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Abstract: Two graphs are said to be Tutte-equivalent if their Tutte polynomials
are equal. In this paper, we provide several different constructions for Tutte-
equivalent graphs including some that are not self-complementary but Tutte-
equivalent to their complements (the Akiyama-Harary problem) and some ‘large’
Tutte-equivalent graphs obtained from ‘small’ Tutte-equivalent graphs by 2-sum
operations.

Keywords: Tutte polynomial; Tutte-equivalence; self-complementary graph; the
Akiyama-Harary problem ’

1 Introduction

Tutte polynomial, due to Tutte [16], is a two-variable polynomial satisfying a fun-
damental universal property with respect to the deletion-contraction reduction
of a graph. Tutte polynomial encodes a substantial amount of interesting infor-
mation about the graph, and plays an important role in several areas of sciences
such as combinatorics, computer science, statistical physics and knot theory. For
a thorough survey on the properties and applications of the Tutte polynomial,
we refer the reader to {3].
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Which graphs are determined by their chromatic polynomial, a specialization
of the Tutte polynomial? This question was raised by Read [13] who asked for a
necessary and sufficient condition for two graphs to be chromatically equivalent,
namely, to have the same chromatic polynomial. In 1976, Chao and Whitehead [4]
defined a graph to be chromatically unique if no other non-isomorphic graph
shares its chromatic polynomial. Since then, the problem of finding chromatically
unique graphs has been extensively explored and it is still under investigation.
We recommend [11] for more references and [8] for a monograph. Analogously,
two graphs G and H are said to be codichromatic [17] or Tutte-equivalent [5,
6] if they have the same Tutte polynomial. Noy in [5] further defined that a
graph G is Tutte-unique if any graph that has the same Tutte polynomial as
G is isomorphic to G. Clearly, Tutte-equivalence implies chromatic equivalence.
However, the converse is not always true and an example is given in Fig.1. In
addition, if a graph is chromatically unique then it must be Tutte-unique. The
problem of finding Tutte-unique graphs has also drawn much attention in recent
years. See [5-7,9]. It is worth mentioning that Bollobds, Pebody and Riordan
[2] conjectured that almost all graphs are Tutte-unique. The Akiyama-Harary

B

Fig. 1: Two graphs [6] that are chromatically equivalent but not Tutte-
equivalent.

problem asks that ‘can a non self-complementary graph has the same chromatic
polynomial as its complement’. By the aid of a pair of graphs with same subgraph
sequences, Azarija [1] gave a positive answer to a strong version of the Akiyama-
Harary problem: whether there exist non self-complementary graphs having the
same Tutte polynomial as their complements. In this paper, we shall extend the
construction in [1] and provide more constructions for pairs of Tutte-equivalent
graphs which are complements of each other.

Let G be a graph with no loop or coloop and H = {H, : e € E(G)} (each
H, is a connected graph with at least two vertices). The H-replacement of G,

denoted by G[H], is defined as the graph obtained by replacing each edge e of G
by the corresponding graph H., that is, deleting the edge e in G and identifying
pairs of vertices {hl,e.} and {h2,e,}, where hl and k2 are two distinct vertices
(as two special vertices) which belong to H., e, and e, are ends of e. If every
edge of G is replaced by the same graph H with two fixed special vertices u and
v (i.e. H. = H), we write G[H] for G'[H] Wogd\all (18] derived two mutually

dual Tutte polynomial expansions of the graph G{H] in terms of the parameters
of the graph H, and flow (or tension) polynomials of ‘small’ graphs coming from
G. ‘How to apply these two complicated expansions into practice’ attracted
Woodall’s concern and motivates our interest. In this paper, by means of the
idea of the previously mentioned replacements, we also shall provide a general
method for constructing infinite families of Tutte-equivalent graphs.
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2 Tutte polynomial

Throughout this paper, unless otherwise specified, the graphs we consider may
have multiple edges and loops. Let G = (V, E) be a graph. The order and the
size of G are the number of vertices and the number of edges of G, respectively.
The complete graph and the path of order n in this paper are denoted by K, and
P,, respectively. Given a vertex v € V(G), the open neighborhood of vertex v is
denoted N(v). For X C E, we denote by (X) the spanning subgraph of G with
vertex set V and edge set X. We denote by ¢(X) the number of components of
{X). Whenever a graph G is mentioned, if no ambiguity arises, we always assume
n, m and c to be the order, size and number of components of G, respectively.

