A refinement of Guo's theorem concerning divisibility properties of binomial coefficients*

Quan-Hui Yang[†]

School of Mathematics and Statistics,

Nanjing University of Information Science and Technology,

Nanjing 210044, P. R. China

Abstract

Let $s(n,k) = \binom{6k}{3k}\binom{3k}{k}\binom{6(n-k)}{3(n-k)}\binom{3(n-k)}{n-k}/((2n-1)\binom{3n}{n})$. Recently, Guo confirmed a conjecture of Z.-W. Sun by showing that s(n,k) is an integer for $k=0,1,\ldots,n$. Let $d=(3n+2)/\gcd(3n+2,2n-1)$. In this paper, we prove that s(n,k) is a multiple of the odd part of d for $k=0,1,\ldots,n$. Furthermore, if $\gcd(k,n)=1$, then s(n,k) is also a multiple of n. We also show that the 2-adic order of s(n,k) is at least the sum of the digits in the binary expansion of 3n.

2010 Mathematics Subject Classifications: 11B65, 05A10 Keywords: binomial coefficients, p-adic order, divisibility properties

^{*}This work was supported by the National Natural Science Foundation of China, Grant No. 11371195.

[†]Email: yangquanhui01@163.com.

1 Introduction

In 2009, Bober [1] determined all cases such that

$$\frac{(a_1n)!\cdots(a_kn)!}{(b_1n)!\cdots(b_{k+1}n)!}\in\mathbb{Z},$$

where $a_s \neq b_t$ for all $s, t, \sum a_s = \sum b_t$ and $\gcd(a_1, \ldots, a_k, b_1, \ldots, b_{k+1}) = 1$.

Motivated by some new series for $1/\pi$ and the related congruences on sums of binomial coefficients, Z.-W. Sun [13] proposed the following interesting conjecture.

Conjecture 1.1. (See [13, Conjecture 4.2]) For n = 0, 1, 2, ..., define

$$s_n := \frac{1}{(2n-1)\binom{3n}{n}} \sum_{k=0}^n \binom{6k}{3k} \binom{3k}{k} \binom{6(n-k)}{3(n-k)} \binom{3(n-k)}{n-k}.$$

Then $s_n \in \mathbb{Z}$ for all n.

Later, Sun [14,15] proved many results on the divisibility of binomial coefficients. Recently, Guo [5] gave a proof of Conjecture 1.1.

Theorem A. (See [5, Theorem 1.2]) For $0 \le k \le n$, we have

$$s(n,k) := \frac{1}{(2n-1)\binom{3n}{n}} \binom{6k}{3k} \binom{3k}{k} \binom{6(n-k)}{3(n-k)} \binom{3(n-k)}{n-k} \in \mathbb{Z}.$$

For related results, one can refer to [2-4] and [6-11].

In this paper, we improve Theorem A by proving the following theorems.

Theorem 1.1. Let n, k be integers with $n \ge 1$ and $0 \le k \le n$, and let d be the odd part of $(3n+2)/\gcd(2n-1,3n+2)$. Then $s(n,k) \equiv 0 \pmod{d}$. Moreover, if $\gcd(n,k) = 1$, then $s(n,k) \equiv 0 \pmod{dn}$.

We write $p^k||n$ if $p^k|n$ and $p^{k+1} \nmid n$, and use $\nu_p(n)$ to denote such k. Let $\alpha_p(m)$ denote the sum of the digits of m in the expansion of m in base p.

Theorem 1.2. Let n, k be integers with $n \ge 1$ and $0 \le k \le n$. Then $\nu_2(s(n,k)) \ge \alpha_2(3n)$. Moreover, the equality holds for k = 0 and k = n.

Corollary 1.1. Let n be a positive integer with $n \not\equiv 4 \pmod{7}$ and $n \not\equiv 2 \pmod{8}$. Then $s(n,k) \equiv 0 \pmod{3n+2}$ for $k=0,1,\ldots,n$.

Throughout this paper, for a real number x, $\lfloor x \rfloor$ denotes the greatest integer not exceeding x and $\{x\}$ denotes the fractional part of x.

2 Preliminary lemmas

For the p-adic order of n!, it is well known that

(1)
$$\nu_p(n!) = \sum_{i=1}^{\infty} \left\lfloor \frac{n}{p^i} \right\rfloor.$$

Now we give some basic lemmas in the following.

