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Abstract

The generalized Fibonacci cube Qq(f) is the graph obtained from
the hypercube Qu by removing all vertices that contain a given binary
word f. A binary word f is called good if Qa(f) is an isometric
subgraph of Qq for all d > 1, and bad otherwise. A non-extendable
sequence of contiguous equal digits in a word f is called a block of
f. The question to determine the good (bad) words consisting of at
most three blocks was solved by Ili¢, Klavzar and Rho. This question
is further studied in the present paper. All the good (bad) words
consisting of four blocks are determined completely, and all bad 2-
isometric words among consisting of at most four blocks words are
found to be 1100 and 0011.

Key words: generalized Fibonacci cube, isometric subgraph, good word,
bad word

1 Introduction

Hsu [4] introduced Fibonacci cubes as a model for interconnection networks,
which has similar properties as hypercubes. The vertex set of the Fibonacci
cube T’y is the set of all words of length d that contain no two consecutive
1s and two vertices are adjacent in Iy if they differ in precisely one bit. For
more about Fibonacci cubes, see (7] for a survey.

A word f is called a factor of a word u if f appears as a sequence
of | f| consecutive bits of u, where |f| denotes the length of f. Fibonacci
cube I'y can be seen as the graph obtained from Q4 by removing all words
that contain 11 as a factor. Inspired by this, Ili¢, Klavzar and Rho [5)
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introduced the generalized Fibonacci cube, Qq4(f), as the graph obtained
from Qg by removing all words that contain a given word f as a factor.
In this notation the Fibonacci cube I'y is the graph Q4(11). The subclass
Q4(1%) of generalized Fibonacci cube has been studied in (9, 10] (also under
the name generalized Fibonacci cube). Generalized Fibonacci cubes have
been studied from several points of view, see, for example, the recent papers
of Azarija et al. [1, 2, 3]. In paper [1] the Wiener index of Qu(1°) was
studied, in paper [2] isomorphism classes of generalized Fibonacci cubes
were studied and in paper [3] the connectivity of generalized Fibonacci
cubes was shown.

A natural problem on generalized Fibonacci cubes is when they embed
isometrically into hypercubes. This question is first studied by Ili¢, Klavzar
and Rho in [5], and it leads to the concepts of the so called good and bad
word [8]. A word f is called good if Q4(f) is an isometric subgraph of
Qg for all d > 1, and bad otherwise. For example,the word f = 1°01°0
is good [5]. Infinite families of bad words were found [5, 6, 11]. Klavzar
and Shpectorov (8] asserted that about eight percent of all words are good,
and they showed that if Q4(f) is not an isometric subgraph of Q4 for some
dimension d, then Qg (f) is not an isometric subgraph of Qg for all d’ > d.
Thus, for a bad word f, there exists the smallest integer d such that Qu(f)
is not an isometric subgraph of Q4. This integer d is called the indez of f,
which is denoted by B(f). For a good word f, it can be set that B(f) = co.
For a bad word f, Ili¢ et al. [6] showed that B(f) < |f|?, and further they
conjectured that B(f) < 2|f|. This conjecture was proved by Wei and
Zhang [12].

Ilié et al. [6] studied good (bad) words from another angle. A word
u is called f-free if it does not contain f as a factor. Let s he a positive
integer. Then f is called s-isometric if for any f-free words p and v of the
same length that differ in s bits, the following holds : i can be transformed
into and v by complementing one by one all the s bits on which p differs
from v, such that all of the new words obtained in this process are f-free.
Such a transformation is called an f-free transformation of u to v. It is
not difficult to see that a word f is good if and only if f is s-isometric for
all s > 1, and f is bad if and only if f is not s-isometric for some one s.

In view of the result B(f) < 2|f| one might be tempted that as soon as
a word is bad, it is not 2-isometric. Ili¢ et al. [6] showed that this is not the
case hy demonstrating the words among the family {02 102"-1102"-1|r >
0} are bad and 2-isometric, and they conjectured the words of this family
are all the words that are bad 2-isometric among those with exactly two
1s. However, Wei and Zhang [11] showed that this conjecture is not true
by showing it is the family {027+2107107jr > 0} but not the above one.