Definition 2.1. Tutte polynomial T(G;z,vy) of the graph G = (V, E) is a two-
variable polynomial recursively defined as follows:

yT(G — e;z,y) if e is a loop
T(G;z,y) = < 2T(G/e; z,y) if e is a coloop, i.e. cut-edge
T(G - e;x,y) + T(G/e;z,y) if e is neither a loop nor a coloop

with the initial condition T(G;z,y)=1for E=0 .

Tutte polynomial is independent of the edge order of deletion-contraction
operations. One way of seeing this is through the rank-size generating function [3}.

T(G;z,y) = Z (z — I)P(E)-P(X)(y - 1)'7(X),
XCE

where the sum runs over all edge subsets X C E, and p(X) = n — ¢(X) is the
rank of (X) and y(X) = |X| — n + ¢(X) is the nullity of (X), in particular,
HEY=n—-c,y(E)=m—n+ec

Lemma 2.2 ( [3]). If G and H are graphs, then
T(GUH;z,y) =T(G = H;z,y) = T(G; z,y)T(H; z,9), (1)
where GU H is the disjoint union of G and H, and G * H is the graph obtained

by identifying a vertex of G and a vertex of H into a single vertex.

Tutte polynomial, in a strong sense, contains every graph invariant that can
be computed by deletion-contraction operations. Many polynomial invariants are
evaluations of the Tutte polynomial along particular lines in the (X,Y) plane.
For instance, the chromatic polynomial and the flow polynomial of a graph are
evaluations of the Tutte polynomial along particular lines y = 0 and = = 0 in the
(X,Y) plane, respectively. See e.g. [3] for details.

(i) The chromatic polynomial

X(GiX) = (~1)PONT(G;1-2,0) = H_ (-1)XNX. (2)
XCE
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(ii) The flow polynomial

F(Gi ) = (-1)"OT(G;0,1 - 2) = Y (—1)m7IXIpetX+XI=n, (3)
XCE

3 The subgraph sequence of a graph

Given a graph G = (V| E), let H be a spanning subgraph of G with & connected
components of order hi,ha,: - ,he(0 < by € h2 £ -+ £ hg). Azarija [1] called
the tuple (|E(H)|;h1,--- ,hx) a subgraph description of H and further defined
the subgraph sequence s(G) of G as the lexicographically sorted tuple of subgraph
descriptions for all spanning subgraphs of G. Obviously, two graphs are Tutte-
equivalent if they have the same subgraph sequence. However, the converse is not
true. For example, T(Py; z,y) = T(K1,3;z,y) but s(Ps) # s(K1.3) [1]: s(Ps) =
((0;1,1,1,1),(1;1,1,2),(1;1,1,2),(1;1,1,2),(2 1,3), (2 1,3), (2; 2, 2), (3; 4)],

S(Kl.3) = [(0; ll la 1) 1)1 (1) 1) 1)2): (1; 1) 112)7 (1; lv 1:2)’ (2; 1’3)1 (2; 113)1 (2; 1’3)’
(3;4)]. In Fig. 2 we give another pair of graphs with the same Tutte polynomial
since their geometric dual graphs are isomorphic. However, by an exhaustive
enumeration, we obtain that the multiplicity of the element (4;1,1,4) in their
subgraph sequences (i.e. the number of spanuing subgraphs with exactly 4 edges
and two 1-vertex components, one 4-vertex component) are 5 and 7, respectively.
Again, we also note several pairs of graphs given in Fig. 3 who are derived by delet-

> <1

Fig. 2: Two Tutte-equivalent graphs with the same dual but different sub-
graph sequences.

ing (or contracting) their respective bold edges are isomorphic or Tutte equiva-
lent. That is, for i = 1,2, 3, there exist an edge e; € E(G?) (bold) and an edge
e2 € E(G?) (bold) satisfying the following conditions: (1) G} —e; = G? - e3;(2)
G!/e1 = G?/ez, thus T(G}; z,y) = T(G?;z,y). The second pair appeared in [17]
and the third pair in [15]. However, their corresponding subgraph sequences are
different which can be verified by a Sage program in [1]. Indeed, any simple
graphs with the same subgraph sequence have order at least 8, see [15] for more
details.

