Strong Z_{4p} - Magic labeling

V.L.Stella Arputha Mary¹ S.Navaneethakrishnan² A.Nagarajan³

Department of Mathematics, St.Mary's College, Tuticorin - 628 001.
 Department of Mathematics, V.O.C College, Tuticorin - 628 001.
 Tamil Nadu, India.

Email: ¹ prisstell@yahoo.com, ² snk.voc@gmail.com and ³ nagarajan.voc@gmail.com

Abstract

For any non-trivial abelian group A under addition, a graph G is said to be strong A-magic if there exists a labeling f of the edges of G with non zero elements of A such that the vertex labeling f^+ defined as $f^+(v) = \sum f(uv)$ taken over all edges uv incident at v is a constant [4], and the constant is same for all possible values of |V(G)|. A graph is said to be strong A-magic if it admits strong A-magic labeling. In this paper we consider $(modulo\ Z_4, +)$ as abelian group and we prove strong Z_4 - magic labeling for various graphs and generalize strong Z_{4p} -magic labeling for those graphs. The graphs which admit strong Z_{4p} -magic labeling are called as strong Z_{4p} -magic graphs.

Mathematics Subject Classification 2010:05C78

Keywords: Strong A-magic labeling, strong Z_4 -magic labeling, strong Z_{4p} -magic labeling, strong Z_{4p} - magic graphs.

1 Introduction

By a graph G(V, E) we mean G is a finite, simple, undirected graph. The concept of magic labeling was introduced by Sedlacek in 1963. Kong, Lee and Sun [4] used the term magic labeling for the labeling of edges with non negative integers such that for each vertex v the sum of the labels of all

edges incident at v is same for all v. In particular the edge labels need not be distinct.

For any non-trivial abelian group A under addition a graph G is said to be A-magic if there exists a labeling f of the edges of G with non zero elements of A such that, the vertex labeling f^+ defined as $f^+(v) = \sum f(uv)$ over all edges uv incident at v is a constant. If this constant is same for all the vertices of G, in all possible values of |V(G)|, then it is said to be strong A-magic. Throughout this paper, we choose Z_4 which is additive modulo A as the abelian group and we prove some graphs such as $P_m \times P_n$, $C_m \times C_n$, MT(m,n) and $S'(C_n)$ are strong Z_4 -magic graphs. At the end, we prove that they are all strong Z_{4p} -magic graphs. Throughout this paper by a path P_n , we mean it is a path of length n-1, and by C_n , we mean it is a cycle of length n.

2 Main Results

Definition 2.1. The cross product $G_1 \times G_2$ has its vertex set $V_1 \times V_2$ and two points $u = (u_1, u_2)$ and $v = (v_1, v_2)$ are adjacent in $G_1 \times G_2$ whenever $u_1 = v_1$ and u_2 adjacent to v_2 or $u_2 = v_2$ and u_1 adjacent to v_1 .

Definition 2.2. The product $P_m \times P_n$ is called a planner grid.

Example 2.3.

Fig.1 $P_4 \times P_3$

Theorem 2.4. $P_m \times P_n$ is strong Z_4 -magic for $n \geq 2$ and $m \geq 2$.

Proof. Let (1,1)(1,2)...(1,m); (2,1)(2,2)...(2,m); ...(n,1)(n,2)...(n,m) be the mn vertices of the grid.

Let (i, j) be the vertex where i denotes the row (counted from the bottom to the top) and j denotes the column (counted from left to right).

It has mn vertices and (m(n-1) + n(m-1)) edges.

Let $f: E(P_m \times P_n) \to Z_4 - \{0\}$ be defined as For a fixed i = 1 and n

$$f((i,j)(i,j+1)) = 1$$
 for $j = 1, 2, ..., (m-1)$
For fixed $j = 1$ and m

$$f((i,j)(i+1,j)) = 3$$
 for $i = 1, 2, ..., (n-1)$
For a fixed $i = 2, 3, ..., (n-1)$

$$f(i,j)(i,j+1) = 2$$
, for $j = 1, 2, ..., (m-1)$
and for a fixed $j = 2, 3, ..., (m-1)$

$$f(i,j)(i+1,j)=2$$
 for $i=1,2,...,(n-1)$
Now $f^+:V(P_m\times P_n)\to Z_4$
It is easy to check that $f^+(i,j)=0\pmod 4, 1\leq i\leq n, 1\leq j\leq m$
For example

$$f^+(1,1) = f((1,1)(1,2)) + f((1,1)(2,1))$$

Hence, $f^+(v)=0$ for all vertices of $P_m\times P_n, m\geq 2$ and $n\geq 2$. Here, the magic constant is 0 for all possible values of m,n of $P_m\times P_n$. Hence, $P_m\times P_n$ is strong Z_4 -magic. $m\geq 2$ and $n\geq 2$.

