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Abstract

Let a,b and k& be three nonnegative integers with a > 2 and
b > a(k+ 1)+ 2. A graph G is called a k-Hamiltonian graph if
G — U contains a Hamiltonian cycle for every subset U C V(G)
with |U| = k. An [a, b]-factor F of G is called a Hamiltonian [a, b]-
factor if F' contains a Hamiltonian cycle. If G — U has a Hamiltonian
[a, b}-factor for every subset U C V(G) with |U| = k, then we say
that G admits a k-Hamiltonian [e, b]-factor. Suppose that G is a k-
Hamiltonian graph of order n with n > a + k + 2. In this paper, it is
proved that G includes a k-Hamiltonian [a, b]-factor if 6(G) > a + k
andt(G)Za—l+i°—_;)}?'—ll.

Keywords: toughness, k-Hamiltonian graph, k-Hamiltonian (a, b]-
factor.

*Receive date: June 3, 2015

tThis work is supported by the National Natural Science Foundation of China (Grant
No. 11371009, 11501256, 61503160) and the National Social Science Foundation of China
(Grant No. 14AGLG01) and the Natural Science Foundation of the Higher Education
Institutions of Jiangsu Province (Grant No. 14KJD110002), and is sponsored by 333
Project of Jiangsu Province.

tCorresponding author. E-mail address: zsz.cumt@163.com (S. Zhou)

ARS COMBINATORIA 135(2017), pp. 153-161



2010 Mathematics Subject Classification: 05C70, 05C45

1 Introduction

We consider finite undirected graphs which do not include loops and multi-
ple edges. Let G be a graph with vertex set V(G) and edge set E(G). The
degree of a vertex z of a graph G is defined as the number of edges which
are incident to z, and is denoted by dg(z). The neighborhood Ng(z) of a
vertex z is defined as Ng(z) = {y € V(G) : yz € E(G)}. More generally
Ng(S) = UzesNg(z) for a subset S C V(G). For a subset S C V(G),
we denote by G[S] the subgraph of G induced by S, and write G — S for
G[V(G)\ S]. We use §(G) and A(G) to denote the minimum degree and
the maximum degree of G, respectively. We denote by w(G) the number of
connected components of G. A vertex subset S of G is called an indepen-
dent set (a covering set) of G if each edge of G is incident with at most (at
least) one vertex of S. It is not very difficult to deduce that a vertex subset
S of G is an independent set of G if and only if V(G) \ S is a covering set
of G. The toughness t(G) of a graph G was first defined by Chvatal in [2]
as follows.

t(G) = min{w—(gg_l—s)- : S CV(G),w(G - S) > 2},

if G is not complete; otherwise, t(G) = +o0.

Let a and b be two nonnegative integers with 1 < a < b. Then a
spanning subgraph F of G is called an [a, b]-factor if F satisfies a < dp(z) <
b for each z € V(G). In particular, an [r,7]-factor is an r-factor. If for any
U C V(G) with |U| = k, G-U admits a Hamiltonian cycle, then we say that
G is a k-Hamiltonian graph. An [a, b]-factor is Hamiltonian if it includes
a Hamiltonian cycle. If for any subset U C V(G) with |U| =k, G - U
contains a Hamiltonian [a, b]-factor, then we say that G has a k-Hamiltonian
(@, b]-factor. A k-Hamiltonian [r,r]-factor is a k-Hamiltonian r-factor. In
particular, a 0-Hamiltonian graph is a Hamiltonian graph; a 0-Hamiltonian
[a, b]-factor is said to be a Hamiltonian [a, b]-factor. Hamiltonian factors in
graphs attract a great deal of attention [1, 4, 8, 9, 10].

The relationships between toughness and graph factors are investigated
in (3, 5]. In this paper, we study k-Hamiltonian [a, b]-factors in graphs and
obtain a toughness condition for graphs to have k-Hamiltonian [a, b}-factors.
Our main result is the following theorem.

Theorem 1 Let a,b, k be nonnegative integers with a > 2 and b > a(k +
1) + 2, and let G a k-Hamiltonian graph of order n withn > a+k+2. If
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8(G) > a+k and ¢(G) > a—1+ =¥ then G admits a k-Hamiltonian
[a, b]-factor.

2 The Proof of Theorem 1

The proof of Theorem 1 relies heavily on the following lemmas. Lemma 2.1
is a well-known necessary and sufficient for a graph to have an [a, b]-factor,
which is a special case of Lovasz’s (g, f)-factor theorem (7).

Lemma 2.1 (Lovdsz [7]). Let G be a graph, and let a and b be two non-
negative integers with a < b. Then G contains an [a,b]-factor if and only
if for each subset S of V(G),

olT| - de_s(T) < b|3],
where T = {z : x € V(G)\S,dg-s(z) < a—1} anddg_s(T) = ), cr do-s(z).

