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Abstract

The alliance polynomial of a graph I"' with order n and maximum
degree 4, is the polynomial A(T;z) = 22;_ 5, Ax(T) z"+* where
Ax(T) is the number of exact defensive k-alliances in I'. We provide
an algorithm for computing the alliance polynomial. Furthermore,
we obtain some properties of A(T'; z) and its coefficients. In partic-
ular, we prove that the path, cycle, complete and star graphs are
characterized by their alliance polynomials. We also show that the
alliance polynomial characterizes many graphs that are not distin-
guished by other usual polynomials of graphs.
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1 Preliminaries.

The study of the mathematical properties of alliances in graphs started in
[15]. The defensive alliances in graphs is a topic of recent and increasing
interest in graph theory; see, for instance [4, 9, 12, 21, 20, 23, 24, 25, 26].
The study of defensive alliances as a graph-theoretic concept has recently
attracted a great deal of attention due to some interesting applications
in a variety of areas, including quantitative analysis of secondary RNA
structures [13] and national defense [18]. Besides, defensive alliances are
the mathematical model of web communities. Adopting the definition of
Web community proposed recently in [8], “a Web community is a set of
web pages having more hyperlinks (in either direction) to members of the
set than to non-members”.
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We begin by stating the used terminology. Throughout this paper,
I' = (V, E) denotes a (not necessarily connected) simple graph of order
|V| = n and size |E| = m. We denote two adjacent vertices u and v by
u ~ v. For a nonempty set X C V, and a vertex v € V, Nx(v) denotes
the set of neighbors that v has in X: Nx(v) := {u € X : u ~ v}, and the
degree of v in X will be denoted by dx (v) = | Nx(v)|. We denote the degree
of a vertex v; € V by &(v;) = dr(v;) (or by 4; for short) and the degree
sequence of I by {8;,62,...,0,} (ordered as follows §; > 3 > -+ > 0n;
then 4, is the maximum degree of I'). The subgraph induced by S C V' will
be denoted by (S) and the complement of the set § C V' will be denoted
by S.

A nonempty set S C V is a defensive k-alliance in ' = (V,E), k €
[=01,61] NZ, if for every v € S,

8s(v) > 85(v) + k. (1.1)

A vertex v € S is said to be k-satisfied by the set S, if (1.1) holds.
Notice that (1.1) is equivalent to

d(v) 2 265(v) + k (1.2)

and
26s(v) = 6(v) + k. (1.3)
We consider the value of k in the set of integers K := [—§;,8;]NZ. There

exist graphs I" such that for some integers & € K there are no defensive k-
alliances in I'. For instance, for £ > 2 in the star graph S,,, do no exist
defensive k-alliances. Besides, V(T') is a defensive é,-alliance in I'. Notice
that for any S there exists some k € K such that it is a defensive k-alliance
inT.

Given S C V, we define

ks := max{k € K : S is a defensive k-alliance}. (1.4)
We say that ks is the ezact indez of alliance of S, or also, S is an ezact
defensive ks-alliance in T, see e.g., [4].

Proposition 1.1. Let T be a graph and let S C V. The following state-
ments are equivalents:

1. k is the ezact index of alliance of S.

2. S is a defensive k-alliance in I' with one vertex v € S such that
ds(v) = dg(v) + k.

8. S is a defensive k-alliance but it is not a defensive (k + 1)-alliance in
r.
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Remark 1.2. The ezact index of alliance of S in T is
ks = min{ds(v) - 35(v)}. (15)

Some parameters of a graph I' allow to define polynomials on the graph
T, for instance, the parameters associated to matching sets (7, 10], inde-
pendent sets (3, 11, 14}, domination sets [1, 2], chromatic numbers (19, 28],
induced subgraphs [27] and many others. We choose the exact index of
alliance in order to define the alliance polynomial of a graph (see Section
2).

A finite sequence of real numbers (ao, a;, a2, ..., an) is said to be uni-
modal if there is some k € {0,1,...,n}, called the mode of the sequence,
such that

ap < ...<ap—1<ar and @k 2> ary1 > .o 2 Gn;

the mode is unique if ax_; < ar and ax > ak41. A polynomial is called
unimodal if the sequence of its coefficients is unimodal.

In the next section, we introduce the alliance polynomial and obtain
some of its properties. In Section 3, we compute the alliance polynomial
for some graphs and study its coefficients; in particular, we show that some
of them are unimodal. We investigate the alliance polynomials of path,
cycle, complete and complete bipartite graphs. Also we prove that the
path, cycle, complete and star graphs are characterized by their alliance
polynomials. Finally, in Section 4 we show that the alliance polynomial
characterizes many graphs that are not distinguished by other usual poly-
nomials of graphs.

2 Alliance Polynomials.

Let T be a graph with order n. We define the alliance polynomial of a
graph T’ with variable z as follows:

AT;z) = Y or(8) -z, (2.6)
scv

where or(S) = 1 if (S) is nonempty and connected in I, and op(S) = 0
otherwise.
Another expression for this alliance polynomial is the following:

ATz) =2 ) Ax(D)z*, (2.7)
kex
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with Ag(T') the number of connected exact defensive k-alliances in I

As an example, we compute now the alliance polynomial of the complete
bipartite graph Ks 3.

