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Abstract

Graph embedding has been known as a powerful tool for imple-
mentation of parallel algorithms or simulation of different intercon-
nection networks. An embedding f of a guest graph G into a host
graph H is a bijection on the vertices such that each edge of G is
mapped into a path of H. In this paper, we introduce a graph called
the generalized book and the main results obtained are: (1) Forr > 3,
the minimum wirelength of embedding r-dimensional hypercube Q"
into the generalized book GB[2"',272,2™3], where r| + r2 + 73 = 7.
(2) A linear time algorithm to compute the exact wirelength of em-
bedding hypercube into generalized book. (3) An algorithm for em-
bedding hypercube into generalized book with dilation 3 proving that
the lower bound obtained by Manuel et al. [28] is sharp.
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1 Introduction

A parallel algorithm or a massively parallel computer can each be modeled
by a graph, in which the vertices of the graph represent the processes or
processing elements, and the edges represent the communications among
processes or processors. Thus, the problem of efficiently executing a parallel
algorithm A on a parallel computer M can be often reduced to the problem
of mapping the graph G, representing A, on the graph H, representing M,
so that the mapping satisfies some predefined constraints. This is called a
graph embedding (3].

An embedding of a guest graph G into a host graph H is a one-to-
one mapping of the vertex set of G into that of H. The quality of an
embedding can be measured by certain cost criteria. One of these criteria
which is considered very often is the dilation. The dilation of an embedding
is defined as the maximum distance hetween a pair of vertices of H that
are images of adjacent vertices of G. It is a measure for the communication
time needed when simulating one network on another [13].

Another important cost criteria is the wirelength. The wirelength of
a graph embedding arises from VLSI designs, data structures and data
representations, networks for parallel computer systems, bhiological models
that deal with cloning and visual stimuli, parallel architecture, structural
engineering and so on [25, 43).

One of the most efficient interconnection networks is the hypercube
due to its structural regularity, potential for parallel computation of vari-
ous algorithms, and the high degree of fault tolerance [39]. The hypercube
has many excellent features and thus becomes the first choice of topological
structure of parallel processing and computing systems. The machine hased
on hypercubes such as the Cosmic Cube from Caltech, the iPSC/2 from In-
tel and Connection Machines have been implemented commercially [12].
Hypercubes are very popular models for paralled computation hecause of
their symmetry and relatively small number of interprocessor connections.
The hypercube embedding problem is the problem of mapping a commu-
nication graph into a hypercube multiprocessor. Hypercubes are known to
simulate other structures such as grids and binary trees [11, 29).

Graph embeddings have heen well studied for binary trees into paths
[25], hypercubes into grids (29], binary trees into hypercubes [11, 13], com-
plete binary trees into hypercubes [2], meshes into crossed cubes [15],
meshes into locally twisted cubes [20], meshes into faulty crossed cubes
(45}, generalized ladders into hypercubes (7], rectangular grids into hyper-
cubes [9], rectangular grids into hypercubes {14}, grids into grids [38], binary
trees into grids (30}, hypercubes into cycles (8, 19], star graph into path
[44], snarks into torus [42], generalized wheels into arbitrary trees [37],
m-sequencial k-ary trees into hypercubes [32], meshes into mébius cubes
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Figure 1: Wiring diagram of a grid G into path H with WL;(G,H) = 24

[41], ternary tree into hypercube (18], enhanced and augmented hypercube
into complete binary tree [26], circulant into arbitrary trees, cycles, certain
multicyclic graphs and ladders [35], hypercubes into cylinders, snakes and
caterpillars [27], tori and grids into twisted cubes [24], incomplete hyper-
cube in books [16], 1-fault hamiltonian graphs into wheels and fans [1],
hypercubes into necklace, windmill and snake graphs [33], embedding of
special classes of circulant networks, hypercubes and generalized Petersen
graphs [34], embedding variants of hypercubes with dilation 2 (28], circulant
into necklace and windmill graphs (36).

