Measuring the vuinerability in networks: a heuristic approach

Murat Ersen BERBERLER
Facully of Science, Department of Computer Science, Dokuz Eylul University,
35160, 1zmir/TURKEY
murat.berberler@deu.edu.tr

Zeynep Nihan BERBERLER
Facully of Science, Department of Compuler Science, Dokuz Eylul University,
35160, Izmit/TURKEY
zeynep.berberler@deu.edu.tr

Abstract. The integrity of a graph G=(V,£) is defined as

1(6) =min{|8|+m(G-8): S V(G)}, where m(G- X) denotes the order
of the largest component in the graph G— X. This is a better parameter to
measure the stability of a network, as it takes into account both the amount of
work done to damage the network and how badly the network is damaged.
Computationally it belongs to the class of intractable problems known as VP -
hard. In this paper we develop a heuristic algorithm to determine the integrity of
a graph. Extensive computational experience on 88 randomly generated graphs
ranging from 20% to 90% densities and from 100 to 200 vertices has shown that
the proposed algorithm is very effective.

Keywords: Network vulnerability, Integrity, Heuristics

1. Introduction

Networks with complex topology describe a wide range of systems in nature
and society including examples social networks, the World Wide Web, the
Internet, neural networks, chemical and biological networks, electric power
grids, supply chains, urban road networks, and communication networks. The
study on networks is an important area of multidisciplinary research involving
social sciences, mathematics, physics, chemistry, biology, informatics, and other
theoretical and applied sciences [13-14,17-18]. The stability of a communication
network, composed of processing nodes and communication links, is of prime
importance to network designers. As the network begins losing links or nodes,
eventually there is a loss in its effectiveness. In an analysis of the vulnerability
of a communication network to disruption, two quantities that come to mind are
the number of elements that are not functioning and the size of the largest
remaining sub-network within which mutual communication can still occur.
Therefore, it would be desirable for a network to be such that the two qualities
can be made to be simultaneously small. Thus, communication networks must
be constructed to be as stable as possible, not only with respect to the initial
disruption, but also with respect to the possible reconstruction of the network.

ARS COMBINATORIA 135(2017), pp. 3-15

A variety of measures have been proposed to quantify the robustness of
networks. The vertex (edge) connectivity of a graph is an important measure for
robustness of a network [8]. However, the connectivity only partly reflects the
ability of graphs to ensure connectedness after vertex (or edge) deletion. Other
improved measures are toughness [19], scattering number [7], integrity [1],
tenacity [12], etc. In contrast to vertex (edge) connectivity, these measures
consider both the cost to damage a network and how badly the network is
damaged. Unfortunately, from an algorithmic point of view, the problem of
calculating these measures for general graphs is nondeterministic polynomial-
time hard problem [4].

The integrity of a graph was introduced in 1987 by Barefoot, Entringer and

Swart [1]. They defined the infegrity /1(G) ofagraph G as
min {{8]+m(G-)},

where m(G- S) denotes the maximum order of a component of &G-S, and

the minimum is taken over all noncomplete subsets S of the vertex set / of
G. A set S which achieves the minimum is called an /-set. A subset S of V

is called a cut set of a graph G, if w(6-S5)>w(G) or G- S is an isolated

vertex, where w(G) is the number of components of G. For a survey of

integrity, see Bagga et al. [10].

In [1], Barefoot, Entringer and Swart compared integrity, connectivity, binding
number and toughness for several classes of graphs. Their results suggested that
integrity is well suited to measuring vulnerability in that it is best able to
distinguish between graphs that intuitively should have different measures of
vulnerability.