Lemma 2.2 (Katerinis [5]). If a graph G is not complete, then t(G) <
15(G).
)

Lemma 2.3 (Liv and Zhang [6]). Let G be a graph and let H = G(T]
such that dg_s(z) = a — 1 for each x € V(H) and no component of H
is isomorphic to K, where T C V(G) and a > 2. Then there erist an
independent set I and the covering set C =V (H) — I of H such that

V(H)| < (e = =)
and i
IC| < (a-1- m)m-

Lemma 2.4 (Liu and Zhang [6]). Let G be a graph. Set H = G[T| with
6(H) > 1 and1 <dg(z) <a-1 for eachz € V(H), where T C V(G) and
a > 2 is an integer. Let Ty, T3, ---,Ta—1 be a partition of V(H) satisfying
dg(x) = j for Vx € T; (where T; may be empty sets), j = 1,2,---,a — 1.
Suppose that each component of H has at least one vertex of degree no
more than a —2 in G. Then there exist a mazximal independent set [ and a
covering set C = V(H) ~ I of H satisfying

a—1 a-1
> a-d)e; £ (a—2)(a - j)is,
i=1 i=1

wherei; = [INTj|, ¢; =|CNT;|,j=1,2,---,a—1.
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Lemma 2.5 (Zhou [10]). Let a and b be two integers with 2 < a < b, and
let G be a graph of order n withn > a+2. If G is complete, then G includes
a Hamiltonian [a,b]-factor.

Proof of Theorem 1. For any U C V(G) with |U| = k, we write G' = G--U.
In terms of the hypothesis of Theorem 1 and the definition of k-Hamiltonian
graph, G’ admits a Hamiltonian cycle C. Let H = G’ — E(C). Note that
VH)=V(G") =V(G)\U and §(H) =6(G") —2 > QG) — '

It is obvious that C is a k-Hamiltonian [2, b]-factor of G, and so Theorem
1 holds for @ = 2. In the following, we may assume that a > 3.

If G is complete, then G’ also is complete. According to Lemma 2.5, G’
includes a Hamiltonian [a, b]-factor, and so G has a k-Hamiltonian [a, b]-
factor. Hence, we may assume that G is not a complete graph. Obviously,
G contains the desired factor if and only if H admits an [a — 2, b —2]-factor.
By way of contradiction, we assume that H has no [a — 2,b — 2]-factor.
Then by Lemma 2.1, there exists some subset S’ of V(H) such that

(a - 2)IT| - du_s(T) > (b - 2)|5, (1)

where T = {z : z € V(H)\ S',dy_s(z) < a — 3}. Note that H =
— E(C) =G —-U - E(C). Thus, we obtain

dy_s/(z) 2 de—s(z) —2=dg_y—_s'(z) —
for any x € T. Let S = S’ UU. Thus, we have

dg-s(z) <dy-s(z)+2<(a-3)+2=0a—-1, (2)
for any z € T. In terms of (1), (2), |U| =k and § = S’ UU, we obtain
a|T| — dg-s(T) > (b - 2)|S| - (b - 2)k. 3)

Claim 1. |S| > &k + 1.

Proof. Assume that |S| < k. Note that §(G) > a+k. We have dg_s(z) >
dg(x) — |8] = 6(G) — |S] > a for each x € T. This contradicts (2). The
proof of Claim 1 is complete. O

. b-2)|S
Claim 2. (b-2)|5| - (b - 2)k > 4=
Proof. In view of Claim 1, we obtain

_ (b—-2)}8)
(b-2)IS|- -2k = = +(b-2- )|5| (b - 2)k
(b-2)|8| b 2
e t-2- k+1)(k+1)—(b 2)k
(b—2)|5]
k+1 °

v
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This completes the proof of Claim 2. ]
It follows from (3) and Claim 2 that

(b-2)Is|

k+1 “)

a|T| - dg-s(T) >

Let m be the number of the components of R’ = G[T'| which are iso-
morphic to K, and set Tp = {z: ¢ € V(R'),dc_s(z) = 0}. Let R be the
subgraph obtained from R’ — Ty by deleting those m components isomor-

phic to K,. We shall consider two cases by the value of |V (R)| and derive
a contradiction in each case.

Case 1. |V(R)| > 1.

It is obvious that §(R) > 1. Set R = Ry U Rj, where R, is the union
of components of R which satisfy dg—g(z) = a — 1 for each z € V(R;) and
Ry = R- R;. According to Lemma 2.3, there exist a maximal independent
set I, and the covering set C; = V(R;1) — I; in R, satisfying

1
[V(Ry)| £ (a— a—_H)Ull (5)

and 1
|Cal S(a—l—m)lhl- (6)

Note that §(R;) > 1 and A(R2) < a—-1. WewriteT; = {r:z €
V(R2),dg-s(z) = j} for j =1,2,---,a—1. In terms of the definitions of R
and Ry, it is obvious that each component of R, has at least one vertex of
degree no more than ¢ — 2 in G — S. Using Lemma 2.4, R, has a maximal
independent set I and the covering set Co = V(Ry) — I, satisfying

a—1 a—1
> (a—j)e; <> (a—2)(a—7)ij, ()
i=1 =1

where i = |IgnTj|, cj = [Czﬁle,j =1,2,-.-,a—1. Set W = G- (SuUT),
Q = SUC,UC U (Ng(I;)NV(W)). Then since |Co| + |Na(f2) NV(W)] <

-1 .. .
3321 ij, we obtain

a—1
QI < IS|+1Cil + ) 3is (8)
j=1
and
a-1
W(G = Q) 2 |Tol +m+ L[+ ) _i;. (9)
j=1
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Claim 3. |Q| > t{(G)w(G - Q).