Note that since K33 is a cubic graph, we have Ax(K33) = 0 for
k € {—2,0,2}. In order to obtain A(Ks3;z), we compute its non-zero
coefficients.

A_3(K3,3) =6 Since K33 is cubic, we have that the number of exact de-
fensive (—3)-alliances is |[V(K33)| = 6.

A_1(Ka3) =33 We have that S C V(K33) is an exact defensive (—1)-
alliance, if both parts of K3 3 have some vertex in S and one of them
has just one vertex. Thus, we obtain from combinatorial arguments
the result.

A1(K3,3) =15 We have that S C V(K3 3) is an exact defensive 1-alliance,
if § # V(K33) and S contains at lest two vertices of both parts of
K3 3. Thus, we obtain from combinatorial arguments the result.

As(K3,3) =1 Obviously, we have that the unique exact defensive 3-alliance
is the set of vertices of K3 3.

Then, we obtain

A(K33;x) = 6z° + 332° + 1527 + z°.

The following procedure allows to compute the alliance polynomial of
a graph T" with order n. Let W = {S),...,S82+_1} be the collection of
nonempty subsets of V.

Algorithm 2.1.
Input: adjacency matriz of T'.
Qutput: alliance polynomial of T.

The algorithm starts with A(T'; z) = 0 and continues with the following
steps, for1 < j<2"—1.

1. If {S;) is a connected subgraph, then go to step (2), else replace j by
j + 1 and apply this step again.

2. Compute ks;.
3. Add one term z™**Si to A(T;z).

4. Replace j by 7+ 1 and apply step (1) again.



This algorithm for computing the alliance polynomial of a graph shows a
complexity O(m2"), furthermore, when it is running on A-regular graphs
its complexity is O(n2"). The algorithm looks for the 2" — 1 nonempty
induced subgraphs of I'. In step (1), for each induced subgraph, it analyzes
if it is connected or not, using Depth-First Search (DFS) algorithm. It is a
well known result that DFS algorithm complexity is O(m), where m is the
number of edges of I'. Furthermore, it is easy to check that step (2) has
cost O(n) and step (3) has cost O(1).

An isomorphism of graphs 'y and I'; is a bijection between the vertex
sets of 'y and Ty, f : V(I';) — V(I'2) such that any two vertices u and
v of 'y are adjacent in I'; if and only if flu) and f{v) are adjacent in 5.
If an isomorphism exists between I'y and I'y, then the graphs are called
isomorphic and we write I'y ~ I'.

Remark 2.2. Let '), and I'y be isomorphic graphs. Then A(Ty;z) =
A 2; z).

The following proposition shows general properties which satisfy the
alliance polynomials.

Proposition 2.3. Let T be a graph. Then, A(T;x) satisfies the following
properties:

i) All real zeros of A(T';z) are non-positive numbers.
i) The value 0 is a zero of A(T; x) with multiplicity n — 6, > 1.
1ii) Zf;  Ai(T) is the number of defensive k-alliances in I’ for every k € K.

w) If ' has at least an edge and its degree sequence has exactly r dif-

ferent values {c,cz,...,¢-}, then A(T;z) has at least v + 1 terms:
g4 ., g6, g0

v) A(T;z) is either an even or an odd polynomial (a symmetric polyno-
mial) if and only if the degree sequence of T has either all values even
or all odd.

Proof. We prove separately each item.
i) Since the coefficients of A(I';z) are non-negatives, we have the result.
ii) Since n + k > n — &, for any k € K, we have a common factor 6
in A(T';z) and A_;,(T') #0.
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iii) If S is an exact defensive r-alliance in I' with r > k, then we have
ds(v) > b5(v) +7 > 6g(v) + k for all v € S; in fact, S is a defensive k-
alliance in I'. This finishes the proof, since an exact defensive r-alliance
in T with r < k is not a defensive (r + 1)-alliance and r + 1 < k.

iv) Consider vy, vs,...,v, € V with dp(v;) = ¢; for alli =1,...,7. Note
that {v;} for ¢ = 1,...,r is an exact defensive (—c;)-alliance, since
0 = ds,(vi) = dg,(vi) — ¢i = ¢; — ¢;. Therefore, that makes appear the
term z™~% in A(T;z) for all ¢ = 1,...,7. Consider now a connected
component S of I" and u a vertex in § with dr(u) = 6,. Hence, S is
an exact defensive d,-alliance in G, since we have

ds(v) =0r(v) 2 0g(v) +6p=6,, VwES (2.8)
and 8s(u) = 6,. So, that makes appear the term z"+% in A(T;x).

v) In order to prove the directed implication assume that A(I';z) is an
even polynomials (the case odd is analogous). Let ¢ be any element of
the degree sequence of I and v € V with é(v) = ¢. By item v) we have
A_.(T) # 0, then n — c is even and ¢ = n(mod 2). So, we conclude

that the elements in the degree sequence of I" are either all even or all
odd numbers.