Lemma 2.1. (Legendre's theorem, see [12, pp.22-24].) For any positive integer n, we have

$$\nu_p(n!) = \frac{n - \alpha_p(n)}{p - 1}.$$

Lemma 2.2. (See [5, Lemma 2.2].) Let $0 \le k \le n$ be integers. Then

$$h(n,k) = \frac{(6k)!(6n-6k)!(2n)!}{(3k)!(3n-3k)!(3n)!(2k)!(2n-2k)!(2n-1)} \in \mathbb{Z}.$$

Lemma 2.3. (See [16, Problem 6, p.30]) Let $\theta_1, \theta_2, \ldots, \theta_s$ be real numbers. Then

$$\lfloor \theta_1 + \theta_2 + \dots + \theta_s \rfloor \ge \lfloor \theta_1 \rfloor + \lfloor \theta_2 \rfloor + \dots + \lfloor \theta_s \rfloor.$$

Lemma 2.4. Let a, b be positive integers with gcd(a, b) = 1. Then

$$a!b!|(a+b-1)!.$$

Proof. Since gcd(a, b) = 1, it follows that

$$\frac{(a+b)!}{a!b!} = \binom{a+b}{a} = \frac{a+b}{a} \binom{a+b-1}{a-1}$$

is an integer divisible by a + b. Hence, a!b!|(a + b - 1)!.

Lemma 2.5. Let x and y be two real numbers. Then

$$\begin{aligned}
& [6x] + [6y - 6x] + [y] + [2y] \\
& \ge |3x| + |2x| + |x| + |3y - 3x| + |2y - 2x| + |y - x| + |3y|.
\end{aligned}$$

Proof. It is easy to see that

$$(2) [6x] + [6y - 6x] \ge [3x] + [3y - 3x] + [3y],$$

$$(3) |y| \ge |x| + |y - x|,$$

$$(4) |2y| \ge |2x| + |2y - 2x|$$

(Note that (2) also appears in the proof of [5, Lemma 2.4]). Combining the inequalities (2)-(4), we complete the proof. \Box

Lemma 2.6. Let x be a real number such that $\{x\} \geq 1/6$. Then

$$|6x| \ge |x| + |2x| + |3x| + 1.$$

Lemma 2.7. Let x be a real number such that $0 \le \{x\} < 1/3$ or $1/2 \le \{x\} < 2/3$. Then

$$\lfloor x \rfloor + \lfloor 2x \rfloor = \lfloor 3x \rfloor.$$

Proofs of Lemmas 2.6 and 2.7 are easy and we leave them to the reader.

3 Proof of Theorem 1.1

Let t(n,k) = (2n-1)s(n,k). Then

$$t(n,k) = \frac{(6k)!}{k!(2k)!(3k)!} \cdot \frac{(6n-6k)!}{(n-k)!(2n-2k)!(3n-3k)!} \cdot \frac{n!(2n)!}{(3n)!}.$$

Let d' denote the odd part of 3n + 2. Then $d = d'/\gcd(2n - 1, d')$. Suppose that d'|t(n,k). By 2n - 1|t(n,k), we have that t(n,k) is divisible by the least common multiple of d' and 2n - 1. It follows that

$$\frac{d'}{\gcd(2n-1,d')} \left| \frac{t(n,k)}{2n-1}, \text{ i.e., } d | s(n,k). \right|$$

Hence, in order to prove the first part of Theorem 1.1, it suffices to prove d'|t(n,k).

Let $p^r || d'$, where p is a prime and $r \ge 1$. Then p | 3n + 2 and $p \ge 5$. Now we shall prove $p^r | t(n, k)$, i.e., $\nu_p(t(n, k)) \ge r$. Let

$$f(m, p^{i}) = \left\lfloor \frac{6m}{p^{i}} \right\rfloor - \left\lfloor \frac{m}{p^{i}} \right\rfloor - \left\lfloor \frac{2m}{p^{i}} \right\rfloor - \left\lfloor \frac{3m}{p^{i}} \right\rfloor$$

and

$$g(m, p^i) = \left| \frac{m}{p^i} \right| + \left| \frac{2m}{p^i} \right| - \left| \frac{3m}{p^i} \right|.$$

Then, by (1), we have

$$u_p(t(n,k)) = \sum_{i=1}^{\infty} (f(k,p^i) + f(n-k,p^i) + g(n,p^i)).$$

By Lemma 2.5, we have $f(k, p^i) + f(n-k, p^i) + g(n, p^i) \ge 0$ for all $i \ge 1$. If $f(k, p^i) + f(n-k, p^i) + g(n, p^i) \ge 1$ for all $i \le r$, then $\nu_p(t(n, k)) \ge r$.