Even though there are numerous results and discussions on the wire-
length problem, most of them deal with only approximate results and the
estimation of lower bounds (3, 8]. In this paper, we produce exact wire-
length of embedding hypercubes into generalized books. The highlight of
the paper is that the lower bound obtained in [28] for the dilation of em-
bedding hypercubes into generalized hooks is sharp.

The rest of the paper is organized as follows. Section 2 gives definitions
and other preliminaries. In Section 3, we compute the minimum wire-
length of embedding r-dimensional hypercube Q" into the generalized book
GB|2m,2",273], where 11 + 12 + 73 = . In Scction 4, we provide an O(n)-
linear time algorithm to compute the minimum wirelength of embedding
r-dimensional hypercube Q" into the gencralized hook GB[2"™,2"2,2"],
n = 2". In Section 5, we determine the exact dilation of embedding r-
dimensional hypercube Q" into generalized book GB{4,2,27~?] using IPS
Lemma. Also, the same technique can be used to estimate the exact di-
lation of embedding r-dimensional hypercube into a special class GB[l] of
books. Finally, concluding remarks and future study are given in Section
6.
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2 Preliminaries

In this section we give the basic definitions and preliminaries related to
embedding problems.

Definition 2.1. (3] Let G and H be finite graphs. An embedding f of G
into H is defined as follows:

1. f is a one-to-one map from V(G) - V(H)

2. Py is a one-to-one map from E(G) to {Ps(u,v) : Ps(u,v) is a path
in H between f(u) and f(v) for (v,v) € E(G)}.

Definition 2.2. [3] If e = (u,v) € E(G), then the length of Ps(u,v) in H
is called the dilation of the edge e. The mazimal dilation over all edges of G
is called the dilation of the embedding f. The dilation of embedding G into
H denoted by d(G, H) is the minimum dilation taken over all embeddings
f of G into H. The expansion of an embedding f is the ratio of the number
of vertices of H to the number of vertices of G.

In this paper, we consider embeddings with expansion one.

The edge congestion of an embedding f of G into H is the maximum
number of edges of the graph G that are embedded on any single edge of
H. Let EC((e) denote the number of edges (u,v) of G such that e is in the
path Py(u,v) between f(u) and f(v) in H. In other words,

EC;(e) = [{(x,v) € E(G) : e € Pr(u,v)}]

where Py(u,v) denotes the path between f(u) and f(v) in H with respect
to f.

If we think of G as representing the wiring diagram of an electronic cir-
cuit, with the vertices representing components and the edges representing
wires connecting them, then the edge congestion EC(G, H) is the mini-
mum, over all embeddings f : V(G) — V(H), of the maximum number of
wires that cross any edge of H [4]. See Figure 1.

Definition 2.3. [29] The wirelength of an embedding f of G into H is
given by

WLs(G,H)= Y  |Piw,v)l= > ECq(e)

(u.v)EE(G) e€E(H)

where |Pg(u,v)| denotes the length of the path Pr(u,v) in H.
The wirelength of G into H is defined as

WL(G,H) =min WL{(G, H)

where the minimum is taken over all embeddings f of G into H.
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The wirelength problem [3, 4, 8, 29, 30, 37] of a graph G into H is
to find an embedding of G into H that induces the minimum wirelength
WL(G,H). The following two versions of the edge isoperimetric problem
of a graph G(V, E) have been considered in the literature [5], and are N P-
complete [17].

Problem 1 : Find a subset of vertices of a given graph, such that the edge
cut separating this subset from its complement has minimal size among all
subsets of the same cardinality. Mathematically, for a given m, if 8¢ (m) =

A(_:_Vn,l|i2|=m 10c(A)| where 8¢(A) = {(u,v) € E : u € A,v ¢ A}, then the

problem is to find A C V such that |A] = m and 0g(m) = |6g(4)|.