Obviously, by this result the word 0011 is bad and 2-isometric.
A non-extendable sequence of contiguous equal digits in a word a is
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called a block of . Let F' = {170°1* | r > 1,5 >0 and ¢t > 0}. Then F' is
the set of words consisting of at most three blocks such that the heginning
bit is 1. Ili¢ et al. [5] studied the family F”, and the result is summarized
in Table 1.

Table 1: Classification of the isometricity of the word f € F.

@) [ s ¢ good or bad

(N [r>11s=0]t=0 [ good
2Y]r>1[s=1]t=0] good

3| r=2]5s=2]t=0 | bad (2-isometric)
(4Y|r>21s5>3] ¢t=0 | bad (not 2-isometric)
(Y| r>1]s>1] t>1] bad (not 2-isometric)

Klavzar (7] suggested determining more words f and integers n, for
which Qn(f) is isometric or non-isometric in Qn, ideally, classifying em-
beddable words. But he sensed that it seems a difficult question. We pay
a special attention to the words consisting of four blocks in the present
paper. The result is shown in the following theorem.

Theorem 1.1. Let F = {170°1%0%| r, s, t and k > 1}. Then all the good
(bad) words among F are shown in Table 2, and all the bad words are not
2-isometric.

Table 2: Classification of the isometricity of the word f € F.

[6)] r s t k ood or bad

(1) r>21s>1 t>1 1 k>2 ad (not 2-isometric)
2 T = s> 1 t>1 | k> s+ 2 | bad (not 2-isometric)
3 r=1]s>1 t>1 | k=s+1 ood

4 r=1]s=k t=1}| k>T1 good

5 r=1[s=k t>2 1 k>1 ad {not 2-isometric
(6 r=1[s=k+1[t=1[k>1 bad (not 2-isometric
7) r=11s=k+1]t22[k>1 ood

8 r=1]s>k+21t=1]k2>1 ad (not 2-isometric)
9) |r=1]s>2k+2t=21k2>1 ‘good

10) |r=1]s>2k+2|t>23] k21 bad (not 2-isometric)

In the rest of the section we introduce additional terminology and no-
tation needed. Let o = ajaz - - - aqg be any word. With af = a4 --asa, we
denote the reverse of o and &@ = @3z ---d4 the complement of ¢, where
@ =1—a; i=1,...,d. Ilié et al. [5] presented the following result.

Proposition 1.2 ([5]). Let f be any word and d > 1. Then Qu(f) &
Qa(f) = Qu(f®).

Note that the isometricity of all the words consisting of at most four
blocks can be covered by the words among sets F’ and F' in view of Propo-
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sition 1.2. For instance, by Table 2 (7) the words 1051304, 0150314, 0413051
and 1403150 all are good.
From the results of Tables 1 and 2, the following result is obvious.

Corollary 1.3. Let f be any bad word consisting of at most 4 blocks. Then
f is 2-isometric if and only if either f = 1100 or f = 0011.
In the next section, Theorem 1.1 is proved.

2 Proof of the main results

Recall that F = {170°1t0%|r,s,t and k > 1}. By Proposition 1.2, the
following Fig. 1 can produce a decomposition of F', and so F can be
divided into 10 subfamilies:

(7-22,]922 ...... (1)
(k>s542. ... 2)
(k=s+1---.-- 3)
sk t=1:0v.-- 4
J t>2.-.. (5)
UALLERE IR t=1 6
=Lk219, )t (6)
£>2.000ns )
t=1---- (8)
s>k+2{t=2...... 9)
| { ( t>3.-.- (10)

Fig. 1. A decomposition of F.

F,={170°1%0%| r > 2,s>1,t>1and k > 2},
F, = {10°1*0%| s > 1,¢t > 1 and k > s + 2},

F3 = {10°1'0°*!| s > 1 and t > 1},

Fy = {10°10°| s > 1},

F5 = {10°1'0°| s > 1 and t > 2},

Fs = {10%+110%| k > 1},

Fy = {10k+11%0%| ¢t > 2 and k > 1},

Fg = {10°10%| s > k + 2 and k > 1},

Fy = {10°1%0%| s > k + 2 and k > 1}, and

Fio = {10°1%0%| s >k +2,¢t >3 and k > 1}.
The bad words among F can be determined by Lemma 2.1:

Lemma 2.1. Leti=1,2,5,6,8 and 10. Then the words from F; are bad and
not 2-isometric.