A simple graph G is self-complementary (s.c.) if it is isomorphic to its com-
plement G. Whether there exist non self-complementary graphs having the same
Tutte polynomial as their complements is regarded as a strong version of the
Akiyama-Harary problem in [1]. To give a positive answer to this problem, by
using a brute force search, Azarija in [1] gave a pair of non-isomorphic graphs Go
and Go as shown in Fig. 4 which share the same subgraph sequence.
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Fig. 3: Tutte-equivalent graphs with different subgraph sequences.
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Fig. 4: Non self-complementary graph Go and its complement Go.

The join of graphs G and G2, denoted by G = G V G», is the disjoint union
G1UG; with disjoint vertex sets V) and V2 and edge sets E; and E2 together with
all the edges joining vertices in V; and vertices in V2. Moreover, let S C V(G3),
we use G1 Vs G2 to denote the graph obtained from G; U G2 by joining every
vertex in S to every vertex of G1. To construct more pairs of higher-order graphs
with the same subgraph sequence, the following lemma will be repeatedly used
in the sequel. Its proof is no more than an observation and similar to that of

Lemma 4 in [1].

Lemma 3.1. Let G, H, K, R be graphs such that s(G) = s(H) and s(K) = s(R).
Then s(G V K) = s(H V R) and moreover, for any vertex subset S of a graph Q,
s(GVvs Q) =s(H Vs Q).

Proof. Let I'(G) be the set of spanning subgraphs of the graph G. Note that
any spanning subgraph of GV K is uniquely determined by a spanning subgraph
G’ of G, a spanning sugraph K’ of K and some edges with one end-vertex in G’
and the other in K’, and the same holds for H V R. Since s(G) = s(H) ( s(K) =
s(R), respectively), there is a bijection ¢ (¢, respectively) from I'(G) (I'(K),
respectively) to I'(H) (I'(R), respectively) preserving the subgraph description.
By aid of ¢ and ¢, it is easy to establish a bijection between I'(GVK) and I'(HVR)
preserving the subgraph description. It follows that s(GV K) = s(H V R). The
second statement can be shown similarly. n}

The families of Tutte-equivalent graphs presented in the following corollary
have already been constructed in a pretty similar way by Bollobds, Pebody and
Riordan (2] (Theorem 10, Remark 3), and actually they also give a more general
construction that yields not only pairs, but exponentially large families of graphs,
all sharing the same Tutte polynomial.

Corollary 3.2. Let G and H be a pair of graphs with s(G) = s(H) and the same
connectivity 2. Then both GV K, and H V K,, have the same connectivity n + 2
and have the same Tutte polynomial.
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Proof. By Lemma 3.1, s(GV K,) = s(HV K,). Hence T(GV Kpn;z,y) = T(HV
Kn;z,y). We use k(G) to denote the connectivity of a graph G. It is easy to show
&(GVK,) = k(HVK,) = n+2since k(G1VG2) = min{|V(G1)|+£(G2), |V(G2)|+
#(G1)}. This is based on two observations: (1) If G1 V G2 is a complete graph,
K(G1V Gz) = |V(G1)| + [V(G2)| = 1 = |[V(G1)| + K(G2) = |V(G2)| + £(G1);
(2) If not, then, for any cutset C of G1 V Gz, either V(G1) C C or V(G2) C C
(otherwise, G1 V G2 — C is connected). Therefore, C; U V(G{1,2\(s)) is a cutset
of G1 V G, whenever C; is a minimum cutset in G; (i = 1,2), which implies the
result. 1]

