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Abstract

The Estrada index of a simple connected graph G of order n is
defined as EE(G) = 37, ™, where A1, Az, ..., As are the eigenval-
ues of the adjacency matrix of G. In this paper, we characterize all
pentacyclic graphs of order n with maximal Estrada index.
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1 Introduction

In this paper we use the same techniques of [14, 20]. Let G = (V| E)
be a simple connected graph of order n and size m. The characteris-
tic polynomial ¢(G;z) of G is |xI — A(G)|, where A(G) is the (0,1)-
adjacency matrix of G, and [ is the unit matrix. We call the eigenvalues
M(G) 2 A2(G) =2 -+ 2 Ap(G) (for short Ay > Ag > -++ 2> A,) of A(G)
the spectrum of G. The Estrada indez, put forward by Estrada [6], is de-
fined as EE(G) = 3., e™. The concept of Estrada index in graphs has
found multiple applications in a large variety of problems, see for example
(7, 8,9, 10, 11]. Several authors studied the Estrada index in graphs, see
for example, [12, 13, 16, 19].

If m =n—14c¢, then G is called a c-cyclic graph. The unique c-cyclic
graphs with maximal Estrada index are determined by Ilic and Stevanovic
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(15] and Zhang et al. [21] for ¢ = 0, Du and Zhou [4] for ¢ = 1, Wang et al.
[18] for ¢ = 2, Zhu, Tan and Qiu [20] for ¢ = 3, and Jafari Rad et al. [14]
for ¢ = 4. In this paper, we consider the case ¢ = 5. A c-cyclic graph with
¢ = 5 is referred as a pentacyclic graph. We characterize all pentacyclic
graphs of order n with maximal Estrada index.

For undefined graph theory notations we refer to [1). For a vertex v,
the open neighborhood and the closed neighborhood of v are denoted by
Ng(v) = {u|luv € E(G)} and Ng[v] = Ng(v) U {v}, respectively. The
degree of v is denoted by dg(v) = |Ng(v)|. If Eg C E(G), we denote
by G — E; the subgraph of G obtained by deleting the edges in Ep. If
E; is a subset of the edge set of the complement of G, then G + E; de-
notes the graph obtained from G by adding the edges in E;. Similarly, if
W C V(G), we denote by G — W the subgraph of G obtained by deleting
the vertices of W and the edges incident with them. If E = {zy} and
W = {v}, we write G — zy and G — v instead of G — {zy} and G — {v},
respectively. We refer P, and C, as the path and the cycle on n ver-
tices, respectively. For vertices u, v and w (not necessarily distinct) in G,
we denote by My (G;u,v) the number of walks in G of length & from u
to v, and by Mi(G;u,v, [w]) the number of walks in G of length k fromn
u to v which go through w. Denote by Wy(G;u,v) a walk of length &
from u to v in G, and by Wi(G;u,v) the set of all such walks. Clearly
Mi(G;u,v) = |Wk(G; u,v)|. Note that My(G;u,v) = Mi(G;v,u) for any
positive integer k [2]. Let G and H be two graphs with u;,v; € V(G) and
ug, v € V(H). If Mip(G;ur,v1) € Mi(H;ug,v9) for all positive integers
k, then we write (G;uq,vy) = (H;uz,v2). If (G;u1,v1) X (H;us,v2) and
there is a positive integer ko such that My, (G;u1,v1) < M, (H;uz,v2),
then we write (G;uy,v;) < (H; ug, vs).

2 Preliminaries and known results

Let My (G) = Y1, Ak. From [2] we know that M(G) is equal to the
number of closed walks of length & in G. It is well known that MO(G) =n,
Mi(G) =0, Mz(G) = 2m, M3(G) = 6t, and My(G) =237, d? —2m+8gq,
where ¢ is the number of triangles, ¢ the number of quadrangles, and d; =
dc(v;) the degree of v; in G. From the Taylor ezpansion of e, it can
be seen that EE(G) = Y 7o, M Thus if for two graphs G; and G,
Mi(Gy) 2 Mi(G,) for all k > 0 ‘then EE(G,) > EE(G;). Moreover, if
there is at least one positive integer ko such that My, (G1) > My, (Gz2), then
EE(G,) > EE(G3). We make use of the following lemmas.