Now we shall prove $f(k, p^i) + f(n - k, p^i) \ge 1$ and $g(n, p^i) = 0$ for i = 1, 2, ..., r.

By $p^r || 3n + 2$, we have $3n \equiv -2 \pmod{p^r}$. Take an integer $i \in \{1, 2, ..., r\}$. Then $3n \equiv p^i - 2 \pmod{p^i}$. By Lemma 2.3, we have $f(k, p^i) \geq 0$ and $f(n - k, p^i) \geq 0$. Next we consider the following two cases.

Case 1. $p^i \equiv 2 \pmod{3}$. It follows that $n \equiv (p^i - 2)/3 \pmod{p^i}$, and then $\{n/p^i\} < 1/3$. By Lemma 2.7, we have $g(n, p^i) = 0$.

Now we show that $f(k,p^i)+f(n-k,p^i)\geq 1$. Suppose that $f(k,p^i)=f(n-k,p^i)=0$. By Lemma 2.6, we have $\{k/p^i\}<1/6$ and $\{(n-k)/p^i\}<1/6$. Let

$$k \equiv k' \pmod{p^i}, \quad 0 \le k' < p^i.$$

Then

$$\left\{\frac{k}{p^i}\right\} = \frac{k'}{p^i} < \frac{1}{6}$$

and

$$\left\{\frac{n-k}{p^i}\right\} = \left\{\left\{\frac{n}{p^i}\right\} - \left\{\frac{k}{p^i}\right\}\right\} = \frac{p^i-2}{3p^i} - \frac{k'}{p^i} < \frac{1}{6}.$$

Thus, we have

$$\frac{p^i-4}{6} \le k' \le \frac{p^i}{6}.$$

Since $p^i \equiv 2 \pmod{3}$ and p^i is odd, it follows that $p^i \equiv 5 \pmod{6}$. Thus, there exist no integers in the interval $[(p^i - 4)/6, p^i/6]$, which contradicts the equality (5).

Therefore, $f(k, p^i) + f(n - k, p^i) \ge 1$ in this case.

Case 2. $p^i \equiv 1 \pmod{3}$. It follows that $n \equiv (2p^i - 2)/3 \pmod{p^i}$, and then $1/2 < \{n/p^i\} < 2/3$. By Lemma 2.7, we have $g(n, p^i) = 0$.

Since

$$\left\{\frac{k}{p^i}\right\} + \left\{\frac{n-k}{p^i}\right\} \geq \left\{\frac{n}{p^i}\right\} > \frac{1}{3},$$

it follows that either $\{k/p^i\} > 1/6$ or $\{(n-k)/p^i\} > 1/6$. By Lemma 2.6, we have either $f(k,p^i) \ge 1$ or $f(n-k,p^i) \ge 1$. That is, $f(k,p^i)+f(n-k,p^i) \ge 1$.

Hence, $p^r|t(n,k)$, and so d'|t(n,k). Therefore, $s(n,k) \equiv 0 \pmod{d}$. If gcd(k,n)=1, then gcd(k,n-k)=1. Noting that

$$s(n,k) = \frac{h(n,k)n!}{k!(n-k)!},$$

by Lemmas 2.2 and 2.4, we have n|s(n,k). Since gcd(3n+2,n)=gcd(n,2), d|3n+2 and d is odd, it follows that gcd(d,n)=1.

Thus, $s(n, k) \equiv 0 \pmod{dn}$.

This completes the proof of Theorem 1.1.

