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Abstract In the previous researches on classification problems,
there are some similar results obtained between f-coloring and g.-
coloring. In this article, the author shows that there always are
coincident classification results for a regular simple graph G when
the f-core and the g.-core of G are same and f(v) = g(v) for each
vertex v in the f-core (the g.-core) of G. However, it is not always
coincident for nonregular simple graphs under the same conditions.
In addition, the author obtains some new results on the classification
problem of f-colorings for regular graphs. Based on the coincident
correlation mentioned above, new results on the classification prob-
lem of g.-colorings for regular graphs are deduced.
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1 Introduction

In this article, all graphs considered are undirected with a finite nonempty vertex
set and a finite edge set. An empty graph is a graph with an empty edge set.
For a graph G, we associate it with two integer functions ¢ : V(G) — N and
f:V(G) — Z* which satisfy that g(v) < f(v) for every v € V(G). Let C be
a color set. A (g, f)-coloring of G is an edge-coloring satisfying that, for each
vertex v € V(G) and each ¢ € C, there are h(v) adjacent edges colored with c,
where g(v) < h(v) < f(v). The (g, f)-coloring is a generalization of the proper
edge-coloring (g = 0, f = 1) and the edge covering coloring (g = 1, f(v) = d(v)).
When g = 0, (g, f)-coloring is called f-coloring; when f(v) = d(v) for all

*This research is supported by the Shandong Provincial Natural Science Foundation, Chi-
na (Grant No. ZR2014JL001), the Shandong Province Higher Educational Science and Tech-
nology Program (Grant No. J13LI04) and the Excellent Young Scholars Research Fund of
Shandong Normal University of China.

ARS COMBINATORIA 135(2017), pp. 17-28



v € V(G), (g, f)-coloring is called g.-coloring. A graph G has always an f-
coloring for any positive integer function f : V(G) — Z*+. However, for a
nonnegative integer function g : V(G) — N, if there exists a vertex v € V(G)
with g(v) > d(v), then G has no gc-coloring. For example, an empty graph H
has an f-coloring with k colors for any positive k and, H has a g.-coloring if
and only if g = 0. If a graph G has an f-coloring with k colors, say 7, then 9
is also an f-coloring with s colors for any positive integer s > k. (In 7, each of
at least s — k colors appears 0 times at each v € V(G).) In contrast, if graph
G has a g.-coloring with k& > 1 colors, say ¢, then G has also a g.-coloring with
t colors for any positive integer ¢t < k (by recoloring the i-edges in ¢ with the
color t, where t+1 < 7 < k). So it is trivial to determine the maximum number
of colors for a graph G to have an f-coloring or the minimum number of colors
for G to have a g.-coloring. In this article, we focus on the minimum number
of colors needed to f-color G, which is called the f-chromatic index of G and
denoted by x’j(G), and the maximum number of colors needed to g.-color G,

which is called the gc-chromatic indez of G and denoted by xg_ (G).

Since Holyer [3] proved that the proper edge-coloring problem is NP-complete
(even if the restriction to the cubic graphs), the f-coloring problem and the g.-
coloring problem are NP-complete, too.

Let
As(G) = ,,3%)”%“’ %(G) = uénvi&:){[j_(-(:%”’

Va, = {v € V(G) : d(v) = f(v)Af(G)},
Vs, = {v € V(G) : d(v) = g(v)6,(G)}
Note that, for a nonnegative integer function g : V(G) — N, if there exists
a vertex v € V(G) with g(v) > d(v), then §,(G) = 0, i.e. G has no g.-coloring.
In addition, for a vertex v with g(v) = 0, [:—8%] = +o0o. So a graph G has

3,(G) = +oo if and only if each vertex v € V(G) has g(v) = 0. Regardless of
these two trivial cases, we focus our attention on the cases that 0 < §,(G) < +o0

in the rest of the article.
We call the subgraphs induced by Va,, V;, in G the f-core of G, the g.-

core of G, respectively, and denote them by Ga,, Gs,, respectively. For simple
graphs, the following results have been known.

Theorem 1.1 (2] Let G be a simple graph. Then
Af(G) £ X5(G) £ Af(G) + 1.
Theorem 1.2 [8] Let G be a simple graph. Then
5(G) - 1 < x5, (G) < 6,(G).
When f(v) =1 for all v € V(G), Theorem 1.1 is the theorem of Vizing [9], i.e.
A(G) € X'(G) € A(G) + 1; when g(v) =1 for all v € V(G), Theorem 1.2 is

the theorem of Gupta [1], ie. 6(G) -1 < xi(G) £ &(G). For f-colorings, G
is called of f-class 1 if x4(G) = Af(G), of f-class 2 if x}(G) = Ag(G) + 1;
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for gc-colorings, G is called of g.-class 1 if x;_(G) = §4(G), and of g.-class 2 if
Xg.(G) =104(G) - 1.