Lemma 1. (2] Let v be a vertez of a graph G, and C(v) be the set of all
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cycles containing v. Then ¢(G;z) = 2¢(G —v;z) — 3_, e pc) (G — v —
0%) =2 zecw) PG — V(2);2), where §(G —u—v;z) =1 G = P,
and §(G -V (Z);z) =1 if G is a cycle.

Lemma 2. [3] Let H be a graph andu,v € V(H). Suppose thatw; € V(H),
and uw;,vw; ¢ E(H) for i =1,2,...,r, where r is a positive integer. Let
E, = {uw),vw,,...,uvw,}, E, = {vw,vws,...,vw,}, H, = H + E, and
H,=H+E,. If(H;u) < (H;v) and (H,w;,uv) X (H,w;,v) for 1 <i<r,
then EE(H,) < EE(H,).

Lemma 3. [5] Let Gy and Gy be connected graphs with v € V(G1) and
v € V(G;). Let G be the graph obtained by joining u to v and G’ be the
graph obtained by identifying u with v, and attaching a pendant vertex to
the common vertex. If da(u),dg(v) > 2, then EE(G) < EE(G').

Given two vertex-disjoint connected graphs G and H and two vertices u €
V(G) and w € V(H), the coalescence of G and H, denoted by G(u)o H(w),
is the graph obtained by identifying the vertex u of G with the vertex w of
H.

Lemma 4. [18] Let u and v be two vertices of a connected graph H,, and
w be a vertex of a connected graph Ha, where Hy is disjoint from H,. Let
H} be a copy of Ha, containing the vertez w’ corresponding to w of Ho,
and G = (H,(u) o Hy(w))(v) o Hy(w').

(2) If there exists an automorphism o of Hy such that it interchanges u and
v, then (G;u,t) = (G;v,0(t)) for any vertex t.

(i1) If H, is obtained from H, by adding some edges incident with v but
not u, Hp is obtained from Hj by adding some vertices or edges such that
the resulting graph is connected, and G is obtained from G by replacing H,
with Hy or Hy with Hy, then (G;u,t) < (G;v,o(t)).

3 Main results

Denote by F,, the class of all pentacyclic graphs of order n. For a graph G €
F,, the base of G, denoted by B(G), is the minimal pentacyclic subgraph
of G. Obviously, B(G) is the unique pentacyclic subgraph of G containing
no pendant vertex, and G can be obtained from B(G) by planting trees to
some vertices of B(G). We know that pentacyclic graphs have the following
two types of bases (as shown in Figures 1 —2): G? (1 = 1,...,12) and G?¢
(i=1,...,29).

Let F® = {G|B(G) = G%,i € {1,...,12}} and F8 = {G|B(G) = G},i €
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Figure 1: The graphs G} (i =1,...,12).
{1,...,29}}. Then F, = F3 U F8. The following lemmas can be obtained

readily by Lemma 3, and so we do not state a proof.

Lemma 5. If G is an extremal graph with mazimal Estrada indez in F,,
then G is obtained from its base by attaching some pendant vertices.

Lemma 6. (i) If G is an extremal graph with mazimal Estrada indez in
F?, then B(G) = G? for some i € {1,2,3,4}.

(i) If G is an extremal graph with mazimal Estrada indez in F?, then
B(G) = G® for some i€ {1,2,...,18}.

Lemma 7. If Gy is an extremal graph with mazimal Estrada indezx in F?,
then there etists a graph G, in F¢ such that EE(G3) > EE(G)).
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Figure 2: The graphs G¢ (i = 1,...,29).

Proof. By Lemma 6(i), we know that B(G,) = G} for i € {1,2,3,4}. If
B(G)) = G%, then we let uv, vt, uw,ws € E(G;) (as shown in Figure
1.). Without loss of generality, assume that dg, (w) > dg, (v). Let Hy be
the graph obtained from G, by deleting ws, vt, dg, (w) — 2 pendant edges
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attached at w and dg, (v) — 2 pendant edges attached at v. There exists
an automorphism ¢ of H; which interchange v and w, and preserves all
other vertices. Let Hy = K| 45 (y)-2 With center v’ and Go = (H1(v) o

Hy(v"))(w) o Ha(v'). By Lemma 4 (i), we have (Gg; w,z) = (Go;v,0(z))
for any vertex £ € V(Gp). Let Gz be the graph obtained from Gy by
adding the edge ws and dg, (w) — d¢, (v) pendant edges attached at w. By
Lemma 4 (ii), we have (G3; w, z) > (G3; v, 0(x)) for any vertex z € V(G3).
Obviously, G; = G3 + vt. Let G2 = G3 + wt. It is obvious that G, € FJ.
Then by Lemma 2, we deduce that EE(G2) > EE(G;). The proof for the
cases B(G,) & G} or G or Gj is similarly verified. O

Corollary 1. If G is a graph with mazimal Estrada indezx in F,, then
B(G)=G? (i€ {1,2,...,18}).

