then by Lemma 3.7, X is a generator and hence also a tight set of II. Since
X1NXz;=0and X = X, UX; is a tight set of II, Lemma 2.4 implies that
also X3 is a tight set of II. By Lemma 3.1, there are now two possibilities:

(1) X3 is a generator;
(2) £2 NI is a nondegenerate polar space of rank n.

Suppose case (2) occurs. Since £s NII is a nondegenerate polar space of
the same rank as II, the co-dimension of X5 in ¥ should be at most 2. So,
the generator £; = X, which is disjoint from T3 should have dimension 1
and ¥, should have co-dimension 2 in X. This implies that II = Q~ (5, q)
and X NII 22 Q*(3,q). =

In view of Lemma 3.8, we can make the following additional assumption.

Assumption 2: Neither X; nor X; is a subspace of II.

Then II; and Tl are (possibly degenerate) polar spaces and R; # I,
Ry # Lo,

Lemma 3.9 For every i € {1,2}, eitherU; =3; orUi N X; = 0.

Proof. Assume U; # £; and z e U; N X;. If R; = O, then as (X;) = &;,
there exists a point y € X;\U;. If R; # @, then by Lemma 3.4, there exists
a point y € X; \ (U; UR;). Since z,y ¢ R;, we have |zt N X;| = |y* N X;|
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and hence also |[z* N X3—;| = |y* N X3—;|. This is however impossible as
zl N Xa_; = X3_;, while y1 N X3_; is a proper subset of X3_;. ]

Observe that we have U; = X; if and only if s = ¥5. Indeed this happens
precisely when every z; € X is collinear with every z2 € X; in the polar
space II. We can thus distinguish two cases:

(A) ul = 21 and UQ = 22;
(B) UnNXi=UnXy,=0.

We now treat these two cases separately.

Case A: Suppose Uy =X and Uy = Iy
We then have that R; = Rz = 0 by Lemma 3.4.

Lemma 3.10 We have ny = na.

Proof. Let r; € X, and z5 € X5. Repeating one of the arguments in
the proof of Lemma 3.5, we have that |X;| —| 2i N X3| = ¢™~2*% and
|X2| =] z+ N X3| = ¢"*~2+% where 6 = 0 in case II is a polar space of
quadratic type and § = % in case Il is a Hermitian polar space. Since
jot N X] = | Xa] + ot N Xy] = |X| - g™ *2+ and |of N X| = | X| - g™+
are equal, we should have n; = n,. .

There are thus seven cases to consider:

(1) I=H(2n—-1,q) withn =2mevenand S, NII = X, NII = H(2m -
1,9);

(2) II = H(2n — 1,q) with n = 2m 4+ 1 odd and Z; N1II
H(2m, q);

B O=Q*2n—-1,q) withn=2m+1o0dd and T, NII & E, NII =
Q(2m, g);

()11 = Q*(2n — 1,q) withn = 2m even and £, NII =& Z; NI =
Q*(2m - 1,9);

(5) I=Q*(2n—1,g) withn=2m+2>4evenand 5, NII =L NI =
Q™ (2m +1,9);

(6) II = @~ (2n+1,q) with n = 2m even and X, NII = L,NII = Q(2m, g);

onIl =

IR

(N MI=Q (2n+1,q) withn =2m —1o0dd, 5, NI = Q+(2m — 1,q)
and T, NII = Q™ (2m —1,q).
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In each of these cases, we have Iy = Ei. Symmetry allowed us to omit
the possibility £; NII & Q~(2m — 1,9) and 2 NIl = Q+(2m — 1,4q) in
case [T = Q= (2n + 1,q) with n = 2m — 1 odd. Let € denote the index of
the polar space II. For every i € {1,2}, let r; and ¢; denote the rank and
index of the polar space II; := X; N II. We have collected these values in
the following table:

Case n ry | 1o €le [ e
(1) 2m |[m| m 5
@2) [[2m+1|m ]| m 5 3
3) {[2m+1|m m 0f17]1
(4) 2m m m 0({o0fo0
(5) [[2m+2|m m 0122
(6) 2m m m 211}1
(7) |2m—-1|m |m-1]2]0[ 2

We have | X| = | X;| + | X3|, where

Xyl = g -1 (gt 1+a Xol = -1 (gmz—ite 4
| X1 | = (¢ +1), | X2l = (g +1).
g-—1 -1
The total number N of ordered pairs of distinct collinear points is equal to
q7‘1 — 1. T1—1+€ qu-l —1 T1=2+€; qrz -1 r2—1+€2
) (g +D(q ) (q 44%+q_1 (9 +D)
—___qrz -1 (gT2—1+e€2 qr2~1 -1 ro—2+€2 ¢" -1 T1—1+€;
+q_1(q +H(q = (¢ +D+q_1(q +D)
The set X is then tight if and only if
"l -1 |X]-(g—1) | X1
N = |1 X|- -1)} =
1 X (SRt ) =@ -0 Ix1 (Z2 ).