Proof. For any word f € F; (i = 1,2,5,6,8,10), we would like to show that
f is not 2-isometric by giving f-free words a and § which differ exactly in
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two bits, but none of the words y and v obtained from o by complementing
one bit in which a differs from 8 is f-free.

For the word f € Fy, let a = 170°1*0-21017-20°1*0* and 8 =
170°1t0%-20117-20°10*. Obviously, both o and B are f-free and that
they differ in two bits. The two words obtained from & by complementing
the bits in which a differs from B are g = 170°1:0¥~2001"~20°1¢0* and
v = 170°1t0%-21117-20°10%. Yet none of u and v is f-free, thus f is bad
and not 2-isometric.

For the word f € F3, let o = 10°180¥-%-200°11¢-10% and 8 =
10°1t0*—*-210°01¢~10%. Then both a and B are f-free and they differ
in two bits. The two words obtained from a by complementing the bit-
s in which a differs from B are p = 10°1'0%—-210°11*~!0* and v =
10°180%—*-200°01¢~'0*. Since none of i and v is f-free, f is not 2-isometric,
and so f is bad.

For the word f € Fs,let a = 10°1°~110°-111¢~10° and 8 = 10°1¢-10
0%-101t—10%. Obhviously, both a and 8 are f-free and they differ in two hits.
The two words obtained from a by complementing the bits in which «
differs from 8 are u = 10°1t-100°~111*~10% and v = 10°1¢~110°~101¢~10".
Note that none of u and v is f-free. Hence f is not 2-isometric.

For the word f € Fg or Fg, let a = 10°71000°~110% and 8 =
10°-1110°-'10%*. It can be checked that both o and B are f-free and
that they differ in two bits. The two words obtained from « by com-
plementing the bits in which « differs from B are u = 10°-1100°-110*%
and v = 10°~1010°~110*. Yet none of u and v is f-free. Hence f is not
2-isometric and so f is bad.

For the word f € Fio, let a = 10°1t-2010%~21t0% and 8 = 10°1t~21
00°—210%. Obviously, both a and 8 are f-free and that they differ in two
bits. The two words obtained from o by complementing the bits in which
« differs from B are g = 10°1¢~2110°21%0% and v = 10°1¢~2000°—21%0*.
Since none of u and v is f-free, f is not 2-isometric. So f is bad. O

Next we turn to the good words among F. Here we need the concept of
z-error overlap, which can be found in {6, 8]. For a word f of length n, let
bi(f) is the beginning of f of length [ and ¢;(f) is the end part of f of the
same length {, where | < n. Suppose that b;(f) and e;(f) agree in all but z
positions. Then we say that f has an z-error overlap of length I. Klavzar
and Shpectorov showed the following result:

Lemma 2.2 ([8]). If f is bad then f has a 2-error overlap.
The good words among F can be determined by Lemma 2.3:

Lemma 2.3. Let i=3,4,7 and 9. Then the words from F; are good.
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Proof. We need to show that any one word f € F; (i = 3,4,7,9) has no 2-
error overlap by Lemma 2.2. This can be done by comparing b;(f) and e;(f)
for all { € {1,...,|f|}. Suppose that b (f) disagree from e;(f) in exactly
z positions. We would like to show that = # 2 for all I € {1,...,|f I}
to complete the proof. Convenience, take two copies f(!) and f @,

illustrated in Fig. 2, where I’ := |f| —{. Obviously, z is the number of palrs

! i
o, I

42 (2); (2);
f(.’b . RALTS i’ i

Fig. 2. Illustration of a error overlap of length [.

For the word f € F3, If|—23+t+2, fi=fer2="= fiys41 =1,
and fo =+ = fo41 = frqsr2 =" = fi5 = 0. (a)

If1<li<s+1,thens+t+1<l'<2s+t+1. By (a), f(l)-—laé0=
fl(?,_),, and f,.(l) f,(ﬁ, =0forie L\ {1}. Hencez =1.