For two vertices vp and v of degree at least three in a graph G, the inter-
nal path of G is a walk vgv; ... v, such that the vertices vg,vy,...,vs are
distinct, and dg(v;) =2, for 0 < i < s.

Lemma 8. Let G € FS, and let P (1 < i < dg(G)(u)) be the internal path
in B(G) with one end verter u, where dg(G)(u) > 3 (u € B(G)). If there
exist two paths Py and P, (1 <1,k < dp(G)(u)) with |P¥| > 1 and |P| >
3, then there exists a gmph Ge F6 such that |[E(B(G))| - |E(B(&))| = 1
and EE(G) > EE(G).

Proof. Let P* = uv; ...v, and P! = yw,...w,, where s > 2 and ¢t > 3.
(as shown in Figure 2.) Without loss of generality assume that dg(w;) >
dg(v1). Let Hy be the graph obtained from G by deleting the edges w;wa,
v1v2, dg(v1)—2 pendant edges attached at v; and dg(w; ) —2 pendant edges
attached at w;. There exists an automorphism o of H; which interchange v,
and w, and preserves all other vertices. Let H, & K1,dg(vy)—2 With center
v and Go = (Hj(v1) o Ha(v'))(w1) o Ha(v'). By Lemma 4 (i), we have
(Go; w1, v) = (Go; v1,0(v)) for any vertex v € V(Gp). Let Gy be the graph
obtained from Gy by adding edges wyws, and dg(w;) — dg(vi) pendant
edges attached at w;. By Lemma 4(ii), we have (G1;w;,v) = (G1;v1,0(v))
for any vertex v € V(G1). Obviously, G = G, +viv2. Let G= G1 + wyvs.
Observe that G € FS and |E(B(G))| —| E(B(G))| = 1. By Lemma 2, we
have EE(G) > EE(G) O

Similar to the proof of Lemma 8, we have the following.

Lemma 9. Let G € F$, and let P¥ = uvjv; and P! = wwywy be two
internal paths in B(G), where dB(G)(u) >3, (ue B(G)) If vz # wy, then
there ezists a graph G € FS such that |[E(B(Q))| — |[E(B(G))| = 1 and
EE(G) > EE(C).
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As a consequence of Lemma 9 we have the following.

Corollary 2. If G is a graph with mazimal Estrada index in FE, then
B(G) = A; for some i € {1,2,...,18} (as shown in Figure 3.).

Lemma 10. Let G be an extremal graph with mazimal Estrada index and
B(G) = A; for some i € {1,2,...,18} (as shown in Figure 3.). Then G s
obtained from A; by atta.ch'mg n — |V (A;)| pendant vertices at a verter wy
with mazimum degree in A;, i =1,2,...,18.
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Proof. For the case of B(G) = A,, let w;’s (i=1,2,...,13) be the vertices
of A; (as shown in Figure 3.). Assume that each w; is attached to my
pendant edges in G, where m; > 0 and 211:1 m; = n— 13. For convenience,
denote G = A;(m,, my, m3, my, ms, mg, Mz, Mg,

mg, M0, M11, M12,M13). We consider the following cases. Assume that at
least nine values of m;, may, ms, ms, mg, mg, mg, M1, M2, M3, are
nonzero. Let H; be the graph obtained from A,(m,;,0,m3,

