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Abstract

The well known Mantel’s Theorem states that a graph on = ver-
tices and m edges contains a triangle if m > "42 . Nosal proved that
every graph on m edges contains a triangle if the spectral radius
A1 > /m, which is a spectral analog of Mantel’s Theorem. Further-
more, by using Motzkin-Straus Inequality, Nikiforov sharped Nosal's
result and characterized the extremal graphs when the equality holds.
Our first contribution in this note is to give two new proofs of the
spectral concise Mantel's Theorem due to Nikiforov (without help
of Motzkin-Straus Inequality). Nikiforov also obtained some results
concerning the existence of consecutive cycles and spectral radius.
Second, we prove a theorem concerning the existence of consecutive
even cycles and spectral radius, which slightly improves a result of
Nikiforov. At last, we focus on spectral radius inequalities. Hong
proved his famous bound for spectral radius. Later, Hong, Shu and
Fang generalized Hong's bound to connected graphs with given min-
imum degree. By using quite different technique, Nikiforov proved
Hong ct al.’s bound for general graphs independently. In this note,
we prove a new spectral inequality by applying the technique of Niki-
forov. QOur result extends Stanley’s spectral inequality.

Keywords: Triangles, Mantel’s Theorem, Spectral radius, Consec-
utive cycles, Consecutive even cycles, Stanley’s spectral inequality

1 Introduction

Throughout this note, we only consider graphs which are simple, undirected
and finite. We refer the reader to [3] for terminology and notation not
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defined here.

Let G be a graph on n vertices, V(G) and E(G) denote the vertex set
and edge set of G, respectively. For a vertex v € V(G), the neighbor set of
v in G. denoted N(v), is the set of vertices which are neighbors of v in G.
We denote N[v] = N(v) U {v}. Let § and d be the minimum degree and
average degree of G, respectively. The adjacency matriz of G, denoted by
A(G) (or A for simple}, is a matrix A such that the ij-entry a;; = 1if »; is
adjacent to v; and a;; = 0 otherwise. Since A is a symmetric (0, 1)-matrix,
all the eigenvalues of A are real. The eigenvalues of a graph G are all the
cigenvalues of its adjacency matrix. Let Ay > A2 > ... > A, be all the
cigenvalues of G. In the following, A; is always called the spectral radius of
G.

The main results of this note are closely related to three past papers
due to Nikiforov {13, 14, 15]. We first give two new proofs of a previous
theorem on the existence of triangles and spectral radius of graphs due to
Nikiforov. Second, we give a new result concerning consecutive even cycles
and spectral radius, which slightly improves a result of Nikiforov. At last,
by applying a previous technique of Nikiforov, we give a new spectral radius
inequality which extends Stanley’s spectral inequality.

2 Spectral radius

2.1 Triangles and spectral radius

In extremal graph theory, Mantel’s Theorem may be a fundamental one. It
is a starting point of the famous Turdn’s Theorem and has many structural
proofs. We refer the reader to (5], where three brief and beautiful ones can
be found.

Theorem 1. Let GG be o graph on n vertices and m edges. If m > ’::,. then
G contains o triangle.

In 1970, Nosal [16] proved an analogue of Mantel’s Theorem in spectral
graph theory.

Theorem 2 (Nosal [16]). Let G be a graph on m edges and A\ be the
spectral radius of G. If Ay > /m, then G contains a triangle.

Proving a conjecture of Edwards and Elphick [7], Nikiforov {13] obtained
a spectral concise Turan’s Theorem which generalizes Nosal’s theorem [16].
One important technique in Nikiforov’s proof is to use Motzkin-Straus In-
equality [12], and its power and close connection with extremal problems
in spectral graph theory was firstly noticed by Wilf [18]. In [15], Nikiforov
characterized all the extremal cases.

We list the part (i) of [15, Theorem 2] as follows.
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Theorem 3 (Nikiforov [15]). Let G be a graph on m edges and Ay be the
spectral radius of G. If Ay > \/m. then G contains a triangle unless G is a
complete bipartite qraph with possible some isolated vertices.

Since A; is at least the average degree of G, one can deduce Mantel’s
Theorem from Theorem 3. Furthermore, to prove Theorem 3, we only need
prove the following theorem.

Theorem 4 (Nikiforov [15]). Let G be a connected graph on m edges and
M be the spectral radius of G. If \y = /m, then G contains a triangle
unless G is a complete bipartite graph.