Note that the definition of integrity does not require that a graph be connected.
Moreover, the original definition permitted the removal of all vertices. As
immediate consequences of the definition, we have that if G is a graph of order

n, then 1< /(6)<n, and for any subgraph H of G, /(H)< /(G). Clark,

Entringer, and Fellows [11] showed that the vertex integrity problem is A/P-
complete, even when restricted for planar graphs but that for each fixed value of

k it is decidable in time O(ll1) whether an arbitrary graph G of order n

satisfies /(G)< k. This last result is obtained by a simple application of the

powerful results of Robertson and Seymour on graph minors. Moreover,
Moazzami [5] showed that the vertex integrity problem is AP -hard. However,
it is possible to determine the integrity of large classes of graphs. For more
results on integrity see [10].

It is well known that a network can be represented by a graph. Vertices
and edges of the graph correspond to nodes and links between the nodes,
respectively. In this paper, we consider simple finite undirected graphs without

loops and multiple edges. Let G=(V, E) be a graph with a vertex set
V=V(G) and an edge set £= E(G). The order of G is the number of

vertices in G. The degree deg, (V) of a vertex ve V(G) is the number of
edges incident to v. The maximum degree of G is
A(G)=max{deg, (V)|ve V(G)}. A vertex of degree zero is an isolated
vertex or an /solate. For vertices v and Vv of a graph G, the open neighborhood
of u is N(u)={veV(6)|(+,v)e £(6)}. We define analogously for any

S < V(G) the open neighborhood N(S)= , N(v).[3,69].

The paper proceeds as follows. In Section 2, a novel algorithm based
on heuristic is proposed and discussed in an exhaustive schema to compute the
integrity of networks. Computational experiments are implemented in Section 3.

2. The computation of integrity based on heuristic

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. When searching for heuristic/algorithmic solutions
for the graph problems related to AP complexity class, it is reported that the
labeling of the vertices in graph is very important for determination the solution
quality [2, 15-16]. Since the number of labeling is /7! for a given graph G with
n vertices, it can be clearly seen that finding the most appropriate labeling for a
given specific problem is intractable. However, none of the heuristics can try to
find the optimal labeling because being optimal is specific for the problem and
is very costly in the sense of combinatorics so this conflicts the philosophy of
the heuristic algorithms that it is expected to obtain results in short times.
Instead, in order to minimize the disadvantages of the labeling, algorithm runs
by manipulating the labels of vertices in a graph with different criteria.

The graph shown in Figure 1 can be handled to observe the effect of the labeling
on the integrity problem. The graph G has 7 vertices: 4 vertices of degree 3 and
2 vertices of degree 2. To create a handicap for a heuristic algorithm based on
the degrees of vertices of a graph, the labeling is chosen deliberately as follows
in Figure 1. If the heuristic algorithm sorts the degrees of the vertices of the
graph in non-increasing order based on the original labeling in Figure 1, then the
vector is obtained as [1,2,5,7,3,4,6].

Figure 1. The graph G

The results obtained by running the heuristic step by step that uses this vector
statically are given in Figure 2. Here “statically” means that when a vertex is
removed from the graph, the degrees of the remaining vertices are not updated
and remain the same as in the original graph. It can be observed that using the
labeling vector statically does not affect the optimal solution significantly for
this example but when a path is taken into consideration and the labeling occurs

sequentially —for example for £ V,V,,V,,V,, V,—, it can be easily seen that the
optimal solution /opt that should be achieved is obtained as 2* /opt-2.

Absolutely, the difference is not in acceptable range. The shaded vertices in
Figure 2 mean that these vertices will be deleted in the next step.

Step 2: 1+6=7

©® © ©

Step 3: 2+4=6 Step 4: 3+2=5

Figure 2.
Hence, if the labeling vector that is manipulated based on the degrees of vertices
is used dynamically instead of the static use that is only advantageous by means
of execution time but does not improve the solution quality anymore, then the
algorithm generates the steps in Figure 3 and it is seen that again the optimal
solution cannot be found.