Finally, we prove the converse implication. Consider S C V an exact
defensive k-alliance. By Proposition 1.1, there exists v € S with

205(v) = 0r(v) + k.

This finishes the proof since dr(v) + k is even.

A cut vertex set of a graph T' = (V, E) is a subset X C V such that
(V'\ X) is a non-connected graph.

Theorem 2.4. Let T be any graph with order n. Then, we have the fol-
lowing statements

1. A(T;1) < 27, and it is the number of connected induced subgraphs
(S) in T.

2. The number of cut vertez sets of I" is 2™ — 1 — A(T';1).
Proof. By (2.6), we have

AT;1) =) or(S).
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Thus, A(T';1) is the number of connected induced subgraph (S) in I; this
amount is less that 2", since we have 2™ — 1 nonempty subsets of V.

Let ¢x(I") be the number of cut vertex sets of cardinality k for 0 < k < n
and si(T") be the number of connected induced subgraphs of I" with order
k for 0 < k < n. Note that X is a cut vertex set if and only if V(') \ X
induces a non-connected subgraph. Then, we have the following equality
forevery0 <k <n

n
cncsl) +51(0) = (-
Finally, we obtain the result since A(I';1) = Y ¢_; sx(). a

The following theorem shows some properties of coefficients and degree
of alliance polynomial.

Theorem 2.5. Let A(T;x) be the alliance polynomial of a graph T' with
Degmin(A(T; z)) and Deg(A(T'; z)) the minimum degree and mazimum de-
gree of its terms, respectively. Then, A(T';x) satisfies the following state-
ments:

i) Degpin(A(T; z)) = n — 8, and its coefficient A_5,(T') is the number of
vertices in I with degree §,.

i) A—s,+1(T) is the number of vertices in I with degree 6, — 1.
i) As,(T') > 0.
w) n+ 6, < Deg(A(T;z)) < n+ 6.

v) As, (T') is equal to the number of connected components in ' which are
&, -regular.

vi) There not erist defensive k-alliances in T" for k > Deg(A(T'; z)) — n.

Proof. We prove separately each item.

i) The minimum value of K is —41, so Deg;,(A(T'; z)) > n—4;. Consider
now the sets S, = {v} with dr(v) = &1, then (S,) is connected and S,
is an exact defensive (—4§;)-alliance. Finally, it is clear that any S € V
with more than one vertex is not an exact defensive (—&;)-alliance,
since for any v € S we have

Ss(v) — b5(v) = 1— (61— 1) > —&; + 1. (2.9)
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Then, A_;,(T) is the number of vertices in I' with degree §,. Note
that, consequently, A_5, (I') <nand A_s,(T') =nifandonly if T'is a
regular graph.

ii) Similarly to the previous item, we consider the sets S, = {v} with
dr(v) = 8; — 1 and we obtain A_5 4+1(') > NVs,_, where NV, :=
{number of vertices in I" with degree i}; therefore, we obtain the equal-
ity since any S C V with more than one vertex is an exact defensive
k-alliance for k > —6; + 2 by (2.9).

iii) This is a consequence of Proposition 2.3 iv).

iv) Item iii) gives the first inequality. The second one holds since 4, is the
maximum value of K.

v) By (2.7), As, (') is the number of defensive §;-alliance in I'. First,
note that if S is a defensive 4;-alliance, then S is an exact defensive
§;-alliance since 6; is the maximum value in K. Clearly, any connected
component in " which is §;-regular is an exact defensive 4;-alliance.
Now, consider an exact defensive d;-alliance S in I'. Hence, for any
v € S we have

Js(v) > 63(‘0) +6 = &> 53(’0) > 55(’0) + 61 > 6.

Then, we have és(v) = dr(v) = 8, for every v € S and conclude that
S is a connected component in I which is §;-regular.

vi) Suppose that there is a defensive k-alliance S in T, in fact, ks > k.
Then, that makes appear the term z"**s in A(T;z) and so,

n+k < n+ ks < Deg(A(T; z)).

O

Proposition 2.6. Let I' be any connected graph. Then, T’ is regular if and
only if
A, (T) =1. (2.10)

Proof. If T is regular, then by Theorem 2.5 v) we obtain A (T) = 1.
Besides, if A5, (I) = 1, then there is an exact defensive §;-alliance S in T
with dg(v) > d5(v) + & > &1 for every v € S (i.e., ds(v) = 6, for every
v € S). So, the connectivity of I" gives that T is a d;-regular graph. r
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Proposition 2.7. Let T" be any graph and G any proper subgraph of T.
Then
A(l; z) # A(G; z).

Proof. Since G is a proper subgraph of I, each connected induced subgraph
of G is a connected induced subgraph of T' and at least one edge e (with
endpoints u,v € V) of I' is not contained in G. Hence, since ({u,v}) is
connected in I" but is no connected in G, we have A(T';1) > A(G;1) by
Theorem 2.4. O

The disjoint union of graphs, sometimes simply referred to as graph
union is defined as follows. For two graphs 'y = (W}, E1) and I's = (V2, E?)
with disjoint vertex sets V; and V2 (and hence disjoint edge sets), their
union is the graph 'y W Ty := (V] U V3, Ey U Ey). It is a commutative and
associative operation.