my, ms, Mg, M7, Mg, Mg, M1g, M11,M12,M13) by deleting the pendant ver-
tices of w;. There exists an automorphism which interchanges w;, ws and
preserves all other vertices. By Lemma 4(ii), (A;(m1, 0, m3, my, ms, mg, m+,
ma)mgamlﬂamllam123m13);w1) > (Al(mlsoa ms, my4, ms, Mg, M7, Mg, My,
mjo, M1, m127m13); wﬁ)’ By Lemma 2, (Al(m1+m2a09m31 my, Mg, Mg, M7,
mg, Mg, M10, M11, M12, M13) > (A1(m1, m2, ma, mg, ms, mg, my, mg, mo,
m10,M11,M12,M13)). This is a contradiction. So at most eight values
of my, mg, ms, ms, mg, mg, Mg, M1y, Mz, M3, are nonzero. With-
out loss of generality assume that my = ms = 0. With a similar ar-
gument, we obtain a contradiction. So at most seven values of m;, ma,
mg, ms, Mg, Mg, Mg, M1, M12, M3, are nonzero. Continuing this ar-
gument we obtain that all of ms, m3, ms, mg, mg, mg, my1, M2, M3,
are zero, i.e. Mg = M3 = My = Mg = Mg = Mg = M, = Mg =
myz = 0. Then G = Al(ml,O,0,m4,0,0,m7,0,0,m10,0,0,0). If all of
My, M7, Mo are nonzero with a similar argument, as before, we obtain
a contradiction. So at least one of my, my, myy are zero, say my; = 0.
Then G = A;(m1,0,0,m4,0,0,0,0,0,m10,0,0,0). If both my4 and mi
are nonzero, with a similar argument as before, we obtain a contradic-
tion. So at least one of m, and m,o are zero, say mjp = 0. Then G =
A;(m1,0,0,m4,0,0,0,0,0,0,0,0,0). If both m; and m4 are nonzero, we let
H, be the graph obtained from A; by deleting the edges wyws and wawg.
There exists an automorphism which interchanges wy, wq and preserves all
other vertices. By Lemma 4 (ii), (4,(0,0,0,m4,0,0,0,0,0,0,0,0,0); w,) >
(A1(0,0,0,m4,0,0,0,0,

0,0,0,0,0);w;). By Lemma 2, 4,(0,0,0,m; 4+ m4,0,0,0,0,0,0,0,0, 0)

> A1(m,0,0,m4,0,0,0,0,0,0,0,0,0). This is a contradiction. Thus G =
A1(0,0,0,m4,0,0,0,0,0,0,0,0,0). The proof for B(G) = A;,i € {2,3,....
18} is similarly verified. a

Let F; be the graph obtained from A; by attaching n — |V(A;)| pendant
vertices at a vertex with maximum degree in A; (i € {1,2

.,18}). By Lemma 1, we obtain ¢(F};z) for i = 1,2,...,5 as follows. To
see ¢(F;;z) for i = 6,7,...,18 see Appendix.

(Fl, z) =z B3 212 _(n4 3):nll +{(n— 7):::10 +(12n — 83)19 ~(6n—
77)a® — (33n — 331)2” + (9n — 149)z® — (2n — 34)25 — (40n — 80)z? + (24n —
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288)2%) = 2"~ 13y (z);

(Fa;z) = = 13(z13 — (n + 8)z!! — 420 + (17n — 70)z° + (2n + 32)28 —
(91n — 736)z7 — (28n — 118)2% 4 (183n — 1849)z° + (98n — 954)z* — (108n —
1212)z3 — (72n — 808)z?] = ™~ 3 fo(z);

$(F3;z) = z718[z16 — (n + 9)z1 + (21n — 102)z'? — (157n — 1476)z'° +
(519n — 6067)x8 — (742n — 9713)z° + (360n — 4972)z4] = 2"~ f3(z);

¢(Fy;z) = 27~ ¥[z" — (n+9)z'2 + (18n— T1)z'® — (105n — 899)z® + (2320 —
2580)z° + (144n — 1720)z*] = z"~14 f4(z);

#(Fs;z) =z~ M[z" — (n + 5)2'2 + (10n — 32)z'° — (36n — 292)2°(56n —
632)z8 — (32n — 14)z4] = 2"~ 14 fo(z).

Note that ¢(F;;z) for i = 1,2,...,18 plays a key role in the proof of the
main theorem. Also the Estrada index FE(F;) for i = 1,2,...,18 are
computed in Table 1 for n = 13,...,18, (See Appendix). We are now ready
to state the main result of this paper.

Theorem 1. Let G be a graph in F,. If n > 13, then EE(G) < EE(F}),
with equality if and only if G =2 Fy.

