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Abstract

Let s(n, k) = (85) (4) (S22 () /(20 — (). Recently,
Guo confirmed a conjecture of Z.-W. Sun by showing that s(n, k) is
an integer for k=0,1,...,n. Let d = (3n +2)/ged(3n +2,2n — 1).
In this paper, we prove that s(n,k) is a multiple of the odd part of
d for k = 0,1,...,n. Furthermore, if ged(k,n) = 1, then s(n,k) is
also a multiple of n. We also show that the 2-adic order of s(n, k) is
at least the sum of the digits in the binary expansion of 3n.
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1 Introduction

In 2009, Bober [1] determined all cases such that

(a1n)!- - - (agn)!
g < 2

where a, # b for all s,t, > a, =) b; and ged(ay, ... ,ak, b1,. .., bgs1) = 1.

Motivated by some new series for 1/7 and the related congruences on

sums of binomial coefficients, Z.-W. Sun {13] proposed the following inter-

esting conjecture.

Conjecture 1.1. (See [13, Conjecture 4.2]) Forn =0,1,2,..., define

T n 1)(3") > ( Y < ) (322 :;) (o ))'
Then s, € Z for all n.

Later, Sun (14, 15] proved many results on the divisibility of binomial
coefficients. Recently, Guo [5] gave a proof of Conjecture 1.1.
Theorem A. (See [5, Theorem 1.2]) For 0 < k < n, we have

o= () Q) G o) e

For related results, one can refer to [2-4} and [6-11].

In this paper, we improve Theorem A by proving the following theorems.

Theorem 1.1. Let n,k be integers withn > 1 and 0 < k < n, and let d
be the odd part of (3n+2)/ged(2n—1,3n+2). Then s(n,k) =0 (mod d).
Moreover, if ged(n, k) = 1, then s(n,k) =0 (mod dn).

We write p*||n if p*|n and p**! { n, and use v,(n) to denote such k. Let

ap(m) denote the sum of the digits of m in the expansion of m in base p.

Theorem 1.2. Let n,k be integers withn > 1 and 0 < k < n. Then
va(s(n, k)) > aa(3n). Moreover, the equality holds for k =0 and k = n.
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Corollary 1.1. Let n be a positive integer with n £ 4 (mod 7) end n # 2
(mod 8). Then s(n,k) =0 (mod 3n+2) for k=0,1,...,n.

Throughout this paper, for a real number z, |z] denotes the greatest

integer not exceeding = and {z} denotes the fractional part of z.

2 Preliminary lemmas

For the p-adic order of nl, it is well known that
X n

) i) =3 ||
i=1

Now we give some basic lemmas in the following.

Lemma 2.1. (Legendre’s theorem, see [12, pp.22-24].) For any positive

integer n, we have
n—ap(n)

p—1

Lemma 2.2. (See [5, Lemma 2.2].) Let 0 < k < n be integers. Then
(6k)!(6n — 6k)!(2n)! c

(3k)!(3n — 3k)!(3n)!(2k)!(2n — 2k)!(2n — 1)

vp(nl) =

Z.

h.('n, k) =

Lemma 2.3. (See (16, Problem 6, p.30]) Let 6,,0,,...,05 be real numbers.
Then
61+ 602+ +6,) > |61] + |62+ +|6].

Lemma 2.4. Let a,b be positive integers with gcd(a,b) = 1. Then
ald!|(a +b— 1)L

Proof. Since ged(a,b) = 1, it follows that
(a+0b)! <a+b) _ a+b(a+b—1)

alb! a a a—-1

is an integer divisible by a + b. Hence, a!b!|(a + b — 1)!. 0O
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Lemma 2.5. Let x and y be two real numbers. Then

|62] + |6y — 6] + |y] + 2y
> |3z]+ |2z) + (=] + Sy =3z} + |2y — 2x| + |y — =] + [3y] .

Proof. 1t is easy to see that

) |6z + |6y — 6z] > |3z] + [3y — 3z] + |3y),
(3) ly] 2 =] + ly — =],
(4) [2y] = (2] + |2y — 2z]

(Note that (2) also appears in the proof of [5, Lemma 2.4]). Combining the
inequalities (2)-(4), we complete the proof. 0O

Lemma 2.6. Let x be a real number such that {z} > 1/6. Then
[6z] > |z] + [2x] + |3z] + 1.

Lemma 2.7. Let = be a real number such that 0 < {z} < 1/3 or 1/2 <
{z} < 2/3. Then
lz] + |2z = |3z].

Proofs of Lemmas 2.6 and 2.7 are easy and we leave them to the reader.