Theorem 2.8. LetT' =T w... W', be the disjoint union of the graphs
T1,..., 0 (r 2 2) with orders ny,...,n., respectively. Then we have

AT;z) = 2" ™A ;;2) +... + 2" AL, o), (2.11)
where n:=n; + ...+ n,.

Proof. Since all connected induced subgraph of I" is a connected induced
subgraph of I'; for some 1 < i < 7, and all exact defensive k-alliance in
T is an exact defensive k-alliance in I'; for some 1 < i < r; we have that
K(T) = Ui_, K(T:) and

Ap(T) = Ap(T1) + ... + Ae(Ty), for k € K(T).
So, we have
Ap(D)z"tF = 2 ™M A (T))z™ o4, 2™ A (T, )z™+*, for k € K(T).
Finally, if we sum in k € K(I"), then we obtain the result. 3

This result allows to obtain the alliance polynomial of the graph I'w {v}
obtained by adding to the graph I a single disjoint vertex v (i.e., v ¢ V(I)).
This operation is called vertez addition.

Corollary 2.9. Let T be any graph with order n and let v be a vertez such
that v ¢ V(I'). Then

AT W {v};z) = z A(T; z) + =™+

The n-vertex edgeless graph or empty graph is the complement graph
for the complete graph K,; it is commonly denoted as E,, for n > 1.
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Corollary 2.10. Let n be a natural number withn > 1. If A(T; z) = nz™,
then T is a graph that is isomorphic to E,,.

Proof Note that the empty graph E; satisfies A(Ey;z) = z. So, by Theo-
rem 2.8 or Corollary 2.9 we have that

A(Eny1) = zA(En;z) +2", VYn> 1.

This implies that A(E,;z) = nz™. The uniqueness follows from items
iii) and iv) in Theorem 2.5. O

Corollary 2.11. LetT' be any graph with order n. Then
AT W Enp;z) = 2™ A(T; ) + ma™t™.

The graph join T’y + I'; of two graphs is their graph union with all the -
edges that connect the vertices of the first graph I'; with the vertices of the
second graph I's. It is a commutative operation.

Theorem 2.12. Let T';,I's be two graphs with order ny and ng, respec-
tively. Then

A(T1 +Ta;7) = A(T1;2) + A(T2;7) + ATy, T2 7),

where Z(I‘.I',I‘g;a:) is a polynomial with Z(l"l,l“z;l) = (2™ —1)(2™ - 1)
and Deg(A(T'1,T'2;z)) = Deg(A(T) wTy;x)).

Proof. Let us define A(T';,T'y;z) = A(Ty + ajz) — A(Ty;2) — A(T2; x).
First, if S; is a defensive alliance in I} which provides a term z'**s1 in
A(Ty;z), then S; provides a term gm™*natksi—nz — gmitks; in A(T') +
[y;z). It follows immediately that we obtain A(T"y;z) as an addend in
A(Ty + I'y; ) when S; runs on the defensive alliances in I'y. Similarly,
we obtain A(I';;z) as an addend in A(I'; + I'z;x) when we consider the
defensive alliances in I's.

In order to complete the summation in A(T'; 4+TI'p; x) we consider R; C
V(G,) (being either a defensive alliance in I'; or not) with 1 < r; < ny
elements and Ry C V(T'2) (being either a defensive alliance in T2 or not)
with 1 < r9 < ny elements. Note that any R; U Ry is a defensive alliance
in Ty + [z since (R; U Ry) is connected. By Theorem 2.4, we have

ATy, T21) = {:nz (’;‘) (7;2) = (2™ —1)(2™ - 1).

i=1 j=1

However, the exact index of alliance of Ry U R3 in I'; +TI'z depends strongly
on the particular geometry (topology) of I'y and I's. In general, we can not
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determine the exact index of alliance of R; U R, given its cardinality and
degree sequence.

It is obvious that terms in A(T'; + I'y; ) provided from every R; U Rs
with maximum degree are obtained from R} and Rj defensive alliances
with (R}), (R%) connected subgraphs and highest exact index of alliance in
I"y and I'g, respectively. Hence,

Deg(A(T1,T2;z)) = n1 + ng + max{kr;, kr; },

where the maximum is taken over all R}, R; defensive alliances in I'y, Iy,
respectively. So, (2.11) finishes the proof since

Deg(A(T; @T2; 1)) = max {ny + Deg(A(T'1;z)),n1 + Deg(A(T2; z)) }
= ny + ny + max{kg;, kr; },

where the maximum is taken over all R}, R} defensive alliances in I'y, I's,
respectively. 3

Theorem 2.12 allows to obtain the following result which will be useful
(see Section 3.2). We denote by I' the complement graph of ' (note that
K, is isomorphic to the empty graph E,).