 \equiv $(1+3) \ (mod \ 4) = 0.$

Example 2.5. Strong Z_4 -magic labelings are shown for $P_5 \times P_3$ and $P_3 \times P_6$.

Fig. 2 $P_5 \times P_3$

Fig. 3 $P_3 \times P_6$

Definition 2.6. The product $C_m \times C_n$ is called a grid on cylinder.

Theorem 2.7. $C_m \times C_n$ is strong Z_4 -magic for $m \geq 3$ and $n \geq 3$.

$$\begin{split} & \textit{Proof. Let } G \text{ be } C_m \times C_n \text{ graph.} \\ & \text{Then } V(G) = \left\{ u_i^{(j)} | 1 \leq i \leq m \text{ and } 1 \leq j \leq n \right\} \\ & E(G) = \left\{ u_i^{(j)} u_{i+1}^{(j)} | 1 \leq i \leq m-1 \text{ and } 1 \leq j \leq n \right\} \cup \\ & \left\{ u_i^{(j)} u_i^{(j+1)} | 1 \leq j \leq n-1 \text{ and } 1 \leq i \leq m \right\} \cup \left\{ u_i^{(n)} u_i^{(1)} | 1 \leq i \leq m \right\} \end{split}$$

case 1 m is even and $n \ge 3$

Let $f: E(G) \to Z_4 - \{0\}$ be defined as

$$\begin{array}{lll} f\left(u_{2i-1}^{(j)}u_{2i}^{j}\right) & = & 3, & 1 \leq i \leq m/2 \text{ and } 1 \leq j \leq n \\ \\ f\left(u_{2i}^{(j)}u_{2i+1}^{(j)}\right) & = & 1, & 1 \leq i \leq m/2 \; (u_{n+1}=u_1) \text{ and } 1 \leq j \leq n \\ \\ f\left(u_{i}^{(j)}u_{i}^{(j+1)}\right) & = & 1, & 1 \leq i \leq m \text{ and } 1 \leq j \leq n \; \left(u_{i}^{(n+1)}=u_{i}^{(1)}\right) \end{array}$$

Now $f^+:V(G)\to Z_4$ By definition

$$\begin{array}{ll} f^+\left(u_i^{(j)}\right) & = & f\left(u_{i-1}^{(j)}u_i^{(j)}\right) + f\left(u_i^{(j)}u_{i+1}^{(j)}\right) + f\left(u_i^{(j)}u_i^{(j+1)}\right) + f\left(u_i^{(j-1)}u_i^{(j)}\right), \\ & 1 \leq i \leq m \text{ and } 1 \leq j \leq n \quad \left(u_i^{(0)} = u_i^{(n)} \text{ and } u_0^{(j)} = u_n^{(j)}\right) \\ f^+\left(u_i^{(j)}\right) & = & (3+1+1+1) \; (mod \; 4) \equiv 6 \; (mod \; 4) \\ & = & 2, \; 1 < i \leq m \; \text{and} \; 1 \leq j \leq n \end{array}$$

case 2 m is odd, $n \ge 3$.

Let $f: E(G) \to Z_4 - \{0\}$ be defined as $f\left(u_i^{(j)}u_{i+1}^{(j)}\right) = 2$, $1 \le i \le m$ and $1 \le j \le n$. $\left(u_{m+1}^{(j)} = u_1^{(j)}\right)$ $f\left(u_i^{(j)}u_i^{(j+1)}\right) = 1$, $1 \le i \le m$ and $1 \le j \le n$. $\left(u_i^{(n+1)} = u_i^{(1)}\right)$ $f^+: V(G) \to Z_4$ We get

$$\begin{array}{ll} f^+\left(u_i^{(j)}\right) & = & f\left(u_{i-1}^{(j)}u_i^{(j)}\right) + f\left(u_i^{(j)}u_{i+1}^{(j)}\right) + f\left(u_i^{(j)}u_i^{(j+1)}\right) + f\left(u_i^{(j-1)}u_i^{(j)}\right) \\ f^+\left(u_i^{(j)}\right) & \equiv & (2+2+1+1) \; (mod \; 4) \equiv 6 \; (mod \; 4) \\ & = & 2, \; \; 1 \leq i \leq m \; \; \text{and} \; \; 1 \leq j \leq n. \end{array}$$