Step 1: 0+7=7 Step 2: 1+6=7

© ©

Step 3: 2+3=5 Step 4: 3+2=5

Figure 3.
As seen in Figure 3, for the labeling manipulation that the heuristic will
perform, we have noticed that other criteria are needed and this is the key aspect
for the motivation on this paper. It is observed that the criterion that makes the
vertex prior is the sum of the degrees of the vertices in open neighborhood (set).
When sorting based on the degrees of vertices, in the case of the equality of the
degrees, if the labeling vector is created by giving priority to the vertex that has
the greater sum of the degrees of neighboring vertices, then the vector
[7,1,2,5,6,3,4] is obtained, and hence this leads the optimal solution at first step

(see Table 1 and Figure 4). In Table 1, N = _deg, (), where ve N(u).
1234567 deg,(V) N

1 1 11 3 8
211 111 3 8
3 1)1 2 5
4 1] |1 2 5
5 111 1 3 7
6|1]1 2 6
71111 1 3 9
Table 1.

Step 1: 0+7=7 Step 2: 1+3=4
Figure 4.
It is clear that having obtained the optimal solution at first step in Figure 4 is a
special case and other techniques are needed for the heuristic to obtain the
optimal or near-optimal solution for the more complex scenarios. In this study,
two main approaches, cycle technique and frequency of use, are proposed.

2.1 Cycle technique

Cycle technique includes converting the labeling vector to a circular queue and
detecting the solution space wisely starting from a different initial point at each
step. For instance, when cycle technique is applied to the labeling vector
[1,2,3,4,5], the following sequences are obtained.

[1,2,3,4,5]

[2,3,4,5,1]

[3,4,5,1,2]

[4,5,1,2,3]

[5,1,2,3,4]
Thus, the number of the adverse cases is decreased related to the faulty selection
of the sorting criterion used for labeling or the choice of pre-post in case of
equality encountered while sorting. Here, by means of “equality”, it is
emphasized that when the elements handled are equal to each other, the problem
is dealt with the case in which one will have the priority based on the labeling.
This case can occur also in any simple sorting algorithm.
Although the integrity problem belongs to /P class because of being a subset
selection problem in its origin, a heuristic algorithm that tries to generate a
solution for this problem should handle the vertices that will be removed from
the graph in a proper order —if it does not have a tricky point of view—. Since the
ordering is taken into account, the algorithm must attempt to evaluate a
considerable part of /7! possible cases although no assessment for all cases is
required. That, the following parts will explain how to perform this task.
The five main branches seen above are obtained using cycle technique by
accepting that the labeling vector that is manipulated by using the degrees of
vertices is [1,2,3,4,5]. The method that is based on taking the increment amount
as a variable is used in order to create the sub-branches of those five main
branches for efficient scan of solution space. Here when the increment amount
is 1, the vector gives the order as 1,2,3,4,5; when it is 2, the vector gives the
order as 1,3,5,2,4, and when it is 3, the vector will give the order as 1,4,3,5,2.

Note that the increment amount is chosen from the interval [1, n]. Thus, in the

nested loops used both in two main parts of the heuristic that determine the
complexity of the algorithm, the outermost loop is for the starting vertex and the
innermost loop is for the amount of increment.

2.2 Frequency of use

While searching for solution by cycle technique, at that step +1 point is given
to the vertices that update the value of integrity and +/7 points are given to the
vertices that update the value of integrity with less value. Proceeding by this
way, a new manipulation criterion is obtained different than the degrees of the
vertices. When the cycle technique terminates, a new labeling is obtained by
sorting the frequency vector in non-increasing order and by using this vector,
cycle technique is run once more.

When the algorithm terminates, the least integrity value stored and the vector
including the vertices that gives this value are printed in a file with the running
time.

2.3 Formal description of the heuristic algorithm

Step 1. The vertex adjacency matrix of the graph is entered.

Step 2. The vertex labeling vector that is sorted in non-increasing order by
considering the degree of each vertex and the sum of the degrees of each
neighbor of the related vertex constitutes the initial vector of the cycle
technique.

Step 3. While the solution space is scanning by cycle technique, the best
solution is saved as a record and the frequency vector that saves the frequency
of use of the vertices placed in the best solution is updated at every step.