Problem 2 : Find a subset of vertices of a given graph, such that the
number of edges in the subgraph induced by this subset is maximal among
all induced subgraphs with the same number of vertices. Mathematically,

for a given m, if Ig(m) = Ac‘l}lm |Ic(A)| where Ig(A) = {(u,v) €
s =m

E : u,v € A}, then the problem is to find A C V such that |A] = m and
Ig(m) = |Ic(A)].

For a given m, where m = 1,2, ..., n, we consider the problem of finding
a subset A of vertices of G such that |A| = m and |6¢(A)| = 8g(m). Such
subsets are called optimal [5, 21].

Further, if a subset of vertices is optimal with respect to Problem 1,
then its complement is also an optimal set. But, it is not true for Problem
2 in general. However for regular graphs a subset of vertices S is optimal
with respect to Problem 1 if and only if S is optimal for Problem 2 (5].
In the literature, Problem 2 is defined as the maximum subgraph problem
(17).

Lemma 2.4. (Congestion Lemma) [29] Let G be an r-regular graph and
f be an embedding of G into H. Let S be an edge cut of H such that the
removal of edges of S leaves H into 2 components H) and Hy and let Gy =
fYH)) and Gy = f~1(Hj). Also S satisfies the following conditions:

(i) For every edge (a,b) € G;, i = 1,2, Py(a,b) has no edges in S.

(ii) For every edge (a,b) in G with a € G, and b € G2, Py(a,b) has
exactly one edge in S.

(ii) G, ts an optimal set.
Then EC{(S) is minimum and ECy(S) = 3 ECf(e) = r|V(G1)| —
e€S
2|E(Gy)|.
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Lemma 2.5. (Partition Lemma) [29] Let f : G — H be an embedding.
Let {Sy,S2,...,5,} be a partition of E(H) such that each S; is an edge
cut of H. Then

P
WLs(G,H)=> ECi(S;). O

i=1
Definition 2.6. [43] For r > 1, let Q" denote the r-dimensional hyper-
cube. The vertex set of QT is formed by the collection of all r-dimensional
binary strings. Two vertices z,y € V(QT) are adjacent if and only if the
corresponding binary strings differ exactly in one bit. The vertices of Q"
can aiso be identified with integers 0,1,...,n — 1.

Equivalently if n = 2" then so that if a pair of vertices i and j are
adjacent then i — j = 2P for some p > 0.

Definition 2.7. [23] An incomplete hypercube on i vertices of Q" is the
subcube induced by {0,1,...,i — 1} and is denoted by L;, 1 <i <27,

Theorem 2.8. [6, 10, 21] Let Q" be an r-dimensional hypercube. For
1<:< 2", L; is an optimal set on i vertices.

Lemma 2.9. [29] Let Q" be an r-dimensional hypercube. Let m = 28 +
2t2 ... 4+ 24 such thatr >ty >t2 > - >t 2 0. Then |[E(Q"[Ln])| =
[t 287 g 202 g 20T 202 42208 L (1 - 1)2Y).

Lemma 2.10. 31) For 1< j<nandi=1,2,...,2%

Lezt

o= m ey 20T pog g QTR

2Tzt 0 < g <420 OtdT) )
0Lz <2 -1, k=j+1,7+2,...,n }

is an optimal set on i x 27771 vertices in Q" where vy + 7o+ -+ 1, =71,
ri<re <. <7y

3 Wirelength of Embedding Hypercubes into
Generalized Books

In this section, we compute the minimum wirelength of embedding r-
dimensional hypercubes into gencralized books GB[2™, 272, 2"3]. For prov-
ing the main result, we need the following Lemma.