It is straightforward to verify that this equality holds in each of the cases
(6) and (7). In cases (1)—(5), we have 7, = 7o and €; = €. So, we also have

a -1 Tt —
2. (qr1—1+€l + 1)
q-—

| X1

1XI

N q2n 1+ + q2r1—2+q + 2qr1 _ 2qr1—1+el —q- 1
g-1 '
From this, one deduces that X is tight if and only if

qn -1 . (q21‘)—1+€] + q21'1—2+€1 + 2qr1 — 2q1‘1—1+61 —-q- 1)
g-1 g-1

126



n—l__l 1
e e )

Since the greatest common divisor of ";:11 and "";_11‘ ! is equal to 1, we
should have that g™ —1 is a divisor of 2(g™ —1)(g™* ~1*¢1 +1). This leads to
a contradiction in each of the cases (1)—(5), except for case (4) where the
possibility (g,m) = (3,1) remains. However, also this possibility cannot
occur since the equality N = (¢"~! —1) - |X] - (;;',élf + 1) would then not
be satisfied.

So, we know that one of the following two cases occurs:

o II = Q~(2n+1,q) with n = 2m even and T, NII = ToNII = Q(2m, q);

eI =Q (2n+1,q) withn=2m—-10dd, Z; NI = Q*(2m - 1,q)
and SoNII = Q~(2m —1,q).

Case B:UyNX,=UsN Xy =0.
We will show that there are no examples here.

Lemma 3.11 We have ny,n} € {0,1} in caseIl is a Hermitian polar space
and n},n} € {0,1,2} in case Il is a polar space of quadratic type.

Proof. Let i € {1,2}. The fact that U; N X; = @ implies by Lemma 2.5
that dim(Y;) < 0 in case II is a Hermitian polar space and dim(i4;) <1 in
case II is of quadratic type. .

Lemma 3.12 We have ny — nj = ng — nj.

Proof. Let X) denote the projective space of dimension ng — nj — 1
naturally defined on the hyperplanes of £y containing Up. Let A; denote
the set of all subspaces of X) of dimension dim(l(;) + 1 through U;. For
every U € A,, the subspace U? := USNZ; is a hyperplane of L, containing
Uy. Then ¢ defines an isomorphism between the quotient space X, /U and
a suitable subspace of Xj. So, we should have n; — nj < ny —nj. By
symmetry, we should also have ny — ny < ny —nf. ]

The following is an immediate consequence of Lemmas 3.11 and 3.12.
Corollary 3.13 We have ny — ny € {—1,0,1} in case Il is a Hermitian

polar space and ny — ng € {—2,-1,0,1,2} in case Il is a polar space of
guadratic type.
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Without loss of generality, we may suppose that ny > n;. The cases that
remain to be considered are then the following:

e II=H(2n - 1,q9) and dim(Z;) = dim(Zz) = n - 1;

e Il = H(2n,q), dim(£;) = n — 1 and dim(Z2) = n;

e I=Q*(2n —1,q) and dim(Z;) = dim(Z;) = n — 1;

o I=Q*(2n-1,q), dim(Z;) = n -2 and dim(Zz) = n;

e II = Q(2n,q), dim(Z;) =n — 1 and dim(T3) = n;

e 1=0Q (2n+1,q) and dim(%;) = dim(Z;) = n;

o [I=Q (2n+1,q), dim(Z;) =n -1 and dim(Z;) =n + 1.

Lemma 3.14 None of the following cases occurs:
o [I=H(2n —1,q) and dim(Z;) = dim(X3) =n - 1;
o II1=Q*%(2n - 1,q9) and dim(L;) = dim(Z2) =n —1.

Proof. In this case, we have 0 < |X| = | X;| + |X2| < 2A,. So, | X]| = A
and X must be a generator by Lemma 2.3, clearly a contradiction. .

Lemma 3.15 None of the following cases occurs:
o [T = H(2n,q), dim(Z;) = n ~1 and dim(X3) = n;
o [I1=Q*(2n - 1,q), dim(T;) = n -2 and dim(Z3) = n;
eI =Q (2n+1,q), dim(Z;) =n -1 and dim(Z;) = n + 1.

Proof. Suppose Il = H(2n,¢), dim(Z;) = n - 1 and dim(X;) = n. Then
Rz = 0 and U, is a singleton by Lemmas 3.5, 3.11 and 3.12. Since Ry = 0,
the number |zt N X2| is independent of the point z € X;. Hence, also
the number |z N X, | is independent of the point z € X,. Now, the map
L — LN X, defines a bijection between the lines of ¥y through Us and
the hyperplanes of £;. Since every line L of ¥, through U, contains a
point z € X, (by Lemma 2.5) and LS N Z; = z¢ N X;, we have that
every hyperplane of £; intersects X; in a constant number of points, in
contradiction with Lemma 2.6 and the fact that @ # X, # Z,.