4 Construction of Tutte-equivalent graphs

4.1 Graphs which are Tutte-equivalent to their com-
plements

Let Gi(2 = 1,2,3,4) be graphs with vertex sets V;(: = 1,2, 3,4), respectively.
We temporarily use [G1, G2, G3,G4] to denote the graph obtained from the dis-
joint union UY_;G: by joining every vertex in V; to every vertex in Viy; for
i =1,2,3. Moreover, let G be a graph with vertex set V. R(G;G;,G2,G3,Gy4)
is defined as the graph obtained from G U[G1, G2, G3, G4] by adding all possible
edges between the vertex set V and the vertex subset V; UV} of [G1, G2, G3, Gy4],
i.e. R(G;G1,G2,G3,Gs) = G Vv uy, [Gh,G2,G3,G4). Particularly, when G; =
H,G2 = H,Ga = H and Gy = H (H is arbitrary given graph), we denote
R(G;H,H,H, H) by R(G; H) as shown in Fig. 5.

7
@4

Fig. 5: R(G; H) (left) and R(G; Ky) (right), here ‘=’ indicates the graph
join operation.

Theorem 4.1. If s(G) = s(G), then R(G; H) is Tutte-equivalent to its comple-
ment R(G; H)._In the case of G = Go and G = G (see Fig. 4), R(Go; H) is not
isomorphic to R(Go; H).

Proof. It is easy to see R(G;H) = R(G;H). By Lemma 3.1, s(R(G; H)) =
s(R(G; H)). Accordingly, T(R(G; H);z,y) = T(R(G;H);z,y). Now let G = Go,
G = Gp. Observe that v, and vs (the only two vertices with maximum degree
5 in Go) have no common neighbor of degree 2, while vo and vz (the only two
vertices with maximum degree 5 in Go) have one common neighbor v3 of degree
2. Hence, the number of unordered pairs of vertices in R(Go; H) such that they
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have the same degree 2|V (H)| + 5 and only one common neighbor with degree
2|V (H)|+2 is less than that of unordered pairs of vertices in R(Go; H) with same
requirements. Hence, R(Go; H) % R(Go; H). 0

Corollary 4.2 ( [1]). If s(G) = s(G),_then the graph R(G; K)) shown in Fig. 5
is Tutte-equivalent to its complement G'.

Before we go on, we explain the definition of the bipartite self-complementary
(b.s.c. [12]) graph. Let B = B(X UY, E) be a bipartite simple graph with disjoint
vertex sets X,Y and edge set E, where each edge in E joins a vertex in X to

a vertex in Y. The bipartite complement B of B with respect to the partition
X UY is the bipartite graph B(X UY, E’), where E’ contains all edges not in E
that join a vertex in X to a vertex in Y. If B is connected then the partition
X UY is unique and there is only one bipartite complement. B is a b.s.c. graph
if there is an isomorphism ¢ from B to B such that ¢(X) =Y and ¢(Y) =

Definition 4.3. A graph G is said to be of type (X,Y) if G has a vertex set
partition V(G) = X UY such that

G = (X)U(X,Y)U(Y),
(X)=(Y),
(X,Y)= (X, Y), here (X,Y) is a b.s.c graph,

where (X), (Y) are the induced subgraph of G with vertex sets X, Y, respectively,
and (X,Y) is the mazimal subgraph of G with vertex set X UY where every edge
joins a vertex in X to a vertezin Y.

Theorem 4.4. Let s(G) = s(G) and H be a graph of type (X,Y). Then GVx H
and GVx H are Tutte-equivalent.

Proof. As can be seen from Fig.6, GVx H = G Vx H because {X) = (Y),

(X) = (Y} and (X,Y) "Z° (X,Y). By assumption s(G) = s(G), it follows by
Lemma 3.1 that s(G Vx H) = s(GVx H). Hence they have the same Tutte
polynomial. 0

il
St

Fig. 6: G Vx H (left) and its complement G Vx H (right).