The research methods between f-colorings and g.-colorings are different. In
the previous researches, there are many similar results for these two classification
problems [2, 4, 5, 7, 8] [10]-[19]. For examples, any bipartite simple graph is
of both f-class 1 and g.-class 1; a simple graph associated with a positive and
even function f is of both f-class 1 and f.-class 1. What will be used in the
article are listed below.

Let V(G) = {v1,...,v,}, Gi =G — {vl,vg,...,v,-g (1<i<n-1),Go=G
and § C V(G). We call a graph G is S-peelable if all vertices of G can be
removed iteratively by using the following operation: Remove a vertex v;, which
has at most one neighbour » € § in G;-) and dg,_, (u) = de(u).

Theorem 1.3 Let G be a simple graph.
1. [16] If G is Vo, -peelable, then G is of f-class 1.

2. [1] If G is V5, -peelable, then G is of g.-class 1.

The following result could be deduced immediately.

Corollary 1.1 Let G be a simple graph.
1. [14] If Vo, =0, then G is of f-class 1.
2. [10] If V5, =0, then G is of gc-class 1.

Remark 1. The results above on g.-colorings are based on an integer func-
tion g : V(G) — Z*. When g: V(G) — N and Vo = {v € V(G) : g(v) =
0} # 0, we can construct an auxiliary graph G’ from G as follows: for each
v € V), stick a new complete graph H, = Kj;,(c)+2 at v in such a way that
identify v with an arbitrary vertex of H,. Define a function h : V(G') — Z¥
in such a way that

{ h(v) = g(v), v eV(G)\V;
h(v) =2, otherwise.

It is easy to see that d,(G) = 6x(G"), V5,(G) = V5,(G') and X, (G) = x},_(G").
So the results on g.-colorings between Theorem 1.2 and Corollary 1.1 are still
true for a function g: V(G) — N.

Based on the results above, Liu and Zhang [6] posed the following problem:

Problem 1.1 (G. Liu and X. Zhang [6]) What kinds of simple graphs G always
have coincident classification results between f-coloring and g.-coloring when
V* =Va, = Vs, and f(v) = g(v) for eachveV* ?

If, for a graph G, there are always coincident results between the classifica-
tion problem on f-colorings and the one on g.-colorings when Ga, = Gs,, then
some new results for G on the classification problem on g.-colorings could be
deduced from the ones on f-colorings, and vice versa. Relatively, the research



on gc-coloring is going slowly. This is one motive for researching the correlation
between the f-chromatic class and the g.-chromatic class of a simple graph.

For convenience, we always define that fg(v) = fe(v) and gg(v) = ga(v)
for each v € V(H) and for any H C G. For f-colorings, if a graph G has an
f-coloring with k colors, then any subgraph H of G has one (by restricting an f-
coloring to the subgraph H). However, that is not the case for g.-colorings even
if dg(v) > kg(v) for each v € Vé'H ). For example, let F be a graph constructed
from two cycles C) = ujugus, C2 = v1v2v3 by connecting u;,v; with an edge,
where g = 1. Clearly F has a g.-coloring with 2 colors, but either of C), C; has
no ge-coloring with 2 colors. For some special classes of simple graphs, we can
verify that a graph G is of f-class 1 in such a way that extend an f-coloring
with A ¢(G) colors of subgraphs of G to an f-coloring with Af(G) colors of G
(see [16, 17]). A natural question is: how to determine some gc-class 1 graphs
according to edge-colorings of their subgraphs? To avoid facing the case that
some subgraph H of a graph G has no g.-coloring with 6,(G) colors when G
has such one, the author defines an auxiliary graph H*, called by the degree-
restoration subgraph of G, which is constructed from H as follows: add some
new pendant edges to each v € V(H) so that dy+(v) = dg(v). In addition,
define g(v) = 0 for each end with degree one of the new pendant edges in H*.
It is easy to see that, when G has a gc-coloring with k colors, then any degree-
restoration subgraph H* of G has such one. So we can verify some gc-class 1
graphs G by extending a g-coloring with d4(G) colors of a degree-restoration
subgraph of G to a gc-coloring with 64(G) colors of G.

In Section 2, we prove that there are always coincident classification results
for regular simple graphs when G4, = G5, and f(v) = g(v) for each v € Va,(=
Vs,). We give a new result on the classification problem of f-colorings for
regular graphs. Based on the coincident correlation above, a new result on the
classification problem of g.-colorings for regular graphs is deduced. In Section
3, we show that it is not always coincident for nonregular simple graphs under
the same conditions. However, with an extra constraint, there are coincident
classification results.