4 Proof of Theorem 1.2

Since

$$\nu_2((6k)!) = 3k + \nu_2((3k)!),$$

$$\nu_2((6n - 6k)!) = 3n - 3k + \nu_2((3n - 3k)!),$$

(6)
$$\nu_2(n!) \ge \nu_2(k!) + \nu_2((n-k)!)$$

and

(7)
$$\nu_2((2n)!) \ge \nu_2((2k)!) + \nu_2((2n-2k)!),$$

we have

$$\nu_2(s(n,k)) = \nu_2((6k)!) + \nu_2((6n-6k)!) + \nu_2(n!) + \nu_2((2n)!) - \nu_2(k!)
-\nu_2((2k)!) - \nu_2((3k)!) - \nu_2((n-k)!) - \nu_2((2n-2k)!)
-\nu_2((3n-3k)!) - \nu_2((3n)!)
\ge 3n - \nu_2((3n)!).$$

By Lemma 2.1, we have $\nu_2((3n)!) = 3n - \alpha_2(3n)$.

Hence, $\nu_2(s(n,k)) \ge \alpha_2(3n)$. If k = 0 or k = n, then equalities in (6) and (7) hold. Thus, $\nu_2(s(n,k)) = \alpha_2(3n)$.

This completes the proof of Theorem 1.2.

5 Proof of Corollary 1.1

Noting that gcd(3n + 2, 2n - 1) = gcd(n + 3, 2n - 1) = gcd(n + 3, 7) and $n \not\equiv 4 \pmod{7}$, we have gcd(3n + 2, 2n - 1) = 1. Let $3n + 2 = 2^{\ell}n'$ with $2 \nmid n'$. By Theorem 1.1, we obtain n' | s(n, k).

By Theorem 1.2, we have $\nu_2(s(n,k)) \geq \alpha_2(3n) \geq 2$. Since $n \not\equiv 2 \pmod 8$, if follows that $3n+2 \not\equiv 0 \pmod 8$. Hence $\nu_2(3n+2) \leq 2 \leq \nu_2(s(n,k))$. That is, $2^{\ell}|s(n,k)$.

Therefore, $s(n, k) \equiv 0 \pmod{3n+2}$.

This completes the proof of Corollary 1.1.

6 Acknowledgement

I am grateful to the anonymous referee for his/her detailed comments, especially for simplifying the proof of Lemma 2.4 and Lemma 2.5.

References

- [1] J.W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc. 79 (2009), 422-444.
- [2] N.J. Calkin, Factors of sums of powers of binomial coefficients, Acta Arith. 86 (1998), 17-26.
- [3] H.Q. Cao and H. Pan, Factors of alternating binomial sums, Adv. in Appl. Math. 45 (2010), 96-107.
- [4] N. Fine, Binomial coefficients modulo a prime, Amer. Math. Monthly 54 (1947), 589-592.
- [5] V.J.W. Guo, Proof of Sun's conjecture on the divisibility of certain binomial sums, Electron. J. Combin. 20(4) (2013), #P20.
- [6] V.J.W. Guo, Proof of two divisibility properties of binomial coefficients conjectured by Z.-W. Sun, available at http://arxiv.org/abs/1312.7548, 2013.
- [7] V.J.W. Guo, F. Jouhet and J. Zeng, Factors of alternating sums of products of binomial and q-binomial coefficients, Acta Arith. 127 (2007), 17-31.
- [8] V.J.W. Guo and C. Krattenthaler, Some divisibility properties of binomial and q-binomial coefficients, J. Number Theory 135 (2014), 167-184.
- [9] V.J.W. Guo and J. Zeng, Factors of binomial sums from the Catalan triangle, J. Number Theory 130 (2010), 172-186.
- [10] V.J.W. Guo and J. Zeng, Factors of sums and alternating sums involving binomial coefficients and powers of integers, Int. J. Number Theory 7 (2011), 1959-1976.

- [11] M. Razpet, On divisibility of binomial coefficients, Discrete Math. 135 (1994), 377-379.
- [12] P. Ribenboim, *The book of prime number records*, 2nd edition, Springer, New York, 1989.
- [13] Z.-W. Sun, Some new series for $1/\pi$ and related congruences, preprint, arXiv:1104.3856.
- [14] Z.-W. Sun, On divisibility of binomial coefficients, J. Austral. Math. Soc. 93 (2012), 189-201.
- [15] Z.-W. Sun, Products and sums divisible by central binomial coefficients, Electron. J. Combin. 20(1) (2013), #P9.
- [16] I.M. Vinogradov, Elements of number theory, Translated by S. Kravetz, Dover Publications, New York, 1954.