The direct motivation of this subsection is to give two new proofs of
Theorem 4 (without help of Motzkin-Straus Inequality).
To give the first proof, the following two lemmas are needed.

Lemma 1. [{, p.38] A graph G is bipartite if and only if for cach eigenvalue
A of G, =X is also an eigenvalue, with the samne multiplicity.

Lemma 2. [{, p.5] Let G be a connected graph with diameter d. Then G
has at least d + 1 distinect eigenvalues.

The first new proof of Theorem 4.
Let Ay > A2 > ..., be the eigenvalues of G. By the well known fact

(see [6. p.85])
2m = M2+ 0%+ ..+ 2,2
and the inial condition
A 2 Vm,
we can deduce

A2 > A+ 0 (1)

Let ¢(G) be the number of triangles in G. It is known (see [6, p.85])

/\]3 + ,\23 +... +A”3
6 .

By putting incequality (1) into (2), we can obtain

tG) = (2)

2 2 3 3
HC) > A1 (A2 +...+,\n;+/\2 +.o4 A

CRE A FA) AP A) F L+ A+ A
= : )
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Note that Ay + A2 + A3 + ... + A, = 0. By the famous Perron-Frobenius
theorem, |[A;| < A; for i =2,3,...,n (since G is connected). Thus t(G) =0
if and only if

MM+ M) =0 (3)

fori=2.3,...,n.

Now assume that A\;2(A\y + X)) = 0 for ¢ = 2,3,...,n. If \; = 0 for
all i = 2,3,...,n, then by the trace condition on the adjacency matrix,
A1 = 0, and this implies that G is empty, a contradiction. Thus there exists
an integer j € {2,3,...,n}. such that A; # 0, and this implies A; = —A,.
By Lemma 1, G is bipartite. Since G has only three distinct eigenvalues
when #(G) = 0, by Lemma 2, the diameter of G is at most two. However,
if G is not a complete bipartite graph, then the diameter of G is at least
three, a contradiction. Thus G is a complete hipartite graph.

The proof is complete. 0

To give the second proof of Theorem 4, the following lemma is needed.

Lemma 3. [9, p.203] Let G be a graph with the vertex set V. Then

A< \/max{ S dw):veV)

ueN(x)

If G is connected, then the equality holds if and only if G is regular or
bipartite semi-regular.

The second new proof of Theorem 4.
Assume that G contains no triangle. Thus, for any vertex v € V(G),
SweN(m d(u) = e(N(v), V(G)\N(v)). This implies that

> d(u) <m. (4)

u€N(v)

Suppose that the vertex vo satiesfies 3_, ¢ v (,,) A1) = max{}_ ¢ n(,) d(u) :
v € V}. By Lemma 3 and the incquality (4), we have

Yo dwsvmshs [ Y dw). (5)

ue N(vy) u€N (vo)
Thus all inequalities in (5) become equalities. By Lemma 3, G is regular
or bipartite semi-regular. If G is k-regular, then A} =k = \/ "'2". It follows

that k = n/2. Since G contains no triangles, G = K,, /3 ,,/2. If G is hipartite
semi-regular, then assume that G = G[A, B}, where A and B are two parts
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with |A| = ¢ and |B| = b. Assume that the degree of every vertex in A is
r and the degree of every vertex in B is s. Obviously, r < b and s < «.
W.lLo.g., assume that vo € A. Then }_, c y(,,) @(u) = 7s, and this implies
that mn = rs by (5). On the other hand, we have m = ra = sb, and it
follows that »» = b and s = a. Thus G is a complete bipartite graph.

The proof is complete. d

2.2 Consecutive even cycles and spectral radius

Nikiforov {14] proved the following theorem, which contributes to spectral
extremal graph theory.

Theorem 5 (Nikiforov [14]). Let G be a graph of sufficiently large order
n with Ay > \/|n2/4]. Then C; C G for every 3 <1 < n/320.

The following is a direct corollary.

Theorem 6 (Nikiforov [14]). Let G be a graph of sufficiently large order
n with Ay > \/|n?/4|. Then C; C G for every even 4 <1 < n/320.

By using some spectral inequality and results from structural graph
theory, we prove a theorem which slightly improves Theorem 6.

Theorem 7. Let G be a graph of sufficiently large order n with Ay >
Vv (n%/4]. Then C) C G for every even 4 <1 < [5].