2 Regular graphs
We call the two nonnegative integer functions f, g a pair of related-functions

on G, if V* = Va, =V, and f(v) = g(v) > 0 for each v € V*. The following
result is easily to verify.

Lemma 2.1 If f,g is a pair of related-functions on G, then A;(G) = §,(G)
and g(v) < Zﬁ% = A—"}i%—; < f(v) for each v € V(G)\ V*.

For a graph G associated a positive integer function f : V(G) — Z*, we
can associate G a nonnegative integer function g :

o) =10),  veVa, 1
02 9(0) < gy, vEVO\Va,. W
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Conversely, for a graph G associated a nonnegative integer function g : V(G) —
N, we can associate G a positive integer function f :

f@)=g(v),  veVs; o
f(v) > 25 >0, veV(G)\ Vi, )

Since we concentrate ourselves on the nontrivial cases that 0 < §,(G) < oo,
there are V* =V, = V;, and f(v) = g(v) > 0 for each v € V* for either of (1)
and (2), i.e. f and g are a pair of function-related functions on G for either of
(1) and (2). And, for a graph G, its pair of related-functions is not unique.

When G is given an edge-coloring with the colors in C = {c,...,cx}, an
edge colored with ¢ € C is called a c-edge. Let c(v? denote the number of
c-edges incident with v € V(G) for ¢ € C, g4(v) = [{c € C : c(v) = g(v)}|
and ava) = |{c € C: c(v) < f(v)}|. We call a walk W = vofyvy...v,_1fev
an ab-alternating walk starting at vg and ending at v, if W satisfies all of the
following conditions:

(1) fi=vicqv;, 1 <0<t and fi # f; (1 #7);

(2) W is colored with a and b alternately and the first edge f; = vov; is an
a-edge;

(3) a(vo) > b(vo) when vp # v, a(va) > b(ve) + 1 when vy = vy
(4) b(v:) > a(v,) when t is even, a(v¢) > b(v,) when t is odd.

Note that, when vp = v, t must be odd for an ab-alternating walk W by the
definition above. Switching an ab-alternating walk W means exchanging the
colors a and b of W.

Theorem 2.1 Let G be a d-regular simple graph and f,g be a pair of related-
Junctions on G. Then G is of f-class 1 if and only if G s of g.-class 1.

Proof. Let k = Af(G) = 64(G), C = {c1,...,cx}, V* = Va, = V5, and
f* = flv) = g(v) for each v € V*. If V* = @, then G is of f-class 1 and
gc-class 1 by Corollary 1.1. Next, assume that V* # 0. Then d = kf* and
g(v) < f* < f(v) for each v € V(G)\ V* by Lemma 2.1.

If G is of f-class 1, then we can get an f-coloring 7 of G with k colors in
C. Clearly, for each 1 < i < k, there are ¢;(v) = f* for each v € V* and
ci(v) < f(v) for each v € V(G) \ V*. If ¢;(v) > g(v) for each v € V(G)\ V*
and each 1 < i < k, then 7 is a g.-coloring of G with k colors, which means
that G is of g.-class 1. Otherwise, there exists a vertex v € V(G)\ V* and a
color a € C such that a(u) < g(u) = 1. Then ofu) < f* — 2. Since d = kf*,
there must exist another color 8 € C such that ﬁ;u) > f* + 1. Construct a
Ba-alternating walk W starting at u and switch W. If W does not end at u,
switching W makes a(u) increase by 1 and B(u) decrease by 1; if W ends at u,
switching W makes a(u) increase by 2 and B(u) decrease by 2. In either case,
we still have B(u) > f* — 1 > g(u) and o,4(v) does not decrease for each v with
g4(v) = k. Use this operation until c,&v) > g(v) for each v € V(G)\ V* and
each 1 €7 < k, which is a g.-coloring of G with & colors. So G is of g.-class 1.
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If G is of g.-class 1, then we can get a g.-coloring ¢ of G with k colors in C.
Then, for each 1 < i < k, there are c;(v) = f* for each v € V* and ¢;(v) > g(v)
for each v € V(G) \ V*. If ¢i(v) < év) for each v € V(G) \ V* and each
1 < i < k, then ¢ is an f-coloring of G with k colors and G is of f-class 1.
Otherwise, there exists a vertex u € V(G) \ V* and a color o € C such that
a(u) > f(u) + 1. Then a(u) > f* + 2. Thus there must exist another color
B € C such that B(u) < f* — 1. Construct an of3-alternating walk W starting
at u and switch W. Similar to the discussion above, switching W makes o(u)
decrease by 1 or 2 and B(u) increase by 1 or 2, respectively. Whether W ends
at u or not, we still have 8(u) < f* +1 < f(u) and 7 (v) does not decrease for
each v with of(v) = k after switching W. Use this operation until ¢;(v) < f (vz
for each v € V(G)\ V* and each 1 < ¢ < k, which is an f-coloring of G with