Theorem 2.13. Let n,m be two positive integers. Then we have

A(Kp + K3 7) = A(Kp; ) A (2) + mz™ (2.12)

where Zm(z) s a polynomial which just depend on m, in fact,

m
An@) =Y (’;’)xmin{%mm.

r=0
Proof. First, we fix S C V(K,) with 1 < s < n elements. Note that S
provides a term z2*~! in A(K,;z). Consider RC V(K,,) with0<r <m
elements. Now we compute the exact index of alliance of Hg = SUR in
K, + K,,. We have

OHR (V)= 0g;(v) = (r+s—1)—(n—s+m—r) = 2s—1—(n+m)+2r, Vwe S
and
OHp(v) =y, (v)=s—-(n—-s)=2s—1-(n+m)+m+1, VweR

Then, Hr provides a term xz"‘“""‘““{zﬁ_”""l} for each R. Therefore, for
each S we obtain the polynomial 3¢~ - A,,,(z) when R runs in the subsets
of V(K,,). In order to complete the sum, note that the defensive alliances
without elements of V' (K,,) are just the set of single vertices of V(K,).
Then (2.6) gives the result.
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Also, we can compute the alliance polynomials of K, + K, (see Propo-
sition 3.7) and K, + K., (see Proposition 3.13).

3 Characterization of path, cycle, complete
and star graphs by its alliance polynomials

In this section we obtain the explicit formulae for alliance polynomials of
some classical classes of graphs using combinatorial arguments. We also
study fundamental properties such as unimodality and the uniqueness of
these polynomials.

Figure 1 shows two graphs Iy and I's with the same order, size, de-
gree sequence and number of connected induced subgraphs; however, these
graphs have different alliance polynomials. A simple computation gives
A(Ty;x) = 227 + 428 + 272° + 5021% + 112! and A(T2;z) = 227 + 428 +
302° + 47210 + 11211,

RS I A I I

I T,

Figure 1: Graphs with same order, size, degree sequence and number of
connected induced subgraphs such that A(T';;z) # A(T2; ).

3.1 Polynomials for path and cycle graphs

Proposition 3.1. Let P, be a path graph with order n > 2. Then
A(Piz) = (n—2) 22 42271 4 (7 2)2(" DL (313)

Proof. We analyze the subsets with different cardinality separately.

Let us consider any subset S of V(P,) with connected induced subgraph
(S),and |S|=rwithr=1,...,n.

If r = 1, then there are n alliances.

e Since there are two vertices with degree 1, we have 2 exact defensive
(—=1)-alliances. So, that makes appear the term

21:11—1
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o Since there are n — 2 vertices with degree 2, we have n — 2 exact
defensive (~2)-alliances. So, that makes appear the term

(n —2)z""2.
Consider now the case 2 < r < n— 1. The connectivity of (S) allows to
compute kg since it is a sub-path with 7 vertices. Then we have n —r 41

exact defensive 0-alliances, since at least one endpoint of any induced P,
attains the exact index of alliance kp, = 0. So, we have the terms

(n—r+4+1)z", forevery2<r<n-1.

Finally, if r = n, then S = V(P,). We have just one exact defensive
1-alliance, with the term

L,
Then, we obtain
n—1
A(Pyiz)=(n—2)z" 2 422" 1 4 Z(n —r+1)z" 4z,
r=2
=(n-2)z""2+2z" 1 + (n—2)(n+1) z" + "t

2

We have the following consequences of Proposition 3.1.

Corollary 3.2. Let P, be the path graph with n vertices. Then A(P,;x)
is unimodal if and only if 2 < n < 4.

Proof. By simple computation we can check that A(P,;z) is unimodal for
2 < n < 4, since A(Py;x) = 2z + 22, A(P3;1) = = + 222 + 22% 4+ 24 and
A(Py; z) = 222 + 22° + 52 + 25. But, for n > 4 we have that A_3(P,) =
n—2>2=A_1(Pa) < (n—2)(n+1)/2 = Ao(Py).

Now we characterize graphs I' with A(T'; z) = A(P,; z).

Theorem 3.3. Lett be a natural number witht > 2. If A(T;z) = A(P;; ),
then T is an isomorphic graph to P,.

Proof. Let us consider a graph I’ with A(T;z) = A(P,;z); denote by n the
order of I and by Ar the maximum degree of T

Assume first that ¢ > 3. By items i} and ii) in Theorem 2.5, n — Ap =
t — 2, I" has t — 2 vertices of degree Ar, and 2 vertices of degree Ar — 1.
So, we have n > ¢.
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Assume now that ¢ = 2. Then A(T';z) = A(P;z) = 2z + 2%, By
Theorem 2.5 i), n — Ar = 1 and T" has 2 vertices of maximum degree Ar.
So, we have n > t.

Hence, n > t for every t > 2.