To give the proof, the following four lemmas are needed.
Lemma 4 (Stanley [17]). Let G be a graph on n vertices and m edges.
Then A\ < -—gl, +4/2m+ 21__

Lemma 5 (Erdos [8]). Let G be a graph and d be its average degree. If
d > 2k, where k is a positive integer, then G contains an induced subgraph
with minimum degree at least k + 1.

Lemma 6 (Bondy [2]). Let G be a graph on n vertices and § > n/2 be the
minimum degree. Then C; C G for 3 <1< n.

Lemma 7 (Allen et al. [1]). Let G be a graph on n vertices and § > n/k
be the minimum degree. where k be an integer. If n > ng = O(k?°). then
C) C G for every even 4 <1 < [k—f—l-]

Proof of Theorem 7. By Lemma 4, A; < =3 + {/2m + 1. By the inial
condition of Theoremn 7, Ay > \/[n2/4]. Hence 2m > n2/4+ ,/ [%,ij -1>

lf,i and d(G) = ¢ > 2 By Lemma 5, there is an induced subgraph H
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of G, such that §(H) > §. Let n’ be the order of H. If n’ < %, then by
Lemma 6, H contains cycles of lengths 3 to %, and there is nothing to do.
Now assume that »’ > 4, and we have §(H) > %’ By setting £ = 8 in
Lemma 7, we know that H contains C, for every even 4 < ! < [97-’-] It
follows that H contains C) for everyeven4 <! < [%1, and thus G contains
the corresponding cycles. The proof is complete. O

2.3 An extension of a spectral inequality of Stanley

The bounds of spectral radius of graphs have received much attentions from
spectral graph theorists. The following is Hong’s famous bound.

Theorem 8 (Hong [10}). Let G be a graph on m edges and n vertices, and
without isolated vertices. Then A} < V2m—n+1.

Hong, Shu and Fang [11] generalized Theorem 8 to a connected graph
with a given minimum degree. They also characterize the extremal graphs
when the equality holds.

Theorem 9 (Hong, Shu and Fang [11]). Let G be a connected graph on n
vertices and m edges and let § be the minimum degree of G. Then A <

d;l + \/ 2m —né + (6:]) : Equality holds if and only if G is either a regular
graph or a bidegreed graph in which each vertex is of degree either § or n—1.

Nikiforv [13] proved the above inequality for a general graph indepen-
dently by a quite different method.

Theorem 10 (Nikiforov (13]). Let G be a graph on n vertices and m edges
and let § be the minimum degree of G. Then A\ < 5;‘ +\/ 2m — né + (6':“2.

Nikiforov’s proof technique is based on the inequality of the number of
walks of graphs. Furthermore, Nikiforov found that there arc more general
graph classes when the equality holds in Theorem 10, as shown in {13, 19].
On the other hand, Hong ct al.’s result can he used to characterize all
the extremal graphs when the equality holds in Theorem 10 (for general
graphs), as shown by Zhou and Cho [19] .

By applying Nikiforov’s technique (See the proof of Theorem 4.1 in
[13]), we extend a spectral inequality of Stanley (See Lemma 4 in Subsec.
2.2).

Theorem 11. Let G be a graph with the vertex set V, where |V| = n.
Then
A < ;(—1 + \/1 + 4 max{ Z d(u) :veV}). (6)
u€N|[v]
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Proof. The technique used here is originally introduced by Nikiforov [13].
Let wy, be the number of walks of length k in G. Let wi(2) be the number
of walks of length k& starting at the vertex v;. Note that the number of
walks of length k starting at i and ending at ¢ are the same. Then

wy = Z wr—2()wa(i)

v, eV

Zwk_g(i) Z d(vy)

v, €V jeN(”A)

D wea()( Y d(v;) —d(ws)

v, €V JEN|ui]

< S wip(iymax{ Y d(u):veV}—wpy
v €V u€N|v)
= max{ Z d(u):v €V} -wy_o — wi—1.
u€EN[v)

This implies that

Wg We-1
— 4+ —— —max diu):veV}<O0. 7
e {.gv:[v, (w):veV} (7)

Let A > --- > A, be all the eigenvalues of G. Recall that the expression

of wy. is given by
n
Z k
W = C,j)\i 3
i=1

where ¢;'s are nonnegative real numbers (see [6, p. 44, Theorem 1.10}). If
[An] < Ay, then the modulus of any negative eigenvalue of G is less than A;.