Proof. Claim 3 is true for w(G — @) = 0. If w(G — Q) = 1, then it follows
from Lemma 2.2 that

Q| 2 de-s(z) + 5] > da(z) > 6(C) = 24(C) 2 HCW(C - Q)
for any x € T. If w(G — @) > 2, then from the definition of ¢(G), we obtain
1Rl = ¢(G)w(G - Q).

This completes the proof of Claim 3. ]
In terms of (8), (9) and Claim 3, we ohtain
a-1 -1
S| +1Cal + > 5 zt(G)(lTo|+m+lh|+ZzJ) (10)
=1 i=1

According to (4), we have

a—1 a—1 (b— 2)|S|
olTo| +am + V(R + ) _(a—5)is + D _(a—s)e; > =—=. (11
ji=1 j=1
It follows from (10) and (11) that
a—1 -1
a|To| + am + |V( R1)|+Z a—j)i; +Z (a—j)e
F=1 Jj=1
b—
> (t(G)(IToI +m+ I +]le; —lc| - Zﬁ,)
that is,
a—1 a—1
_ b-2 (b-2)t(G) (b—2)5 N
Z_:(G—J)Cj+|V(Rl)|+mlcll>j=Zl( 11 ki —etdi
(b-2)t(G) (b 2)t(G)

By the conditions of Theorem 1, it is easy to see that %ﬁﬂ —-a>0.
Thus, we have

a

1
(b—2)4G) (b—2)j s
(o s + V(R + 421Gl > Z( P BRI

.
i
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(b= 2)(G)

TR

[11]. (12)

In terms of (5), (6), (7) and (12), we obtain

ot 1 b—2 1
> (@=2(e=3); + (e~ o7) + gple=1- Al
Jj=1
a—1 .
> (GO BT gy gy, CDO )y

It follows from (13) that at least one of the following two cases must
hold.

Subcase 1.1. There exists at least one j satisfying

(6—2)4(G) _(b—2)j

(@=2)@-7)>—F577 kr1 ot

which implies

(b - 2)¢(G)
k+1

(b—2)j

<ala-1)—(a-1)j+ PR

Note that b > a(k + 1) + 2. Thus, we have

>a-1. (15)

Combining j < a — 1 with (14) and (15), we obtain

(b—2)t(G) (b—2)(a—1) _ (b-2){a-1)
1 < a(a—l)—(a—l)(a—1)+—k——_!_—~l———- = a—-l+—~—k-IT—,
that is,

(@ —1)(k+1)
b—2
which contradicts ¢(G) > a — 1 + &=ilkt]),

b—2)t(C
Subcase 1.2. o — 37 + k+l(a -39 > L_k__*)+2
In terms of t(G) > a -1+ ﬁ"—_ll,_l_%i-l—!, we have

t(G)<a-1+

(b—2)t(G) _ b—2
> Aa —
P31 Zrr1 et

(a=1)(k+1), (a—=1)(b—-2)
g et
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Thus, we obtain

1 b-2 1 (a=1)(b-2)
e o (G Eeleare D R il ey v

that is,
alk+1) - (b—-2)>0,
which contradicts b > a(k + 1) 4+ 2.
Case 2. |V(R)| =0.
It follows from (4) that
a{To| + am > Q{—fﬁ,

which implies
a(k + 1)(|To| + m)

IS] < - (16)
According to (16), b > a(k + 1) + 2 and Claim 1, we have
b—2
|To|+m>T_>_lc+121. (17)

Note that w(G — S) > |To| +m. Then using (17), we obtain w(G - S) >
|To] + m > 1. In view of (16) and the definition of ¢(G), we have

(a-1)(k+1) S| o _ ISl _a(k+1)

-1 <t @) <
a-l+ b-2 s )_w(G—S)‘lTol-%-m b—2 "
that is,
a—1< u
b-2"
Combining this with b > a(k + 1) + 2 and a > 2, we obtain
1 1
1<a-1 < <=
¢ 2
which is a contradiction. Theorem 1 is proved. m]

Finally, we present the following problem.

Problem. Let a,b, k& be nonnegative integers with a > 2 and b > a(k +
1) + 2, and let G a k-Hamiltonian graph of order n withn > a+k+ 2 and
§(G) 2 a + k. For any little positive real ¢, ¢(G) > a — 1 4 £=DE+1 _
Does G contain a k-Hamiltonian [a, b]-factor?
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