Lemma 3.1. Fori=1,2,...,r—landi <j <r, NeutS¥ = {2/ -1,2/ -
2,...,x}, > 2 is an optimal set in Q".
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Figure 2: Generalized Book GB[2™,2"2,2"]

Proof. Define ¢ : NcutS? — Lgiyo by (29 — k) = k — 1. If the binary
representation of 29 — k is QO ;ﬁgar_,-.l.lar_j +2+- -y then the hinary
r—j times
representation of k — 1 is QO-\-’-OQar_,'“ar_Hg «++ctp. Thus the binary
r—j titnes

representation of two numbers z and y differ in exactly one bit < the binary
representation of ¢(z) and (y) differ in exactly one bit. Therefore (z,y)
is an edge in NcutS? & (p(z),(y)) is an edge in L, 4o:. Hence NcutS?
and Ly, 40 are isomorphic. By Theorem 2.8, N cutS? is an optimal set in
Q.

An n x m mesh denoted by M[n x m| is nothing but the cartesian
product P, X P,,. A mesh is also referred to as a grid.

Grid embedding plays an important role in computer architecture. VLSI
Layout Problem, Crossing Number Problem, Graph Drawing, and Edge
Embedding Problem are all a part of grid embedding. There are very
few papers in the literature which provide the exact wirelength of grid
embedding [29]. Generalized book is an extension of the grid network and
is defined as follows.

Definition 3.2. Let M[n xm] be a nxm mesh with n rows and i columns.
A graph which is obtained from | copies of M, say My, M>,..., M|, by
joining each vertex of the Ist column of M) to the corresponding vertex of
the 1st column of M; by an edge for alli = 2,3, ..., is called a generalized
book and is denoted by GBin,m,1].
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Figure 3: Edge cut of GB[2™,272,2"]

Remark 3.3. GB(n,m,l| has nml vertices and mi(2n — 1) — n edges. The
diameter d(GB[n,m,l]) = n + 2m — 1. See Figure 2.

Wirelength Algorithm

Input : The r-dimensional hypercube Q" and the generalized book
GB[2",272,273), where ry + 12 + 713 =1

Algorithm : The lexicographic embedding [3] of Q" with the labeling 0
to 2" — 1 into GB([2™,272,2™] is an assignment of labels to the nodes of
GB|2m,2"2,2™] as follows:

For 1 < k<2, 1< 35 <2, the vertices in the 3** column of M of
GB[2™,272,27] are labeled (k — 1)27+72 4 (5 — 1)27, (k — 1)271+72 4 (5 —
1)27 +1,...,(k—-1)2"*"2 4 (5 —1)2™ + 27 — 1 from top to bottom. See
Figure 3.



Output : An embedding f of Q" into GB[2™, 22, 2™ given by f(z) ==z
with minimum wirelength.

Proof of Correctness : We assume that the labels represent the vertices
to which they arec assigned. For 1 i< 2" -1, let S; = {((t - 1)+ (§ —
127 +(k—1)271+72 (i—1)+(j—1)27 + (k—1)2"+7241) : 1 <k < 27,1 <
jJ<27} For1 <k <2m—1,let S, ={((¢—1),k(27*2) + (i -1)) :
1<i<2n} For1<k<2%andl1<j<22-1,let S = {(k-
127+ 4 (1- 1)+ (j — 1)27, (k= 1)2M+"2 4 (i = 1) 4+ 427 : 1 <P < 211}
See Figure 3. Then {S;:1<i<2" —1}U{S,:1<k<2™ -1} U{S]:
1<k<2m™,1<j<2™—1}is a partition of [E(GB[2™, 272, 27])].

For each ¢, 1 <1 < 2™ —1, E(GB[2™,272,2™])\S; has two components
H;) and H;p, where V(Hy) = {(’I,— D4+ (G-1)2"+(k— 1)2r1+r2 1<k <
2.1 < j <27}, Let Giy = f~1(Ha) and G2 = f~1(Hi2). By Lemma
2.10, G;) is an optimal set and each S; satisfies conditions (i), (ii) and (iii)
of the Congestion Lemma. Therefore EC;(S;) is minimum.