By Theorem 2.5 iv), we have t + 1 > n + ér where dr is the minimum
degree of I'. So, dr is either 0 or 1. Hence, if n > ¢, then n =t + 1 and
or = 0. Besides, the maximum degree of A(T'; x) is greater than ¢+ 1 since
I" has a connected component with vertex of positive degree. This is a
contradiction, thus n =t andthent —Ar =t—-2ift >3,and2— Ar =1
if t = 2; therefore, Ap =2ift>3,and Ap =1ift =2.

Hence, if t = 2, T is an isomorphic graph to P». If t > 3, then I has
t — 2 vertices of degree 2 and 2 vertices of degree 1. If I' is disconnected,
then A(T;z) has at least two terms z* with k > ¢, one for each connected
component. But this is a contradiction since A(T';z) = A(P.;z). So, I is
connected and this implies that I" is an isomorphic graph to P;.

Proposition 3.4. Let C, be a cycle graph with order n > 3. Then
A(Cniz) =nz" 2 4 n(n —2)z" + 2™+ (3.14)

Proof. We analyze the subsets with different cardinality separately.

Let us consider any subset S of V(C,,) with connected induced subgraph
(S), and |S|=r withr=1,...,n.

If 7 = 1, then we have n exact defensive (—2)-alliances. So, that makes
appear the term

nz™2.

Consider now the case 2 < r £ n — 1. The connectivity of {S) allows
to compute kg since it is a path with r vertices. Then we have n exact
defensive 0-alliances, since the end vertices of the induced P, attain the
exact index of alliance kp, = 0. So, we have the term

nz”, forevery2<r<n-1.

Finally, ifr = n, then S = V(C,). We have an exact defensive 2-alliance

with the term

"2,

Then, we obtain A(Cp;z) = nz""% + n(n —2)z" + z"+2, O

Corollary 3.5. Let C, be a cycle graph with order n > 3. Then A(Cyp; )
is unimodal.

Here we want to characterize graphs I' with A(T'; z) = A(C;; x).

Theorem 3.6. Lett be a natural number witht > 3. If A(T';z) = A(Cy; z),
then T is an isomorphic graph to C,.
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Proof. Let us consider a graph I" with order n such that A(T'; z) = A(Cy; z);
denote by Ar the maximum degree of I' and by ér its minimum degree.
By Theorem 2.5 i), T" has ¢ vertices of degree Ar, so n > t. Besides,
n+d0r<t+2<n+ Ar. Hence, ér < 2.

Assume that n > t. Then 6r is either 0 or 1.

If 6r = 0, then Proposition 2.3 iv) makes appear the term z". Since
z'+1 does not appear in A(Ci;z), we obtain n > ¢ + 2. Furthermore, it
appears one term, associated to one connected component with vertices of
positive degree, with exponent n + Ar > n, but this is impossible since
A(C4; ) has degree t + 2.

Hence ér = 1 and n =t + 1. So, by Theorem 2.5 i), I has t vertices
of degree Ar = 3 and one vertex of degree 1. Denote by v the vertex
of I with degree 1 and by S the connected component of I' containing v.
Clearly, S is an exact defensive 1-alliance in I, and then the term z(t+1+1
appears in A(I'; z); but S\ {v} is an exact defensive 1-alliance in I'. This
is a contradiction since there is just one term z**2 in A(T; z).

Hence, we have n = t. Besides, by Theorem 2.5 i), I is a regular graph
and Ar = 2. Since A(C;;z) is a monic polynomial with degree t + 2, the
number of connected components of I" is 1 by Theorem 2.5 v), and so, I' is
connected.

3.2 Polynomials for complete graphs

Since K41 is an isomorphic graph to K, + K, for every n > 1, Theorem
2.13 has the following consequences.

Proposition 3.7. Let K,, be a complete graph with order n > 1. Then
(z2+1)" -1
—_—

Corollary 3.8. Let K, be the complete graph with order n. Then A(K,;z)
is unimodal.

Now we characterize graphs I' with A(T'; z) = A(K;; z).

Theorem 3.9. If A(T';z) = A(Ky; x), then T’ is an isomorphic graph to
K.

Proof. Consider a graph I' with order n such that A(T;z) = A(K:;z).
By Theorem 2.5 i), I has t vertices of maximum degree Ar = n — 1, so
n > t. Denote by vy, vs, ..., v; the vertices of I with maximum degree n—1.
Hence, we have that I contains a clique {{v1,v2,...,v:}) isomorphic to K;.
If n > t, then Proposition 2.7 gives A(T'; ) # A(Ky; z). So, we obtain that
n = t. Finally, since n = ¢, " is an (¢ — 1)-regular graph. Therefore, T is
an isomorphic graph to K;. O

A(Kn;x) = (3.15)
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Since a complete graph without one of its edges K, — e is isomorphic to
K,_2+ K, for every n > 3, Theorem 2.13 has the following consequence.

Proposition 3.10. Let K, —e be a complete graph without one of its edges,
with n > 2 vertices. Then,

(22 +1)" = (z* —23) (22 + 1) 2+ 22 - 222 -1
z

A(K, —e;z) = . (3.16)

Proposition 3.10 gives the following results.

Corollary 3.11. Let K, — e be the complete graph with n > 2 vertices,
without one of its edges. Then A(K, — e;z) is unimodal if and only if
2<n<4.