The proof of the remaining two cases are similar. In this case, we have
that Ry = @, dim(2) = 1 and every plane of £ through U> contains a
point of Xs. n

Lemma 3.16 The case Il = Q(2n,q), dim(Z;) =n -1 and dim(Z;) =n
cannot occur.
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Proof. In this case, we have Ry = @ by Lemma 3.5. We have | X2| = A +6,
where 6 = 0 if n is even and 8 € {¢g(*~1)/2, _¢(®»~1)/2} if n is odd. On the
other hand, we have |X;| < A, — (¢ — 1)¢"~2. Indeed, if = is a point of
X1 not belonging to R, then there are at most An_1 = Ap — g*~! points
contained in (z¢ N X;) N X; and precisely 1 point of X; \ {z} on each of
the ¢"~2 lines of ¥; through z not contained in z¢ N X;. It follows that
|X| = |X1] + | Xz2| € 2A,, with equality if and only if n = 3, ¢ = 2 and
8 = 2. The case |X| = A, is impossible since X would otherwise be a
generator by Lemma 2.3. So, we have that n = 3, ¢ = 2 and § = 2. Then
II = Q(6,q), X, is the union of two distinct lines L; and Lz contained
in the plane &; and X, is a hyperbolic quadric @*(3,2) contained in the
3-dimensional subspace £3. The fact that every point of L\ L; is collinear
with A, L—l+q"‘ = 10 points of X3 U X} rapidly leads to a contradiction
(the fact tha.t three of these points are contained in X; would imply that
seven of them must be contained in X3). =

Lemma 3.17 The case Il = Q~(2n + 1,¢9) and dim(X;) = dim(X3) = n
cannot occur.

Proof. Suppose first that Ry = Ry = 0. Then |Xi| = |Xo| = Ap if n is
even and | X[, |Xz2| € {Mn +¢™~V/2) ), —g("~D/2} if n is odd. So, one of
the following cases occurs:

e n is even, X is 2-tight and X, X2 are of parabolic type. Then ev-
ery point of X is collinear with A,—;(¢ + 1) other points of X. A
straightforward computation then shows that every point of X; must
be collinear with every point of X,. This i 1s however in contradiction
with the fact that T, is not contained in Zf.

e n is odd, X is 2-tight, one of X1, X2 is of hyperbolic type and the
other is of elliptic type. Again every point of X is collinear with
An—1(g + 1) other points of X, and a straightforward argument then
shows that every point of X is collinear with every point of Xa.
Again this is impossible.

So, without loss of generality, we may suppose that R; # @. This excludes
the possibility that n = 2, because otherwise we would have |X;| =2¢ +1
and |X3| €{ ¢ + 1,2¢ + 1}, in contradiction with the fact that |X| =
|X1| + | X2 is divisible by ¢ + 1. We will now show the following:

e Ry #0;
o if g #2, then | X;| = |X2| = ¢ 1 + Ay
e if ¢ =2, then | X;|,| X2} €{ M, 2" 1 + An}.
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The fact that |X| = |X;| + | X2| is divisible by A, then leads to a contra-
diction.

As hefore (see Lemma 3.5), we can take a point £ € R; and a point
y € X1\ (R1ulh). Then |zt N X;| - lyt N X;| = ¢"! and so we must
have |yt N X;| — |zt N X3| = ¢"~!. This implies that there exist two
hyperplanes 7, and 72 in Z; such that | N X;| — |7, N X,| = ¢"*~1. Since
dim(m;) = dim(m2) = n — 1, this implies that w3 \ (7, N 7z) € X, and
(m \(mNm))N Xy =0.

If ¢ > 3, then this implies that 73 C X, and so X, should be the
union of two distinct hyperplanes through a subspace of co-dimension 2.
This subspace of co-dimension 2 is precisely R and it follows that | X,| =
g"~! + \,. Since Ry # @, we can repeat the same reasoning as before and
conclude that also | X;| = ¢"~! + \,.

Suppose now that ¢ = 2 and take a point z € 73 \ (m Nmy). If we
denote by U a hyperplane of m; N 73 contained in z¢, then U € X, and U¢
contains m; and 7, and hence also £ = (m,m). So, U C Ry and since
dim(U) = n — 3 > 0, we have R, # 0. Now, X, consists of the union of
a number of (n — 2)-dimensional subspaces through U. Since X3/U is a
projective plane, X; # E, and (X;) = I, the set X; must be the union
of three or five (n — 2)-dimensional subspaces through U. It follows that
[X2] € {An,27"1 + A, }. Since Ry # @, we can repeat the same reasoning
as before and conclude that also | X;| €{ A\n, 27! + A, }. .
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