Stép 4. The vertex labeling vector belonging the frequency that will be used in
the second stage of the algorithm is generated by sorting the frequency vector in
non-increasing order.

Step 5. The solution space is scanned by the cycle technique that uses the
vertex labeling vector depending on frequency and the record solution is
updated if required.

Step 6. Algorithm terminates and the record is printed.

2.4 The time and space complexities of the heuristic algorithm
The most important data structure that determines the space complexity is the
two-dimensional 77X/ vector that represents the vertex adjacency matrix of the

graph, so the cost is O(/7). Since other data structures used are the one-
dimensional vectors with /7 elements, they don't affect the space complexity of
big O notation.

The most important factor that affects the time complexity of a heuristic
algorithm is the cycle technique. The outer loop of 7 steps that constitutes the
cycle technique determines the initial value of the tour while the inner loop of 7
steps determines the amount of increment. The integrity value is evaluated in the
innermost loop that uses each vector obtained by cycle technique. In conclusion,

the heuristic algorithm has time complexity of O(/7'), the consistency of the
complexity is checked by computational experiments as seen in Table 5.

3. Computational experiments

In order to test the solution quality of the proposed heuristic algorithm,
primarily computational experiments are performed for small-sized samples on
which the optimal solution can be found by enumeration technique. Related
optimal solutions and belonging results can be seen in Table 2. The problems in
Table 2 are randomly generated in which 7 is the number of vertices of graph

G, 1(G) is the integrity value of G, f(sec) is the CPU time and
25%, 50%, 75%, and 95% indicate the edge density of G .

25% 50%
n /(G) l(sec) /(6) t(sec)
10 5 0,000 7 0,000
11 5 0,000 8 0,000
12 7 0,000 9 0,000
13 8 0,000 9 0,000
14 8 0,003 10 0,000
15 8 0,017 11 0,001
16 9 0,018 12 0,030

17 10 0,032 13 0,060

18 10 0,061 13 0,122
19 11 0,137 14 0,371
20 12 0,260 15 0,603

21 12 0,588 16 0,726
22 13 0,961 17 3,488
23 14 3,346 18 7,761
24 15 7,604 19 15,825
25 15 13,904 19 36,260
26 17 25,760 21 76,882
27 18 66,774 22 162,711
28 18 150,776 22 318,336
29 18 301,518 23 670,070
30 19 667,744 24 | 1.506,323
31 20 | 1.331,120 | 24 | 3.102,376
32 20 | 2.598,510 | 26 | 6.390,127
33 22]3.333,925 | 26 | 7.015,158
34 21 |11.287910] 27 |21.583,944
35 22 125.309,292| 29 |52.011,686

Table 2.1.
75% 95%
n /(G) t(sec) I(G) {(sec)
10 7 0,000 9 0,000
11 9 0,000 10 0,000

12 10 0,000 11 0,000
13 10 0,000 12 0,000

14 12 0,000 13 0,000
15 12 0,004 14 0,000
16 14 0,029 15 0,029

17 15 0,091 16 0,107
18 15 0,201 17 0,246

19 16 0,480 17 0,541
20 17 1,071 19 0,211
21 18 2,209 19 2,614
22 19 4,922 21 5,624

23 20 10,428 22 12,300
24 21 22,111 22 26,183
25 22 46,789 24 55,868
26 23 101,201 25 115,773
27 24 220,089 25 255,609
28 25 465,834 27 556,875
29 26 972,755 27 1.196,367
30 27 | 2.083,617 | 29 2.546,673
31 28 | 42929391 29 5.514,203
32 29 | 8987844 | 30 11.403,165
33 29 | 9917,838 | 32 13.312,233
34 30 [31.799,092| 32 | 41.722,300
35 31 (77.678,434| 33 [105.140,196
Table 2.2.
The proposed heuristic algorithm finds the optimal solutions for all problems in
Table 2 in CPU times given in Table 3.