Proof. We can check that A(K, — e;z) is unimodal for 2 < n < 4, since
A(Ky—e;x) = A(Eg;z) = 222, A(K3—e;z) = A(P3; z) = 2+22% 4223+ 4
and A(K, — e;z) = 2 + 222 + 523 + 227 + 22% + 2°. But, for n > 4 we
have that A-(n—l)(Kn —e)=n—-2>2= A_(n_g)(Kn —e) < (;) -1=
A—n+3(Kn - e)' o

Now we characterize graphs I' with A(T';z) = A(K, — e; z).

Theorem 3.12. Let t be a natural number with t > 2. If AT;z) =
A(K: — e;z), then T is an isomorphic graph to K; — e.

Proof. If t = 2, then the result follows from Corollary 2.10. Assume now
that t > 3.

Let us consider a graph I" with order n such that A(T';z) = A(K, —
e;z). By items i) and ii) in Theorem 2.5, I" has t — 2 vertices of maximum
degree Ar = n — 1 and 2 vertices of degree n — 2, so n > t. Denote by

v1,...,V;—9 the vertices of I" with maximum degree n — 1 and by w;,ws
the vertices with degree n — 2. Hence, we have that ' contains a subgraph
({v1,...,Vt—2, w1, wz}) which is either a clique or an isomorphic graph to

K; — e, depending on whether or not w; is adjacent to ws in I'. If n > ¢,
then Proposition 2.7 gives A(T'; z) # A(K,—e;x). So, we obtain that n = ¢.

Note that any nonempty subset S of V(I') induces a connected subgraph
(S) of T, if S # {w;,w2}. Obviously, A(';1) = 2 — 2 and this is a
characterization of the graph K; — e, since a graph with one more induced
connected subgraph is isomorphic to K;. Furthermore, any graph I' with
order t obtained from K, by removing at least two edges, does not satisfy
the condition A(T';1) = 2¢ — 2. Since A([;z) = A(K: —e;z) and I has
order t, then I' is isomorphic to K; — e.
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3.3 Polynomials for completed bipartite graphs
Since K, + K = n,m, an argument similar to the ones in the proofs of
Theorems 2.12 and 2.13 allows to obtain A(K, + Kn;x).

Proposition 3.13. Let K,, ., be a complete bipartite graph withn, m > 1.
Then

n+m
. — n m n m n+m+min{2i—-n,2j—m}
A(Kp m; ) = nz+mz™+ _S_ E (2) (J_):z: .

k=2 1,j>0,i+j=k
(3.17)

Proof. Fix n > 1 and m > 1. Let us consider any subset S of V(K. )
with connected induced subgraph (S) and |S| =k with k=1,...,n4+m.
If k = 1, then there are n + m alliances.

e If S is a vertex associated to n, we have n exact defensive (—m)-

alliances, which yields the term

,nxn+m—m .

e If S is a vertex associated to m, we have m exact defensive (—n)-
alliances, which yields the term

mxn+m-—n‘

Consider now the case 2 < k < n+m. Obviously, any subset S of V(G)
with k > 2 elements induces a connected subgraph of K, , if and only if
it contains elements in both parts. Then, we have (7)(7) exact defensive
min{j — (m — j),i — (n — i)}-alliances for each couple ¢,5 > 0 such that
i+ j = k (by choosing ¢ vertices associated to n and j vertices associated
to m).

So, we have the terms

Z (") (m) grtmtmin{2j—m,2i-n}
1,5>0, i+j=k LAY
Then, we obtain

n+m
. — n m n+m+min{2i—-n,2j—m
A(Kn,m, il?) = nx"+mz™+ z Z (z) ( R )q; { ) }

k=2 1,50, i+j=k J

O
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The complete bipartite graph K,_1,; is called an n star graph S,. We
have the following consequence of Theorem 2.13 (since S, is an isomorphic
graph to K; + K,_, for every n > 2) or Proposition 3.13.

Corollary 3.14. Let S, be star graph with order n > 2. Then

l(r—1)/2] n—1 n—1 n—1
A(Sn;z) = Z ( . )x2k+l +(n- 1)1.‘"_1 + gl Z ( . )
k=0 k=[n/2}

(3.18)
Here we want to characterize graphs I' with A(T"; z) = A(S;; 7).

Theorem 3.15. Let t be a natural number with t > 2. If A(T;z) =
A(S:;z), then T is an isomorphic graph to S,.

Proof. If t = 2 then Theorem 3.3 gives the result. Fix t > 3.

Let us consider a graph I" with order n such that A(T'; ) = A(S:; z).
Since Deg,,;,(A(T;z)) = 1, there is v € V(I') such that v ~ w for all
w € V(T)\ {v}. Therefore, I' is a connected graph, dr (the minimum
degree of I') is greater that 0 and I" contains an isomorphic subgraph I's of
S,. Hence, any S C V(I') which induces a connected subgraph (S} in I's,
induces a connected subgraph in T, too. So,

A(T;1) > A(Ts;1) = A(Sni 1), (3.19)

Since Deg(A(T;z)) =t +1, we have n+ dr < t+1, and so, n < t. But,
by (3.18), we have

t—1
2">A(r;1)=t—1+2(t"1) =21 41> 2071,
k=0 k

and this condition implies that n > t. Thus, n =t.