Following [12]. Let G be an s.c.graph, one can construct a b.s.c graph by the
following way: Let G = (V,E) bea s.c. graph with a complementing permutation
¢, i.e. an isomorphism from G to G which can be viewed as an element of the

symmetric group S, if V(G) = {1,2,--- ,n}.
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If [V(G)| is odd, then G has an unique vertex (say z) fixed by ¢ (guaran-
teed by Theorem 1 in [10]), so R. Molina [12] considered the following unique
decomposition of G into edge disjoint subgraphs:

G = (z, YU (X) V(X Y)u (Y),

where X = N(z), Y = V\(N(z) U {z}). Since ¢ is a map from G to G that fixes

z, we see that ¢({(X)) = {¥) and ¢({(X,Y)) = (X,Y). Thus (X) and (Y) are
complements of each other and (X,Y) is a b.s.c. graph.

If [V(G)| is even, a similar decomposition for G also exists. Assume that the
vertices of G are labeled in such a way that the numbers in any cycle of ¢ appear
in increasing order. Let X be the set of even numbered vertices and Y the set of
odd numbered vertices. Then

G={X)u{X,YYu(Y)

Likewise, (X) and (Y) are complements of each other, and (X,Y) is a b.s.c.
graph. In this case, unlike the case |V(G)| odd, the subgraphs (X) and (X,Y)
are not determined up to isomorphism. All b.s.c. graphs of order 8 and 12 are
shown in [12].

The graph Hj given in Fig. 7 (a) is of type (X,Y) with X = {black vertices},
and Go Vx Ho is Tutte-equivalent to its complement, which is verified by Sage
[14]). It is still open to determine if there is a graph G not having the same
degree sequence as G yet the same Tutte polynomial.

. ‘\\\\\‘.\}\“\\‘ '

\\“ A

" v

g ¥ g

(a) Go and Hp {b) GoVx Ho and Go Vx Hp

Fig. 7: Go Vx Hp and Gy Vx Hp are not isomorphic but Tutte-equivalent.

4.2 Tutte-equivalent graphs constructed by 2-sum op-
erations

In the following section, we remind the reader that the definition of a 2-sum graph

operation appears on section 1. To begin with, we review two dual expansions of
the Tutte polynomial.
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Lemma 4.5 (Theorem 2.1, [18]). Let N(G;q) = lcx(G; q). Then

> N(G/Y;qy™!

( )ﬂ—c YCE

>
= —mmre 2 F(G-Y;q)z™,
(z-1) + vee

T(G;z,y) =

where ¢ = (x—1)(y—1) and G -Y ( respectively G/Y ) denote the graph obtained
from G by deleting (respectively contracting) all edges in Y .

Let z,y and ¢q be parameters such that (z—1)(y—1)=q. Let H={H.: e €
E(G)}(each H. is a connected graph with two special vertices A} and hZ). Let
H/. denote the graph obtained from H. by identifying h; and h2, and define

N(Giq,y): = (y - )" °T(G;2,y), 4)
F(Gig,z): = (z - 1)™"""°T(G;z,y), (8)
§e:=(q~ 1) (F(H/e,q,7) — F(H.,9,2)), (6)
fe:=(q—1)""(N(He,q,9) ~ N(Hye,q,9)), (M
Te:= ﬁ:’F(Hc,q,z), (8)
Ye : =1 'N(Hje,q,9). 9)

In addition,

N(Giq,y)= > N(G/Y;q1'"",
YCE

F(G;q2)= ) F(G-Y;qa'.
YCE

See [18] for details.
Theorem 4.6 (Theorem 4.1, [18]).

T(&{H) z,y) = eeselte — IRCE ) CRD

G (y — 1)p(GlHl)

e€Y
neEE §e($¢ _
N(G/Y; ..
" PO (z - 1)‘7(0[1‘1]) ‘%3 ¢/ q)gy

For the rest of the paper, we assume that all H.’s in H are the same. When-
ever Theorem 4.6 is applied, the graph G is limited to a 2-connected graph.