Foreach k.1 < k < 2™ -1, E(GB[2™,2™2,273])\ S}, has two components
Hj, and H{,, where V(H},) = {k27¥72 k2m1+72 41, k27172 4 2mi4m2
1}. Let G}, = f~Y(H},) and G}, = f~!(H},). By Lemma 3.1, G},
is an optimal set and each S} satisfies conditions (i), (ii) and (iii) of the
Congestion Lemma. Therefore ECy(S}.) is minimum.

Foreach k,j, 1 < k<2™ and 1 < j <272 -1, E(GB[2™,2™,2™))\S],
has two components Hj, and Hj,, where V(H{) = {(k — 1)27+"2, (k —
n2mtr241, 0 (k- 1)2“"”24-2"1'”2 IN{(k=1)271+72 4 (i=1)+(j—1)2™ :
1<i< 2”} Let G, = f~'(H{,) and G}, = f~'(H},). By Lemma
3.1, le is an optimal set, each .S'J satisfies conditions (i), (ii) and (iii) of
the Congestion Lemma. Therefore EC;(S]) is minimum. The Partition
Lemma implies that the wirelength is minimum.

Theorem 3.4. The minimum wirelength of Q" into GB[2™,2",2™],
Ty + 712+ 73 =1 is given by

2" —1 .
WEL(Q",GB[2"1,27%,27])= % (r- i(27%78) — 2e (graurayt 13(27 — 1)2N1+72
i=1

2732721

+X Z [r(271%72 — k- 27) — 2 Egriry _pgm ],
k=1 =

where ¢; denotes the number of edges in L;.

Proof. Label the vertices of Q" and GB[2™,2"2, 23] using Wirelength Al-
gorithm. By Congestion Lemma,

(i) EC(S;) =1 i(27273) =2 £1.9mg0m, 1 Si < 271 — 1
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(i) ECf(S})=r3-2n+2 1<k <2™ —1and

(i) EC;(S]) = r(27+7™ — k- 2) = 2pm4rma_gom, 1 < k < 2 and
1<j<2m—1.

Then by Partition Lemma,

2m1_1
WL(Q",GB[2™,2™,27]) = 3o (r-i(272F73) — 264900413
i=]1
273 _1
+ 2 20 (r — (11 + 1))

k=1
QT3 272 —

tZ T @ =k 2) =2 ik

2'1_

z (’I‘ l(2r2+r3) - 23;(2"2-#"3) + 7 ;(2” —_ 1)2r1+r;
=ragray
+ Z 2 [r 2f1+1‘z k- 2r1) -2 52r1+r2_k.2,v1]'
1 j=1

4 Time Complexity

In computer science, the time complexity of an algorithm quantifies the
amount of time taken by an algorithm to run as a function of the size of
the input to the problem. An algorithm is said to take linear time, or O(n)
time, if its time complexity is O(n). Informally, this means that for large
enough input sizes the running time increases linearly with the size of the
input.

Linear time is often viewed as a desirable attribute for an algorithm.
Much research has heen carried out into creating algorithms exhibiting
(nearly) linear time or better. This research includes both software and
hardware methods. In the case of hardware, some algorithms which, math-
ematically speaking, can never achieve lincar time with standard computa-
tion models are able to run in linear time. There are several hardware tech-
nologies which exploit parallelism to provide this. An example is content-
addressable memory. This concept of linear time is used in string matching
algorithms such as the Boyer-Moore Algorithm and Ukkonen’s Algorithm
(22, 40).

In this Section, we compute the time complexity of finding the minimum
wirelength of embedding hypercube into generalized hook using the proof
of Theorem 3.4. The algorithm is formally presented as follows.
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Time Complexity Algorithm

Input : The r-dimensional hypercube Q" and the generalized hook
GB[2m,272,2™], where ry + 1o + 13 =T,

Algorithm : Wirelength Algorithm.

Output : The time taken to compute the minimum wirelength of embed-
ding Q" into GB[2™,272,27] is O(n), n = 27, which is linear.