If1=s+2then ! =s+t By(a), f =1#0=752,

1(1) =f® =1 and f(l) —f(z) =0forie L\ {1l,s+2}. Hence z = 1.

of f(l) and f(.ﬂr such that f(l) # f(21'1 whereie L ={1,...,1}.

1+ =
Forl > s+ 3, we dlstmgunsh two cases.
Casel. t=1.

Clearly, if s+3 <1 < 2s+2,thenl1 < /' < s, andsoffl)=19é0=f1(i)l,,
s(-i-)l =0#1= f(i)1+l" f.«fl)z =1#0= fs(i)2+l’ and f{" = f1(42-)1 = 0 for
ie L\ {1,s+1,s+2} by (a). Hence z = 3.
Case 2.t > 2.

We distinguish three subcases: [=s+iand 3<i<t+1,s+t+2<
[<2s+2andl=2s+2+jand1<j<t~- 1L

First we consider { = s + ¢, where 3<i<t+1. Notethat s+1 <Il' <
s+t—1 Weclaimthat t =2s+1if1 < s <¢— 2, and that z = 2i — 3
ifs>i-1. Infact,if1<s<1—2 thenl'—s+t—(i-2)>t l’+i—

s+t+2andsoby (a) f{) = =fP =0, fZ, = = 5B . =1,
1 1 2 1 2
f == (=1 i = = £ =0, and O @y =1for

meL\{2 s+1,i,...,s+z} Hence x = 2s+ 1. If s > i — 1, then
l’—s+(t+1—i)+1>s+1 l'—t+(s+l—i)+l>s+l,l’+i=

s+t + 2 and so by (a) f(” . f,‘i)l =0, f(i)p == fi(f)1+t' =1,

1 1 2 (2) — 2 _
f£+)2 = f( ), = fa(+)2+l' == fofiqr = 0, f(l) = fiyr =1
andfm f(2) = ormeL\{l2 ,i—1,5+2,...,s+1}. Hence
r=2i-3.
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Next we consider s +t +2 < | < 25+ 2. Obviously, this holds only
for s > t. In this subcase t < l’ <s,andsoby(a) fl=1%#0= f12+,,,

Qa (1) _ @ (1) "

0 = = S =L S = = Sy = 0, Tl =
1

= foyr1-1r = 0, fs+2 = = foyee1 = 1, and fr' = f 70, = 0 for

meL\{l s+2-U,. s+t+l—l’s+2 ..,s+t+1}. Hence z = 2t +1.

Last we consider [ = 2s+2+j and1<j 5 t—1. Obviously, !’ = t—j and
1 <!V <t—1. We only need to consider the case s > t—jsince s <t—j—1
has been considered in the case = s+i fori € {3,...,t+1}. We claim that

== 2-2i+1. In fact, by (2 =140= 1(-2l-)l"f(l)z+g+2 = fih =
_ (2) — 1 _ (1) =

0, fs —tje24l = 7 =f s+l = f8+_1+2 ) ste+1 = 1, fs+j+2+l' -
_f(i)HH,,_O f(l) f(2 —lforze{s+2,...,s+j+1},and

f(l) = f,(_,z_), =0forie L\{1,s—t+j+2,...,s+t+1}. Hencez = 2t—25+1.
By the above discussions, we know that any word f € F3 has no 2-error
overlap, and so f is good.
For Fy, note that |f|=25+2, fi=fsy2=1,and fo=--- = fo41 =
forz=---=fi5;=0. (b)

We distinguish three cases: 1 <! <s,l=s+1lands+2<1<2s+1.

If1<!<s thens+2<I'<2s+1,andso f{¥ =1#0=f2, and

f(l) 1(3, =0forie L\ {1} by (b). Hence z = 1.

Ifl = s+1,then ' = s+1,andso f{V = f{&, =1,and f = &, =0
forie L\ {1} by (b). Hence = = 0.