In both the cases $f^+(v)$ is the same constant $\forall v \in V(G)$ and the magic constant is 2 for all possible values of m, n. Therefore $C_m \times C_n$ is strong Z_4 - magic graph.

Example 2.8. Strong Z_4 - magic labelings with magic constant 2 are shown for the graphs $C_6 \times C_3$ and $C_5 \times C_4$.

Fig. 5 $C_5 \times C_4$

Definition 2.9. [5] Mongolian tent is a graph obtained from $P_m \times P_n$ by adding one extra vertex u above the grid and joining every vertex of the top row of $P_m \times P_n$ to the new vertex u. It is denoted as MT(m,n).

Example 2.10. The Mongolian tent of MT(5,3) is shown below.

Theorem 2.11. Mongolian tent graph is strong Z_4 -magic for $m \ge 2$ and $n \ge 2$

Proof. Let G be MT(m,n).

Let |V(G)| = mn + 1, |E(G)| = 2mn - n

```
As in the plannar graph, here each vertex is represented as (i, j) where i
denotes the row (counted from the bottom to the top) and j denotes the
column (counted from left to right).
   The roof vertex is denoted as u.
Case 1 m be even and n \ge 2
Let f: E(G) \to Z_4 - \{0\} be defined as
For a fixed i = 1
f[(i,j)(i,j+1)] = 3, for j = 1, 2, ..., (m-1)
For a fixed i = n
f[(i,j)(i,j+1)] = 1, for j = 1, 3, ..., (m-1)
f[(i,j)(i,j+1)] = 3, for j = 2,4,6,...(m-2)
For a fixed j = 1 and m
f[(i,j)(i+1,j)] = 1, i = 1,2,3,...,(n-1)
For j = 2, 3, ..., (m-1)
f[(i,j)(i+1,j)] = 2, 1 \le i \le (n-1)
For i = 2, 3, ..., (n-1)
f[(i,j)(i,j+1)] = 2, \ 1 \le j \le (m-1)
f[(u)(n,j)] = 2, \ 1 \le j \le m.
Now, f^+:V(G)\to Z_4.
          f^+(1,1) = f[(1,1)(1,2)] + f[(1,1)(2,1)]
                    \equiv (3+1) \pmod{4}
                    = 0
similarly f^+(1,m) \equiv (3+1) \pmod{4}
                    = 0
          f^+(n,1) = f[((n-1),1)(n,1)] + f[(n,1)(n,2)] + f[(u)(n,1)]
                    \equiv (1+1+2) \pmod{4}
         f^+(n,m) = f[(n-1,m)(n,m)] + f[(n,m-1)(n,m)]
                       +f[(u)(n,m)]
                    \equiv (1+1+2) \pmod{4}
```

= 0

For a fixed
$$j = 2, 3, ..., (m-1)$$

$$f^{+}(i,j) = [(i-1,j)(i,j)] + f[(i,j)(i+1,j)] + f[(i,j)(i,j+1)]$$

$$+f[(i,j-1)(i,j)]$$

$$\equiv (2+2+2+2) \pmod{4}$$

$$= 0, 2 \le i \le n-1$$

$$f^{+}(1,j) = f[(1,j-1)(1,j)] + f[(1,j)(1,j+1)] + f[(1,j)(2,j)]$$

$$\equiv (3+3+2) \pmod{4}$$

$$= 0, 2 \le j \le m-1$$

$$f^{+}(i,1) = f[(i,1)(i,2)] + f[(i-1,1)(i,1)] + f[(i,1)(i+1,1)]$$

$$\equiv (2+1+1) \pmod{4}$$

$$= 0, 2 \le i \le n-1$$
similarly $f^{+}(i,m) = f[(i,m)(i+1,m)] + f[(i-1,m)(i,m)]$