(sec)

n 25% 50% 75% 95%
10 0,000 0,000 0,000 0,000
11 0,000 0,000 0,000 0,000
12 0,000 0,000 0,000 0,000
13 0,000 0,000 0,000 0,000
14 0,000 0,000 0,000 0,000
15 0,000 0,000 0,000 0,000
16 0,000 0,000 0,000 0,000
17 0,000 0,000 0,000 0,000

18 0,000 0,000 0,000 0,000
19 0,000 0,000 0,000 0,010
20 0,000 0,000 0,016 0,012
21 0,000 0,000 0,016 0,015
22 0,015 0,016 0,016 0,019
23 0,015 0,016 0,031 0,023
24 0,031 0,031 0,031 0,028
25 0,031 0,031 0,031 0,034
26 0,031 0,031 0,047 0,037
27 0,031 0,047 0,047 0,048
28 0,031 0,047 0,047 0,050
29 0,031 0,047 0,047 0,063
30 0,031 0,047 0,078 0,078
31 0,031 0,063 0,078 0,093
32 0,062 0,078 0,094 0,094
33 0,062 0,078 0,109 0,110
34 0,062 0,089 0,125 0,141
35 0,078 0,109 0,141 0,156
Table 3.

After the effectiveness of heuristic is observed on the sample problems, a
problem library is generated randomly being 7=100,110, ,200 and edge

density 20,30, ,90. The optimal values belonging to library problems and the
running time of heuristic are seen in the following tables.

20% 30%

n | 1(6) | tse) | 1(6) | t(sec)
100 [77 | 8582 | 83 | 11,853
110 | 87 | 13315 | 94 | 18,874
120 | 95 | 19,966 | 103 | 28372
130 | 104 | 29,624 | 113 | 41,864
140 | 113 | 41,870 | 121 | 61,446
150 | 125 | 58,392 | 131 | 86,193
160 | 132 | 79,747 | 141 | 118,299
170 | 143 | 107,121 | 151 | 158,922
180 | 151 | 141,756 | 160 | 209,962
190 | 161 | 184,885 | 170 | 269,732

200 | 171 | 237,822 | 180 | 345,673
Table 4.1.1.

40% 50%

n /(6‘) t(sec) /(6‘) I(sec)
100 87 15,482 91 18,570
110 | 97 24,474 100 | 29,814
120 | 106 | 36,759 110 | 46,096
130 | 117 | 54,518 120 68,257
140 | 126 79,515 130 98,393
150 | 136 | 110,712 | 139 | 136,650
160 | 146 | 152,693 | 150 | 185,193
170 [156 | 203,658 { 158 | 250,835
180 | 166 | 268,157 | 169 | 329,845
190] 176 | 351,868 | 179 | 436,878
200 | 185 | 452,352 | 189 | 562,917

Table 4.1.2.
60% 70%

n /(G) l(sec) /(G) t(sec)
100 { 92 22,233 94 26,050
110 | 103 35,354 104 | 40,529
120 | 112 | 54,583 114 | 62,912
130 | 122 | 80,928 124 | 93,996
140 | 132 | 113,839 § 134 | 132,986
150 | 142 | 162,661 | 143 | 188,046
160 | 152 [221,135 | 154 | 259,519
170 | 162 | 296,380 | 163 | 349,559
180 | 171 | 391,588 | 174 | 472,567
190 | 181 | 517,651 | 183 | 635,449
200 | 191 | 668,786 | 193 | 819,037

Table 4.2.1.
80% 90%

n | 1(6) | t(sec) | 1(G) | t(sec)
100 | 96 28,053 97 28,260
110] 106 | 44,004 107 | 45,678
120} 115 | 67,500 117 | 69,667
130 | 125 | 103,413 | 127] 103,546
140 | 135 | 145,026 | 137 | 146,522

150 | 145 [204,111 | 147 | 208,921
160 | 155 | 280,944 | 157 | 291,701
170 | 165 | 380,063 | 166 | 398,589
180 | 175 | 502,858 | 176 | 524,410
190 | 185 | 656,706 | 187 | 680,816

200 | 195 | 854,995 [197 | 897,400
Table 4.2.2.