Ifs+2<1<2s+1,thenl <! <s, andsof(l) =1 #O‘fl-a-z,,

F=120=f2, . 0 =0£1=52,,, and fV = f&, =0 for

te L\ {1,l-s, s+2} by (b). Hence z = 3.

Thus we know that any word f € Fy has no 2-error overlap, and so f
is good.

For Fy, note that |fl =2k+t+2, fi=feyza == fetrt42=1, and
fo=+= fer2 = frqtez == fi = 0. (c)

First we consider 1 <! < k. Clearly, k +t+2 <!’ <2k +t+1, and

(11) 1#4£0= f,(i),,, and f(l) f,(z)l, =0 for i€ L\ {1} by (c). Hence
=

Next we consider | = k+1. Clearly, I’ = k+t+1, and so f(l) 1(-2(-)1' =
and f{ = f&), =0 fori € L\ {1} by (c). Hence z =0.

Now we consider [ = k + 2. Obviously ' =k+tandso fj =0# 1=

o f =2, =1and ¥ = £, =0 for i € L\ {1,2} by (c). Hence

r=1.
For the case | > k + 3, we distinguish two cases.
Casel. t=2.

We distinguish three subcases to continue the discussion.
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The first is that { = k+ 3. Obviously I’ = k+ 1, and so by (c),
M-120= f”,,,, s =0#1=f8% i =0#1= 13,
f,§133 =1#0=f2  and fV =2 =0forie L\{1,k+3-U'k+
4—1'k+3}. Hencer =4.
The second is that k + 4 < I < 2k + 2. Obviously, it holds only for
k22 As2<l<h f(”) 1#0= f12+u,f,§i)3 . —0¢1—f,£i’3,
1 2 1 1
Facr =0# 1= £G4 fls=1#0= 13 fi=1#0= 100,
and f = £, =0forie L\ {1,k+3 -1 k+4—1'k+3,k+4} by (c).
Hence z = 5.
The last is that = 2k+3. Obviously, I’ = 1andso f{") =1 # 0 = 2,
2 1 2 1 2
fk+3 p=0#1= fl£+)3’ fl£+)4 =1#0= fk(:-l-)4+l" f1£+)3 = f(+)3+u =1 and
= f(z), =0forie L\{1,k+3—U',k+3,k+4} by (c). Hence z = 3.
Case 2. t >3.
We distinguish four subcases to continue the discussion.
The first is that . = k+iand 3 <i <t. Obviously, ! =k+t+2—1
and k+2 <l <k+t—-1 Weclaimthat z = 2k +1if1 < &k <
i—2,and z = 2 -3 if k > ¢— 1. In fact, 1f1<k<z—2 then

f(l)— ot flg-)'z—o f(i)t'="'— Ig-)2+l’—1 fk+t+3 v= =
fz(lg-wz r =1 fl£2)t 3 = fk 42 = 0, and f = ffflzr =1 for
mée L\{2,...,k+2, k+t+3—l’ 2k+t+2-1U} by (c). Hence
z=2k+1. Iflc>z—1 thenf(l)—--- f‘l)_o B, = =8 =1,
== =1 (= = e =0, f = f =1 2and

W= fm,—OformeL\{1,2,...,i,k+3,...,k+i}by(c.Hence
:c—2z 3

The second is that l = k+t+ 1, and so I’ = k + 1. We claim that z =
2k+2if1<k<t—2,andthatz =2tifk >t—1. Infact,if 1 <k <t-2,

(1 2) (1) _ ( (2 2
tl:f)nf ) =1, f1(+l’_0f —f($2"0f+)t'="‘ /£+)2+u—1
Trgrya—r = -0 = f2k+t+2—l’ =1 filigs = - = f2k+t+2 = 0, and

f(l)_f(2),=1forieL\{12 k42, k4t +3-0,... 2k+t4+2-1)}
by (c). Hence z = 2k + 2. If k > t — 1, then f(l) =1#0= fl(i)l"

(1) _ (1) (2) _ (2) 1 _ 1
f2 , f+1 ;‘) 0, fobr =+ s ~ b L fyga= e =1,
f,£+)3+l,= ,f+t+l+l,—0,andfi() ff+},_1forzeL\{1,2,...,t+