Method : We know that, Q" contains 2" vertices. For assigning the
labels of 2" vertices, we require 2" time units. By Theorem 3.4, we have
2" — 142" — 14 27(2™ — 1) edge cuts. Since (2™ — 1)(2" — 1) edge
cuts are similar and we need one time unit for each edge cut, we require
2™ — 1427 — 1427 time units. Then, we require 2771 + 272 + 1 time
units for finding the congestion on edge cuts and the same time units to
apply Partition Lemma.

2T+ 27 — 1427 — 142"
+2(2"7 27 +1)

or 4 omitl 4 3 9r2 4 grs
O(n).

Hence the total time taken is

Hence, the time taken to compute the minimum wirelength of em-
bedding Q" into GB[2™,2™,2"3] is O(n)-linear time, where |V(Q7)| =
[V(GB[2™,2™2,2™))| = 2" = n.

5 Dilation of Embedding Hypercubes into
Generalized Books

The dilation problemn and the wirelength problem are different in the sense
that an embedding that gives minimum dilation need not give minimum
wirelength and vice-versa. In the literature there is no efficient method to
compute exact dilation of graph embeddings [2, 18]. Recently, Paul Manuel,
Indra Rajasingh and Sundara Rajan, obtained a strategy to compute a
lower bound for dilation using exact wirelength and formulated the result
as IPS Lemma [28].

Lemma 5.1. (IPS Lemma)(28] Let G and H be graphs on same number of
vertices. Let § and WL be the dilation and wirelength of embedding graph
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G into graph H and let f : G — H be an embedding realizing 6. If d;,
number of edges in G are of dilation i; with respect to f, 1 < j < k, then
k
WL - 3 i dy;
i=1

5> J

k
IEI - Zdij
J=1

The following is a particular case.

Lemma 5.2. Let § and WL be the dilation and wirelength of embedding
graph G into graph H. Then § > TEV’V(?’ﬁ

Next, we emhed hypercube Q into generalized hook GB[4, 2,27 ~%] with
dilation 3 and prove that the lower bound for GB[4, 2,273 ohtained using
Lemma 5.2 is sharp. For proving this result we need the following result
which is a particular case of Theorem 3.4.

Lemma 5.3. The minimum wirelength of Q" into GB[4,2,2" 73|, r > 2 is
given by

WL(Q",GB[4,2, 273 = 2771(3r —5) - 8r+24.
Dilation Algorithm A

Input : The r-dimensional hypercube Q7 and the generalized bhook
GB[4,2,2773], r > 6.

Algorithm : The lexicographic embedding [3] of @ with the labeling
0 to 2" — 1 into GB[4,2,277%] is an assignment of labels to the nodes of
GBl4,2,27%] as follows:

For 1 €i< 23,1 < j < 2, the vertices in the 7% column of M; of
GB[4,2,27-3] are labeled 8(i— 1) +4(j —1),8(i = 1) +4(j = 1) +1,...,8(i —
1) +4(j — 1) + 3 from top to bottom.

Output : An embedding f of Q" into GB[4,2,2"~3] given by f(z) = =
with minimum dilation. See Figure 4.

Proof of correctness : By Lemma 5.2 and Lemma 5.3, we get

27" 1(3r —5)— 8r + 24

§ 2 r 2r-1
gy 2N —5)—8r+24
r 27‘—1
> 2.
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Figure 4: Embedding of Q° into GB|[4, 2, 4] with dilation 3

By Dilation Algorithm, any edge e € Q" is mapped into a path of length
at most 3 in GB[4,2,2779|.

The proof of the following theorem is an easy consequence of Dilation
Algorithm A.

Theorem 5.4. The r-dimensional hypercube Q" can be embedded into a
generalized book GB[4,2,27~3] with dilation 3, r > 6.

Next, we embed hypercube Q" into another class GB[l] of books with
dilation 2. GBI[l], ! = 2772 — 1,r > 2 is a particular case of generalized
hook GB[2™,2"2,273], when grid becomes path.

In other words, we define GB(i] as follows.