$$+f[(i,m-1)(i,m)]$$

$$\equiv (1+1+2) \pmod{4}$$

$$= 0, 2 \le i \le n-1$$

$$f^{+}(n,j) = f[(n,j)(n,j-1)] + f[(n,j)(n,j+1)]$$

$$+f[(n-1,j)(n,j)] + f[(u)(n,j)]$$

$$\equiv (1+3+2+2) \pmod{4}$$

$$= 0, 2 \le j \le m-1$$

$$f^{+}(u) = \sum_{j=1}^{m} f[(u)(n,j)]$$

$$\equiv (2+2+...+2) \pmod{4}$$

$$\equiv (m \ times \ 2) \pmod{4}$$

$$= 0$$

Hence,
$$f^+(v)$$
 is constant for all $v \in G$
Case 2 m is odd and $n \ge 2$.
Let $f: E(G) \to Z_4 - \{0\}$ be defined as
For $i = 1$
 $f[(i,j)(i,j+1)] = 3, \quad 1 \le j \le m-1$
For $i = n$
 $f[(i,j)(i,j+1)] = 2, \quad 1 \le j \le m-1$
For $j = 1$ and m
 $f[(i,j)(i+1,j)] = 1, \quad 1 \le i \le n-1$
For a fixed $j = 2, 3, ..., (m-1)$
 $f[(i,j)(i+1,j)] = 2, \quad 1 \le i \le n-1$

For a fixed
$$i=2,3,...,(n-1)$$
 $f[(i,j)(i,j+1)]=2, 1 \le j \le m-1$ $f[(u)(n,1)]=1=f[(u)(n,m)]$ $f[(u)(n,j)]=2, 2 \le j \le m-1$ Now, $f^+:V(G) \to Z_4$
$$f^+(1,1)=f[(1,1)(1,2)]+f[(2,1)(1,1)]$$
 $\equiv (3+1) \pmod 4$ $= 0$ Similarly $f^+(1,m)\equiv (3+1) \pmod 4=0$
$$f^+(n,1)=f[(n-1,1)(n,1)]+f[(n,1)(n,2)]+f[(u)(n,1)]$$
 $\equiv (1+2+1) \pmod 4=0$
$$f^+(n,m)=f[(n-1),m)(n,m)]+f(n,m-1)(n,m)]+f[(u)(n,m)]$$
 $\equiv (1+2+1) \pmod 4=0$ For a fixed $j=2,3,...,(m-1)$
$$f^+(i,j)=f[(i-1,j)(i,j)]+f[(i,j)(i+1,j)]+f[(i,j)(i,j+1)]+f[(i,j-1)(i,j)]$$
 $\equiv (2+2+2+2) \pmod 4$ $= 0, 2 \le i \le n-1$
$$f^+(1,j)=f[(1,j-1)(1,j)]+f[(1,j)(1,j+1)]+f[(2,j)(1,j)]$$
 $\equiv (3+3+2) \pmod 4$ $= 0, 2 \le j \le m-1$
$$f^+(i,1)=f[(i,1)(i,2)]+f[(i-1,1)(i,1)]+f[(i,1)(i+1,1)]$$
 $\equiv (2+1+1) \pmod 4$ $= 0, 2 \le i \le n-1$ Similarly $f^+(i,m)=f[(i,m)(i+1,m)]+f[(i-1,m)(i,m)]+f[(i,m-1)(i,m)]$ $\equiv (1+1+2) \pmod 4$ $= 0, 2 \le i \le n-1$
$$f^+(n,j)=f[(n,j-1)(n,j)]+f[(n,j)(n,j+1)]+f[(n-1,j)(n,j)]+f[(n-1,j)($$

$$f^{+}(u) = \sum_{j=1}^{m} f[(u)(n, j)]$$

$$\equiv (1 + (m-2) \text{ times } 2 + 1) \text{ (mod 4)}$$

$$= 0 \text{ (mod 4)} = 0$$

In both the cases $f^+(v)$, $\forall v \in V(G)$ is the same constant and the magic constant is 0 here. Therefore the mongolian tent graph is strong \mathbb{Z}_4 -magic.

Example 2.12. Strong \mathbb{Z}_4 -magic labelings of MT(6,5) and M(7,4) are shown below.