Seeking for a contradiction assume that there are wy,ws € V(I') \ {v}
such that w; ~ we. Then, {w;, w2} induces a connected subgraph in T,
but not in I'g; and so,

A1) > A(Se;1) = AT z) # A(Se; ).
This is the contradiction we were looking for, and so, I" is isomorphic to
Ss. O
4 Distinctive power of alliance polynomial

In this section we explain the distinctive power of the alliance polynomial
of a graph.
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We denote by D(T';z) the domination polynomial of I' (see [2]), by
I(T'; z) the independence polynomial of I (see [11]), by m([;z) the mat-
ching polynomial (see [7]), by p(I';z) the characteristic polynomial, by
T(T; z,y) the Tutte polynomial (see [28]), by P(T;z,y) the bivariate chro-
matic polynomial introduced in [6], and by Q(T';z,y) the subgraph com-
ponent polynomial introduced in [27].

We say that a graph I' is characterized by a graph polynomial f if for
every graph IV such that f(I'’) = f(I') we have that I" is isomorphic to I".
The class of graphs K is characterized by a graph polynomial f if every
graph I' € K is characterized by f.

This notion has been studied in {16, 17], for the chromatic polynomial,
the Tutte polynomial and the matching polynomial. It is shown, e.g.,
that several well-known families of graphs are determined by their Tutte
polynomial, among them the class of wheels, squares of cycles, complete
multipartite graphs, ladders, Mébius ladders, and hypercubes. In Section 3,
we have proved that path, cycle, complete and star graphs are characterized
by their alliance polynomials. In [22] the authors prove that the family of
alliance polynomials of cubic graphs is a special one, since it does not
contain alliance polynomials of graphs which are not cubic; and they also
prove that the cubic graphs with at most 10 vertices are characterized by
their alliance polynomials. Furthermore, in [5] the authors prove a similar
result for the family of alliance polynomials of A-regular connected graphs
with A < 5, i.e., it does not contain alliance polynomials of graphs which
are not connected A-regular.

—<— N

Iy

Figure 2: Graphs with same characteristic polynomial.

We denote by G10G2 and G ® G, the Cartesian and the strong prod-
ucts of Gy and Gq, respectively.

Proposition 4.1. For the graphs T';, i = 1,...,6, from Figures 1, 2, 3 and
for Py, Kl,s, Ps, P,w(Cs, K3'3, P,0C3, P,® P; and E> + Py we have

(1) p(Ts;7) = p(Ta; x) but A(T3;z) # A(T4; 7).
(2) m(Pyw Cs;z) = m(Ps;z) but A(Pa W Cs;z) # A(Ps; ).

181



1"5 FS

Figure 3: Graphs with same bivariate chromatic polynomial.

(3) I(P R P3;z) = I(E2 + Py; x) but A(P2 R P3;x) #£ A(E2 + Py; ).
(4) D(K33;z) = D(P.0C3;x) but A(K33; 1) # A(P,0Cs; x).

(8) P(T's;z,y) = P(Te; x,y) but A(T's; z) # A(Ts; z).

(6) T(Pa;z,y) = T(Ki,3;7,y) but A(Ps;z) # A(Ky,3:2).

(7) QT1;2,y) = QT2 7,y) but A(T'y;z) # A(T'2; ).

Proof. Proposition 2.3 v) gives that A(T's;z), A(P>» B P3;z) and A(T's; x)
are symmetric polynomials, but A(T'y;z), A(Es + Py;z) and A(Ts; ) are
not symmetric; then A(Ts;x) # A(Ty;x), A(P ® P3;2) # A(Eq + Py;x)
and A(T's;z) # A(Ts;z). Besides, by Theorem 3.3 we have that Py and
Py are characterized by their alliance polynomials, and so, A(P, WC3; ) #
A(Ps; z) and A(Py;x) # A(K,3;z). Furthermore, by [22, Proposition 3.1]
we have A(K3 3;z) # A(P20C3;x). Besides, A(T'y;z) # A(T'2;z) (see the
beginning of Section 3). A simple computation gives p(I's; z) = p(T's; z),
m(Po W C3;2) = m(Ps; ), I(P, B Ps;z) = I(E2 + Py;z) and D(K3z3;2) =
D(P,0Cs3;z). So, items (1), (2), (3) and (4) hold. Item (5) follows from
[6]. Since Tutte polynomial does not distinguish trees of the same size, we
deduce item (6). Finally, Q(I'1;z,y) = Q(I'2;z,y) follows from [27], and

we have item (7).

Figure 4: Graphs with same alliance polynomial.
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Remark 4.2. Figure 4 shows two non-isomorphic graphs with the same
polynomial alliance. However, these two graphs are distinguished by the
matching and independence polynomial.
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