Definition 5.5. Let M[4 x 2] be a 4 x 2 mesh with 4 rows and 2 columns.
A graph which is obtained from | copies of M, say M, M, ..., M, by iden-
tifying the vertices of the 1st column of My and the corresponding vertices
of the 1st column of M; for alli =2,3,... L.

Remark 5.6. GBIJl] has 4(! + 1) vertices and 7l + 3 edges. The diameter
d(GB[l]) = 4.

The following Lemma is a particular case of Theorem 3.4.

Lemma 5.7. Forl=2""2%2—1,r > 2, the minitnum wirelength of Q" into
GBYl] is given by

WLQ",GB[l]) = 2 7'2r—1)-4(r-2).
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Dilation Algorithm B

Input : The r-dimensional hypercube Q" and the book GBIl], where
l=2"2_1,r>2.

Algorithm : The lexicographic embedding [3] of Q™ with the labeling 0

to 2" — 1 into GBJl] is an assignment of labels to the nodes of GB(l| as
0,1,2,...,2" — 1 from top to hottom.

Output : An embedding f of Q" into GBJ[l] given by f(z) = x with
minimwn dilation. See Figure 5.

Proof of correctness : By Lemma 5.2 and Lemma 5.7, we get

2r=1(2r — 1) — 4(r — 2)

§ 2 r2r-1
2=l 4 4r -8
= 2- r2r-1
r—1 -
> 1&1s0<2 +Lir 8<1.
r 271

By Dilation Algorithm, any edge e € Q" is mapped into a path of length
at most 2 in GB[l].

The proof of the following theorem is an easy consequence of Dilation
Algorithm B.



Theorem 5.8. Forl = 2"=2 — 1,7 > 2, the r-dimensional hypercube Q"
can be embedded into a book GB|l] with dilation 2.

Remark 5.9. Since Q" is not a subgraph of GB|l], the dilation of embed-
ding Q" into GBI[l] is >1. By Dilation Algorithm, Q" can be embedded into
GBl] with dilation 2. This is ano ther way to prove Theorem 5.8 without
using Lemma 5.2.

6 Concluding Remarks

Obtaining embeddings of r-dimensional hypercube Q" into GB[4,2,27~3)
and GBJl] with minimum dilation opens up the study of dilation problem
which remains open problem for several architectures. Further, we compute
the minimum wirelength of embedding r-dimensional hypercube into gen-
eralized book GB[2™,2",273]. We provide an O(n)-linear time algorithm
to compute minimum wirelength of emhedding r-dimensional hypercube
into generalized book GB[2™,27,27]. Finding the dilation of embedding
hypercube into GB[2™,2"2,2"3] is under investigation.

Using the techniques of this paper and combining the results of the
papers (26, 28]. we may obtain the following results.

Theorem 6.1. The minimum wirelength of r-dimensional folded hypercube
FQ7 into generalized book GB[2™,272,2™] is given by

2" —1
WL(FQ",GB[2",2™.27]) = Z ((r+1)-i-(277) = 26,0ms0w3)
+(r3 + 1)(2™ - 1)271*"2
2139721
+Z S [+ 1)@ — k27
=1 j=1

—2 Eory ""2—k-2"l]v
where €; denotes the number of edges in L;.

Theorem 6.2. The minimum wirelength of r-dimensional augmented cube
AQT into generalized book GB[2™,272,273] is given by
om1o]

WL(AQ,GB[2",272,2")) =Y ((2r —1) i+ (27%™) — 2¢19ms05)
i=1

+(@® ~ D)[(2r = 1)(27*7) = 26p0114)
273 2"2 —1
+Z Z [(2T - 1)(2”??2 -k- 2”) — 2 Egry4ra_pugn ]v

k=1 j=1

where €; denotes the number of edges in L;.
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Open Problem : Embedding variants of hypercube such as crossed cube,
twisted cube, Mohius cube and Fibonacci cube into generalized hook with
minimum dilation and wirelength.
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