Fig. 7 Strong Z_4 - magic labeling of MT(6,5)

Fig. 8 Strong Z_4 - magic labeling of MT(7,4)

Definition 2.13. Let G be a graph. For each point v of a graph G, take a new vertex v'. Join v' to those points of G which are adjacent to v. The graph, thus obtained is called the splitting graph of G. It is denoted as S'(G).

Theorem 2.14. $S'(C_n)$ is strong Z_4 -magic for $n \geq 3$.

Proof. Let
$$V(S'(c_n)) = \{v_i | 1 \le i \le n\} \cup \{v_i' | 1 \le i \le n\}$$
 and $E(S'(C_n)) = \{v_i v_{i+1} | 1 \le i \le n\} \cup \{v_{i-1} v_i' | 1 \le i \le n\} \cup \{v_i' v_{i+1} | 1 \le i \le n\}$ [$v_{n+1} = v_1$ and $v_0 = v_n$]

Let $f: E(S'(C_n)) \to Z_4 - \{0\}$ be defined as $f(v_i v_{i+1}) = 2, \quad 1 \le i \le n$
 $f(v_{i-1} v_i') = 1 \text{ and } f(v_i' v_{i+1}) = 1, \quad 1 \le i \le n$

Now, $f^+: V(S'(C_n)) \to Z_4$

$$f^+(v_i) = f(v_{i-1} v_i) + f(v_i v_{i+1}) + f(v_{i-1}' v_i) + f(v_i v_{i+1}')$$
 $\equiv (2 + 2 + 1 + 1) \pmod{4}, \quad 1 \le i \le n$
 $\equiv (6 \mod 4)$
 $= 2, \quad 1 \le i \le n$

$$f^{+}(v'_{i}) = f(v_{i-1}v'_{i}) + f(v'_{i}v_{i+1})$$

$$\equiv (1+1) \pmod{4} \quad 1 \le i \le n$$

$$= 2$$

Hence, $f^+(v)$, is constant for all $v \in V(S'(C_n))$ clearly. Hence, $S'(C_n)$ admits strong Z_4 -magic labeling and therefore $S'(C_n)$ is strong Z_4 -magic graph.

Example 2.15. Strong Z_4 -magic labelings of $S'(C_5)$ and $S'(C_8)$ are shown below.

Fig. 9 Strong Z_4 - magic labeling of $S'(C_5)$

Fig. 10 Strong Z_4 - magic labeling of $S'(C_8)$

Observation 2.16. In all the above theorems, if we multiply the edge labeling by a positive integer p, the vertex labeling remains to be a constant and this magic constant is equal to p times the original magic constant value we obtained. Hence all the above graphs admit strong Z_{4p} -magic labeling. Hence the graphs $P_m \times P_n$, $C_m \times C_n$, MT(m,n) and $S'(C_n)$ are all strong Z_{4p} -magic graphs.

References

- [1] S.Amutha, The existence and construction of certain types of labeling for graphs. Ph.D. Thesis, Madurai Kamaraj University, 2006.
- [2] J.A.Galian, A dynamic survey graph labeling, Electronic journal of Combinatorics, 17 (2010) DS6.
- [3] S.R.Kim and J.Y.Park, On Super edge-magic graphs. Ars combin., 81 (2006) 113-127.

- [4] M.C.Kong, S.M.Lee and H.S.H.Sun, On magic strength of graph, Ars Combin., 45, (1997) 193-200.
- [5] S.M.Lee, K-graceful labeling of Mongolian tents and related graphs. Congr Numer 50 (1985), 85-96.
- [6] T.Nicholas, Some labeling problem in graph theory, Ph.D thesis, Manonmaniam Sundaranar University, 2001.
- [7] V.L.Stella Arputha Mary, S.Navaneetha Krishnan and A.Nagarajan, Z_{4p} -magic labeling for some special graphs. International Journal of Mathematics and Soft Computing, Vol.3 No.3 (2013), 61-70.
- [8] V.L.Stella Arputha Mary, S.Navaneetha Krishnan and A.Nagarajan, Z_{4p} -magic labeling for some more special graphs. International journal of Physical Sciences, Ultra Scientist, Vol.25(2)A, (2013), 319-326.
- [9] V.L.Stella Arputha Mary, S.Navaneetha Krishnan and A.Nagarajan, Near Z_{4p} -magic labeling. International Journal of Mathematical Archive vol. 4 issue 10, (2013), 266-277.