Proof. By a direct calculation, we can see that for n > 11,

filymn=10) = —n(n — 10)# + (n — 10)F + 12n(n — 10)% — 3n° — 33n(n —
10)7 —83(n—10)% +176n% —2n(n—10)% 4 331(n— 10)7 —4103n°% +24n(n—
10)% + 34(n — 10)% + 47530n2 — 288(n — 10)% — 273700n + 627000 < 0.

This implies that A;(F1) > v/n — 10. It is easy to see that the graph Fj —wy
has eigenvalues +v/2, —2.513, 2.649, —1.638, 0.907, —0.407, 2, —1, and 0
where the multiplicity of 0 is n — 12 and the multiplicity of others is one.
By interlacing property of eigenvalues of A(F) — wy) and A(F}), we have
Ai(F1) 2 Mi(F1 —wy) for i =2,3,...,n—1 (see [2]). Then

EE(R) = Z?:l eM(F1) 5 gM(F1) 4 z::zl eM(F1—wq) 5 ovi—10 (n—12)+
e 4 e2513 4 ¢2.649 | o—1.638 | (0.907 4 o—0405 4 o2 4 oVZ 4 o~V _ .

We prove that EE(F,) > EE(F;) for ¢ = 2,...,18. We only prove for
i=2,3,4,5. The other cases are similarly verified.

Case 1. i = 2. By a direct calculation, the graph F» — w4 has eigenvalues
+2.548, +0.629, +1.763, 2, and —1, where the multiplicity of —1 is two
(and the multiplicity of others is one). For 14 < n < 26, we have

fo(VA=1I) = —(n + 8)(n — 11)¥ + (170 = 70)(n — 11)% + (n — 11)% +
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(2n+32)(n — 11)* — (91n — 736)(n — 11)% — 4(rn — 11)5 + (183n — 1849)(n —
11)% + (98n — 954)(n — 11)2 — (108n — 212)(n — 11)% + 90(n — 11)3 > 0.

Forn > 19, f2(1) = 100n - 1814 > 0. By interlacing property of eigenvalues
of F» — w4 and Fy we have Ag(Fa) < A (F2 — wy) = 2.548. Further, since
f2(1) = 100n — 1814 > 0, we have 2.548 < A\ (F3) < vn—11 . Similarly,
by the fact that A;(F2) < Mi—1(Fo — wy) for ¢ = 2,3,...,n, we obtam the
following.

EE(F;) = Z eM(F2) < gM(F2) 4 S 11 Ai(Fa—-w,) < V=11 4 9o=1 4
2548 4 o—2. 548-_*_ 0620 | o—0.629 4 ol Fe5~ $e 1763 {2 = H,.

H —H, = eVn=T0 _ ova=T1 (n—12) 42513 4 02649 4 o—1.638 4 ,0.907 o
e—0.405+e\/§+e—\/§_e—l_e2.548_e-2.548_e0.629_e—0.629_e1.763_e—l.763 >
eVn—10 _ eVn—11 + (n -12) + e2:649 | £0.907 _l_e\/i

— 2548 _ g0.629 _ ,1.763

Note that eVi=10 —eVA=TI 4 (5 _19) 4.¢2.649 1 0907 1 oVZ _ 2548 _ 0629 _
€783 for n > 13. Then H; — Hy > 0. So EE(F,) > EE(F).

Case 2. i = 3. By a direct calculation, the graph F3 — w4 has eigenvalues
+2.548, £0.629, +1.763, +£2.175, and +1.126 with multiplicity one. For
n > 25, we have

fa(v/n = 11) = n"—105n5 +-4657n5 — 113245n* + 16323867 — 1396104612 +
65648792n — 13102364 > 0. For 0 < n < 13, f3(1) = —360n + 5012 > 0.
By interlacing property of eigenvalues of F3 — w4 and F3, we obtain that
A2(F3) < A (F3 — wy) = 2.548. Further, since f3(1) = —360n + 5012 > 0
we obtain that 2.548 < Ai(F3) < v/n—11 . Similarly, by the fact that
Ai(F3) < Xi1(F3 —wy) fori = 2,3,...,n, we find that
EE(F;) = 21'1-1 A(F3) < gMi(Fa) 4 Z"‘ll Ai(Fa—wq) o ovn—TI , ,2.548 4
e—2-548 1 0. 629’_'_6-0 629 | 01.763 4 o—1.763 4 ¢2.175 4 o—2. 175 4 o1.126 | o—1.126 _
Hs.
H,—H3 = e\/ﬁl’ﬁ_em+(n_12)+e-2.513+e—1+ez+ez.649+e—1.638+
0-907 4 o=0.405 4 oVZ 4 o—VE _ o2.548 _ o—2.548 _ o0.620 _ o—0.629 _ o1.763 _
@=L 763 _ g2175 _ g=2.175 _ o126 _ o=1.126 5, oVA=T0 _ ovA=T1 4 (5 _19) 4
2649 | o2 | o0.907 4 oVZ _ 2548 _ [0.629 _ o1.763 _ ;2.175 _ 41126