3 Proof of Theorem 1.1

Let t(n, k) = (2n — 1)s(n, k). Then
(6k)! (6n — 6k)! _nl(2n)!
k1(2k)!(3k)! (n —k)!(2n — 2k)!(3n —3k)! (3n)! °
Let d’ denote the odd part of 3n + 2. Then d = d'/ged(2n — 1,d').
Suppose that d'|t(n, k). By 2n — 1|t(n, k), we have that t(n, k) is divisible
by the least common multiple of d’ and 2n — 1. It follows that
d t(n, k)
ged(2n —1,d")|2n -1’

t(n, k) =

ie, d|s(n,k).
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Hence, in order to prove the first part of Theorem 1.1, it suffices to
prove d'|t(n, k).

Let p"||d’, where p is a prime and r > 1. Then p|3n+2 and p > 5. Now
we shall prove p"|t(n, k), i.e., vp(t(n,k)) > r. Let

o= (3] [2]-[3)-[31
o= [3]+[3)- 5

Then, by (1), we have
o0
vp(t(n,k)) = D (f(k, P') + f(n — k,p') + g(n, p)) .
i=1

By Lemma 2.5, we have f(k,p')+ f(n—k,p")+g(n,p') 2 0foralli > 1.
If f(k,p*) + f(n — k,p*) + g(n,p') > 1 for all i < r, then vp(t(n, k)) > r.

Now we shall prove f(k,p') + f(n — k,p') > 1 and g(n,p*) = 0 for
i=12,...,r.

By p"||3n + 2, we have 3n = —2 (mod p"). Take an integer i €
{1,2,...,7}. Then3n = p*-2 (mod p‘). By Lemma 2.3, we have f(k,p) >
0 and f(n — k,p') > 0. Next we consider the following two cases.

Case 1. p' = 2 (mod 3). It follows that n = (p* ~ 2)/3 (mod p*), and
then {n/p'} < 1/3. By Lemma 2.7, we have g(n,p') = 0.

Now we show that f(k,p') + f(n — k,p*) > 1. Suppose that f(k,p') =
f(n—k,p') = 0. By Lemma 2.6, we have {k/p*} < 1/6 and {(n —k)/p'} <
1/6. Let

k=k (modp’), 0K <p'.

Then

and
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Thus, we have

pi—4 ., P
< < —,
(5) <K<k

Since p' = 2 (mod 3) and p' is odd, it follows that p* = 5 (mod 6).
Thus, there exist no integers in the interval [(p’ — 4)/6,p'/6], which con-
tradicts the equality (5).

Therefore, f(k,p') + f(n — k,p') > 1 in this case.

Case 2. p* =1 (mod 3). It follows that n = (2p* —2)/3 (mod p‘), and
then 1/2 < {n/p‘} < 2/3. By Lemma 2.7, we have g(n,p‘) = 0.

2 (5]
P A B V- B X
it follows that either {k/p'} > 1/6 or {(n—k)/p'} > 1/6. By Lemma 2.6, we
have either f(k,p‘) > 1or f(n—k,p') > 1. Thatis, f(k,p*)+ f(n—k,p*) >
1.
Hence, p"|t(n, k), and so d'|t(n, k). Therefore, s(n,k) =0 (mod d).
If ged(k,n) = 1, then ged(k,n — k) = 1. Noting that
h(n, k)n!
kl(n — k)’

s(n, k) =

by Lemmas 2.2 and 2.4, we have n|s(n, k). Since ged(3n+2,n) = ged(n, 2),
d|3n + 2 and d is odd, it follows that ged(d,n) = 1.

Thus, s(n,k) =0 (mod dn).

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Since
v2((6k)!) = 3k + v2((3k)1),
va((6n — 6Kk)!) = 3n — 3k + va((3n — 3K)1),
(6) va(nl) 2 va(k!) + va((n — k)!)
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and

(7) va((2n)!) 2 va((2K)!) + v2((2n — 2K)1),
we have
va(s(n,k)) = wa((6k)!) + vo((6n — 6k)!) + vo(n!) + vo((2n)!) — va(k!)

—ua((2K)1) — va((3K)) — va((n — k)!) — va((2n — 2k)!)
—3((3n — 3K)1) — va((3n)")

> 3n—w((3n)).

By Lemma 2.1, we have v2((3n)!) = 3n — az(3n).

Hence, v2(s(n, k)) > az(3n). If kK = 0 or k = n, then equalities in (6)
and (7) hold. Thus, vo(s(n,k)) = az(3n).

This completes the proof of Theorem 1.2.

5 Proof of Corollary 1.1

Noting that ged(3n + 2,2n — 1) = ged(n + 3,2n — 1) = ged(n + 3,7) and
n # 4 (mod 7), we have ged(3n +2,2n — 1) = 1. Let 3n + 2 = 2¢n’ with
24{n'. By Theorem 1.1, we obatin n'|s(n, k).

By Theorem 1.2, we have v2(s(n,k)) > a2(3n) > 2. Since n # 2
(mod 8), if follows that 3n + 2 # 0 (mod 8). Hence v2(3n +2) < 2 <
va(s(n, k)). That is, 2¢|s(n, k).

Therefore, s(n,k) =0 (mod 3n + 2).

This completes the proof of Corollary 1.1.
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