Theorem 4.7. Let G, G', R end R’ be graphs such that s(G) = s(G') and
s(R) = s(R'). Let K be a graph and {u,v} be two distinct vertices in K. Let

H=RVK,H=RVK. IfG/'[-ﬁ] (respectively G’[H']) is the graph obtained
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from G (respectively G') by replacing each edge of G by H (respectively each edge
of G' by H') with respect to {u,v} (two special vertices of H or H'), then G[H)
is Tutte-equivalent to G'[H'].

———

Proof. We shall use (10) to prove T(G/[\H];a:,y) = T(G'[H'};z,y). First, we
show ¥(G) = ¥(G’') and p(G[H]) = p(G’'[H"]). s(G) = s(G') implies |E(G)| =
|E(G')] = m and |[V(G)| = |V(G')| = n. Hence, 7(G) =+(G') =m+n—1. By
Lemma 3.1, s(RV K) = s(R'V K) since s(R) = s(R'). This implies |V(RV K)| =
|[V(R' Vv K)|. Observe that
p(GIH) = [V(GH)| - 1= V(©)| + |E@I(IV(RV K)| - 2) - 1,
p(G'H) = |V(G'[H') -1 = V(G +IEGC(IV(R'VK)-2) - 1.
Thus, p(G/[\H]) = p(G'[H’]). Secondly, according to the previous discussion, we
have
T(H;z,y) = T(H';z,y) (by Lemma 3.1),
T(H + uv;z,y) = T(H' + uv;z,y) (by Lemma 3.1).
Moreover, by the deletion-contraction operation,
T(H/ayi7,y) = T(H}zyi ,9).
Then by eqs. (4)-(9), we also easily obtain that
_ F(Hysyi9,%) ~ F(H,q,7) _ F(Hoyiq,2) - F(H'ig,2) _

£ o ) &, (1)
N(H;q,y) - N(H;zy,q,y) _ N(H';5q,y) - N(Hz0y)
e = 1 = = Te, (12)
q- g—1
ze =€ 'F(H;q,2) = €7 'F(H'; q,7) = =L, (13)
Ye =0 'N(Hjzy10,y) = 007 'N(H)zyi 0, 9) = ¥e. (14)

Finally, by s(G) = s(G’), we meant that the tuple in s(G) which belongs to a
spanning subgraph Y of G corresponds to the tuple in s(G’) which belongs to a
spanning subgraph Y’ of G'. By eq.(3), it is readily shown that

S FG-Yi= > T (—1ynoR Xl +HX
{YCG:|Y|=k} {YCG:|Y|=k} XCE(G-Y)
(_l)m—k—IX]qc(X)+|X|—n

{XCG:X|LIE(G)|-&}

(_l)m—k—iX'lqc(X')+|X'|-n
{X'CGHIXISIE(G) -k}
> S (TR XD
{Y'CG:|Y'|=k} X'CE(G'-Y')
= Y  FG-Yig.
{(Y'CG":|Y’|=k}

232



Now by Theorem 4.6, we conclude that

1E]
(ne(ye - 1))
q7G)(y — 1)eGIHD

(metot - )"

T 1@ (y — 1)p G

> F(G-Y;gz"!
YCE(C)

T(CT[I-\Il;z,y) =

> F(@-Y'igzd!
Y'CE(G’)

= T(G'[H);z,v),

where ¢ = (z — 1}y — 1) and &.(£2),Me(ne), Te(zt), ye(ye) as shown in egs.
(11),(12),(13),(14). i}

(a) Go and Go[K3) (b) Go and Go[K3]
Fig. 8: Go[K3) and Go[K3) are not isomorphic but Tutte-equivalent (verified
by Sage).
From Theorem 4.7, the special case when R = K = H is given by:

Corollary 4.8. Let G and G’ be two graphs with s(G) = s(G'). Let G[H] (
respectively 6;[\H] ) be the graph obtained from G ( respectively G') by replac-
ing each edge of G ( respectively G') by the connected graph H with two special
vertices. Then G/'[F] is Tutte-equivalent to c’;r’[ﬁ]

An example is given in Fig.8 (G = Go, G’ = Go, H = Ka3).
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