1,k+3,. k+t+1}by (c). Hence = = 2t.
The third case is that k +t 4+ 2 <1 < 2k + 2. Obviously, it holds only
for k > t. Note that t < I’ < k. We get that fl(l) =1#0-= fl(f_),,,

1 1) (2) (2) 1)y _. _

f1£+)3—1' = I£+t+2 vy =0, f;c+3 = k+t+2(; 1, f;zz;)s ==
2

f,g)t =1, f() s == ,i_,_)t+l+,,—0 and f;’ = f;{; = 0 for

zeL\{l k+3—l’ k+t+2-Uk+3,... k+t+2}. Hence:z—2t+1.
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The last case is that ] = 2k +2+jand 1 < j < t—1. We only
need to consider the case k >t — j since k < ¢ — j — 1 has been discussed
in the first case | = k+7 and 3 < ¢ <t. Obviously, I’ =t — j and so

(1) (2) 1 — £(1) _ = =
H' =1 fitr =0, f(—)t+]+3 == fily =0, sz"““:;‘)" = . =
(2) (1) 2 =
fk+2+l' =1, fk+]+3 = = fk+t+2 =1, fk+j+3+l' = ktt24l = 0,

D = f(z_),_,, =1forme {k+3,...,k+i+2}, and f(l) = f(zz_,, =0 for
meL\{l k—t+i+3,...,k+t+2} by (c). Hence z = 2t — 2i + 1.
By the above discussions, we know that any word f € F7 has no 2-error

overlap, and so f is good.
For Fy, note that |[f| =s+k+3, fi=fer2=fs4a=1land fo=---=

fs+l=fs+4="'=f3+k+3=0. (d)
We can divided the interval 1 < ! < s+ k + 2 into seven subintervals:

1<I<kl=k+1,l=k+2,k+3<I<s+1,l=5+4+2,5+3 < <s+k+1
andl=s+k+2.

If1<I<k thens+3<V<s+k+2andso f{’ =1%#0= 52,
and f = f®, =0 fori € L\ {1} by (d). Hence z = 1.

Ifl=k+1,then /' = s+2,andso f{" = fZ, = 1and fV = 12, =
forie L\ {1} by (d). Hence £ = 0.

Ifl = k+2, then ' = s+1,andso f§¥ =1 #£0=f,, s = f®, =1
and ) = £, =0 fori € L\ {1,2} by (d). Hence z = 1.

Ifk+3<!<s+1,thenk+2<l <s andso f{) =1#0=f?,
fay =0#1 =52 fO L =0#1=75% and fV = f&, =0 for
ie L\{l,s+2-V,s+3-10U} by (d). Hencex-—3.

Ifl= s(—;—)Z t(hlt)an I!'=k+1, and ?20 f“)(l— 1#£0= fl‘i),,, f‘i)z p =
0#1=f fh=0#1=12 s =1#0=75%,,,, and
fi(l) = f,-(ﬂ, =0forie L\{l,s+2-—-l’,s+3—l’,s+2} by (d). Hence
T =4,

Ifs+3<I<s+k+1,then2<¥ <k andso f{) =1#£0= 2,
o =0#1=f8 f  =0£1=f2, D =1£0=759,,,,
fia=1#0=f3,, and fV = f§l =0forie L\{1,s+2 1,5+
3-10U',s+2,5+3} Hence z =5.

2Ifl—13+k+2 thené’—l andsof(;)—laéO B P =041=
f(+)[u .f( ) = 1 # 0 f(+)3+l” (1) = f3(+)2+p —-1 and f(l) = fl(-lz-)l' =0 for
zEL\{l 5,8+ 2,5+ 3}. Hence:z:—5

By the above discussions, for any word f € Fj there exists no 2-error
overlap, and so f is good. ]

Proof of Theorem 1.1. Fori=1,2,5,6,8 and 10, all the words of F; are
bad by Lemma 2.1, and for ¢ = 3,4,7 and 9, all the words of F; are good
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by Lemma 2.3. As F = .Gl F;, it proves Theorem 1.1. O
1=
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