Computational experiments are performed on a computer with Intel Core2 2.8
GHz CPU and 3 GB Ram and all problems and programs are available in the

following link:] httg://kisi.deu.edu.tr/murat.berberler/integrigé/j

Cubic Polynomial Regression

Density X X X X R
20% 0,0002 -0,0489 5,3189 -201,25 1
30% 0,0002 -0,0527 5,1995 -180,30 1

40% 0,0003 -0,0903 9,7519 -367,76 0,999
30% 0,0005 -0,1331 15,044 -589,77 0,999
60% 0,0005 -0,1562 17,551 -683,80 0,999
70% 0,0007 -0,2164 24,491 -952,38 0,999
80% 0,0006 -0,1930 21,445 -827,63 0,999

90% 0,0007 -0,2005 22,008 -837,84 0,999
Table 5

4. References

[1] C.A. Barefoot, R. Entringer, H. Swart, Vulnerability in graphs—a
comparative survey, J. Combin. Math. Combin. Comput. 1 (1987) 13-22.
[2]]D.B. Johnson, Parallel algorithms for minimum cuts and maximum flows in |
| planar networks, Journal of the ACM, 34(4) (1987) 950-967.

[3] D.B. West, Introduction to Graph Theory, Prentice Hall, NJ (2001).

[4] D. Kratsch, T. Kloks, H. Miiller, Measuring the vuinerability for classes of
intersection graphs, Discrete Applied Mathematics 77 (1997) 259-270.

{5] D. Moazzami, An Algorithm for the Computation of Edge Integrity,
International Journal of Contemporary Mathematical Sciences 6(11) (2011)
507-516.

[6] G. Chartrand, L. Lesniak, Graphs and Digraphs, Second Edition,
Wadsworth. Monterey (1986).

[7]1 H.A. Jung, On a class of posets and the corresponding comparability graphs,
Journal of Combinatorial Theory, Series B 24 (2) (1978) 125-133.

[8]) H. Frank, LT. Frisch, Analysis and design of survivable networks, IEEE
Transactions on Communications Technology COM-18 567 (1970).

[9] J.A. Bondy, U.S.R. Murty, Graph theory with applications, American
Elsevier Publishing Co., Inc., New York (1976).

[10] K.S. Bagga, L.W. Beineke, W.D. Goddard, M.J. Lipman, R.E. Pippert, A
survey of integrity, Discrete Appl. Math. 37/38 (1992) 13-28.

[11] L.C. Clark, R.C. Entringer, M.R. Fellows, Computational complexity of
integrity, J. Combin. Math. Combin. Comput. 2 (1987) 179-191.

{12} M. Cozzens, D. Moazzami, S. Stueckle, Seventh International Conference
on the Theory and Applications of Graphs, Wiley, New York (1995) 1111-

1122.

{13] M.E.J. Newman, The structure and function of complex networks, SIAM
Review 45 (2003) 167-256.

[14] R. Albert, A.-L. Barab4si, Statistical mechanics of complex networks,
Reviews of Modern Physics 74 (2002) 47-97.

15] |[R.G. Downey, P.A. Evans, M.R. Fellows, Parameterized learnin
complexity, Proceedings of the sixth annual conference on Computational
learning theory, Santa Cruz, California, USA1993) 51-57.

[16] S. Amborg, B. Courcelle, A. Proskurowski, D. Seese, An algebraic theory
of graph reduction, Journal of the ACM, 40(5) (1993) 1134-1164.

[17] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex
Networks: Structure and Dynamics, Physics Reports 424 (2006) 175-308.

(18] S.N. Dorogovtsev, J.F.F. Mendes, Evolution of networks, Adv. Phys. 51
(2002) 1079-1187.

[19] V. Chvatal, Tough graphs and Hamiltonian circuits, Discrete Math. 5
(1973) 215-228.