By simple computation, we have lim -2 = A? and lim ==L = ).
k—oc Wk-2 k—roc k-2

Let k tend infinitely in inequality (7), we have the inequality

AP+ A —max{ Y du):veV}<O. (8)
uEN[v]

Now assume that A, = —A;. W.l.o.g., assume that there are some integers
rssuchthat Ay = ... = A 2> Ag1 2 - A1 2 As-- = Ay = —Aq. Set
a=3_,cand b= 3"  c¢;. Now we show that @ > b. (Compared with
the clue given in the proof of Theorem 4.1 in (13}, we will include the reason
why a # b here.) If a < b, then noting that kh_lznw ;‘%l’ﬁ%, =a—-b<0, we

know that war4; will be negative if & is sufficiently large, a contradiction. If
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- 2k
a = b, then wo = 2a\** + Z,_r_,_] cihi®* and wory = Z:-‘r-{»l 0% VL

Thus we have lim "2*'' = 0, a contradiction to the easy observatnon
. —3 00 2k
that wory) > wor. Hence we deduce that a > b. It is easy to check that

lim = M\2% and Llim k= "*"/\1 > A1. Replacing the subscript
v —>

Wy-2 o W2k -

k in incquality (7) by 2k + 1 and letting & tend infinitely, we obtain the
inequality (8). Solving the equatlon, we obtain the inequality (6). The
proof is complete.

Remark 1. Since max{3}_, ey @(u) : v € V} < 2m, Theorem 11 can
imply Stanley’s spectral mequahty

Acknowledgements. The author is particularly grateful to the anony-
mous referee for his/her careful reading the manuscript and many invalu-
able suggestions.

References

(1) P.Allen, J. Béttcher, J. Hladky, O. Cooley, Minimum degree condi-
tions for large subgraphs, Electronic Notes in Discrete Mathematics
34 (2009). 75-79.

(2] J.A. Bondy, Pancyclic graphs I, J. Combin. Theory Ser. B 11 (1971),
80-84.

(3] J.A. Bondy, U.S.R. Murty. Graph Theory, in: GTM, vol. 244,
Springer, 2008.

[4] A.E. Brouwer, W.H. Haemers, Spectra of Graphs, Springer, 2011.

[5) D. Conlon, Extremal graph theory: Lecture 1, available at
https://www.dpmms.cam.ac.uk/ dc340/EGT1.pdf.

[6) D.M. Cvetkovi¢. M. Doob, H. Sachs, Spectra of Graphs, VEB
Deutscher Verlag der Wissenschaften, Berlin, 1980.

[7] C.Edwards, C. Elphich. Lower bounds for the clique and the chromatic
number of a graph, Discrete Appl. Math. 5 (1983), 51-64.

(8] P. Erdés, On an extremal problem in graph theory. Collog. Math. 13
(1964/1965) 251-254.

[9] O. Favaron, M. Mahpeo, J.-F. Saclpe, Some eigenvalue properties in
graphs (conjectures of Graffiti-II), Discrete Math. 111 (1993), 197-
220.

194



[10] Y. Hong, Bounds of eigenvalues of graphs, Discrete Math. 123 (1993),
65--74.

[11] Y. Hong, J. Shu, K. Fang, A sharp upper hound of the spectral radius
of graphs, J. Combin. Theory Ser. B 81 (2001), no. 2, 177-183.

(12] T. Motzkin, E. Straus, Maxima for graphs and a new proof of a theo-
rem of Turdn, Canad. J. Math. 17 (1965), 533- 540.

[13] V. Nikiforov, Some incqualities for the largest eigenvaluc of a graph,
Combin. Probab. Comput. 11 (2002), 179-189.

[14] V. Nikiforov, A spectral condition for odd cycles, Linear Algebra Appl.
428 (2008), no. 7, 1492-1498.

[15] V. Nikiforov, More spectral bounds on the clique and independence
numbers, J. Combin. Theory, Ser. B 99 (2009), 819-826.

(16] E. Nosal, Eigenvalues of Graphs, Master Thesis, University of Calgary,
1970.

[17] R. Stanley, A bound on the spectral radius of graphs with e edges,
Linear Algebra Appl. 87 (1987), 267-269.

[18] H. Wilf, Spectral bounds for the clique and independence numbers of
graphs, J. Combin. Theory, Ser. B 40 (1986), 113-117.

[19] B. Zhou, H. H. Cho, Remarks on spectral radius and Laplacian eigen-
values of a graph, Czechoslovak Math. J. 55 (2005), no. 3, 781--790.

195