Note that eVP—10 _ gvn=11 +(n—12) + 2649 4 o2 4 (0907 | eV? e2-548 _
e0:629 _ o1.763 _ 2175 _ o1.126 5, 0 for n > 18. Then H, — H3 > 0. So
EE(Fy) > EE(F3).

Case 3. i = 4. By a direct calculation, the graph Fy — w4 has eigenvalues
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+2.548, +0.629, +1.763, and ++/3 with multiplicity one. For 13 < n < 21,
we have

fa(v/R=11) = —2n% + 154n° — 486n* + 81032n3 — 753438n2 + 7315998n —
7608480 > 0.

For n > 13, fa(1) = 288n — 3480 > 0. By interlacing property of eigenvalues
of Fy — wy and Fy, we have X\p(Fy) < A(Fy — wy) = 2.548. Further,
it can be seen that f4(1) = 288n — 3480 > 0. Thus we have 2.548 <
A (Fy) < v/ =11. Similarly, by the fact that A\;(Fs) < A;—1(Fyg — wy) for
t1=2,3,...,n, we have

EE(Fy) =Y ", eMi(Fa) < eMi(Fe) ¢ 22:11 eM(Fa—wa) o oVn=11 | o2.548 |
@—2-548 | 50629 | o—0.629 | o1.763 | o—1.763 | o3 | o-V3 _ [,

Hl _H4 = evn—lO_e\In—li+(n_12)+e-2.513+e—1 +e2+e2.649+e—1.638+
0907 4 o—0.405 | oVZ e—VZ _ 2548 _ o—2.548 _ ,0.629 _ —0.629 __ ,1.763 _
e—1.763 _ e\/ﬁ _ e—\/:i > eVn—10 _ e\/__n—ll +(n-12)+ o2 4 2649 4 g0.907 4
eVZ _ g2.548 __ 0.629 _ o1.763 _ oV3

Note that eJ;T-’l'G _ e\/n_—_l—l + (n _ 12) +e2 42649 0907 e‘/i — 2548 _
9629 _¢1.763 _oV3 for n > 13. Then H; — Hy > 0. So EE(F1) > EE(Fy).

Case 4. i = 5. By a direct calculation, the graph Fs — w4 has eigenvalues
++v/2, +v/3, and 0, where has multiplicity of 0 is n — 11 and multiplicity
v2 and —v/2 are three. (and the multiplicity of others is one). For n =
10,12,13,...,16, we have

fs(vn—11) = —6n84+438n5—13248n%+4212604n3 —1909878n24-9108462n—
18020772 > 0. For 0 < n < 23, f5(1) = —3n + 72 > 0. By interlacing prop-
erty of eigenvalues of Fs —wq and Fs, A2(F5) < A\ (Fs —w4) = V3. Further,
we can see that fs(1) = —3n + 72 > 0, and thus v/3 < A (F5) < Vo — 11.
Similarly, by the fact that A;(F5) < Aic1(Fs —wy) for i =2,3,...,n,

EE(Fs) = Z:;l e/\i(Fs) S e)\l(Fs) +Z:‘;ll eA‘(Fs—Wq) < e\/n—ll + (n _ 11) +
3eV2 43 V24 eV3 e V3= K.

H]. — Hs = evn——lO — e\/l‘l—ll + e—l + e—2.513 + e2.649 + e—1.638 + e0.907 +
e=0-405 4 o2 _ 2e‘/§ — 2e“/§ - e‘/3 - e“/5 -1> eVn=10 _ ovn-TI +e2:649
€097 1 o2 2evV2 _eV3 _1.

Note that for n > 11, eVA=10_eVn=T11 52.649 , (0.907 4 02_9oV2_ov3_] 5 0,
So EE(Fy) > EE(F). O
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