colors. So G is of f-class 1. [ |

Based on the result above, some results on classification problem for regular
a'a}l)g]s )can be deduced from each other between f-coloring and g.-coloring. (See
’ According to Corollary 1.1, when VAo, = V5, = 0, G is both f-class 1 and
ge-class 1. Next we focus on the cases with Vo, # 0 for f-colorings and the
ones with V5, # 0 for g.-colorings.

Let G be a graph and A G V(G). The degree-restoration subgraph of G
based on A, denoted by (G[A])*, is an auxiliary graph constructed from G AJ as
follows: add some new pendant edges to each v € A so that d(g(ap+(v) = dg(v).
In addition, we assign g(v) = 0 for each end with degree one of the new pendant

edges.

In the rest of the article, we always define that fy(v) = fg(v) for each
v € V(H) and for any H C G; and gg(v) = gg(v) for each v € V(H)NV(G)
and for any degree restoration subgraph H of G.

Theorem 2.2 Let G be a d-regular simple graph and Vo, # 0. G is of f-class
1 if and only if the f-core of G has an f-coloring with Ay(G) colors.

Proof. The necessity is obvious. Now we prove the sufficiency. If V(G) = Va,,
we are done. Let |V(G)| = n, k = Ay(G), f* = £ and C = {c1,...,ck}.
Assume that V(G)\ Va, = {wi,we,...,we}, 1 <t <n—1,and Ga, has an f-
coloring n with k colors in C. Denote G; = G — {wy, wy,...,w;} (1 =1,2,...,t).
Basing on 7, we can obtain an f-coloring of G;_; with & colors in C as follows.
If dc‘_l(wg = 0, we are done. Otherwise, for each edge of {wiu € G;_1}, we
color wyu with a color in M(u) = {c € C: c%u) < f(u)}. Clearly, c(v) < f(v)
for each ¢ € C and each v # w; in Gi_;y. If c(w:) < f(w:) for each ¢ € C|
this is an f-coloring of G,_; with k colors in C. Otherwise, there exists a color
B € C such that B(w;) > f(w,). Since w, ¢ Va,, f(w) > f* + 1. This means
that S{w;) > f* + 2. Then there must exist another color v € C such that
v(wy) < f* — 1. Construct a fy-alternating walk W starting at w,. Switching

makes B(w;) decrease by 1 or 2 and y(w,) increase by 1 or 2, respectively.
Note that there is still v(w;) < f* +1 < f(w:) and o/ (v) does not decrease for
each v with o/ (vl) = k after switching W. Use the operation until ¢(w,) < f(w)
for each ¢ € C. If t = 1, we are done. Otherwise, basing on an f-coloring #; of
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Gi-i with k colors in C, we can get an f-coloring of G;.;_; with k colors in C
with same operations, for each 1 < ¢ <t — 1. (Note that Go = G.) So, G is of

f-class 1.
[ |

Corollary 2.1 Let G be a d-regular simple graph, Va, #0 and S ={v €V, :
N(v) CVa,}. If the f-core of G is S-peelable, then G is of f-class 1.

Proof. Obviously, A;(Ga,) < Af(G) and § = Vp,(Ga,). By Theorem 1.3
(1), Ga, has an f-coloring 7 with Ay(Ga,) colors. Of course, 7 is an f-coloring
of Ga, with Ay(G) colors. So G is of f-class 1 according to Theorem 2.2. [l

Theorem 2.3 Let G be a d-regular simple graph and V5, # 0. G is of gc-class
1 if and only if the degree restoration subgraph of G based on the gc-core has a
gc-coloring with §4(G) colors.

Proof. The necessity is clear. We prove the sufficiency. It is true when Vs, =

V(G). Next assume that V(G)\ Vs, # 0. Let k = §;(G), ¢* = £ and C =
{c1,-. Cki} Define a function f on V(G) in such a way that g, f are a pair
of related-functions of G. Let ¢ be a g.-coloring with §,(G) colors in C of the
degree restoration subgraph of G based on the g.-core. ﬁestnct C to the g.-core
of G and denote the edge-coloring of G5, by 7. Since ¢(v) = g* for each c € C
and each v € V;, in ¢, we have c(v) < g* = f(v) for each c € C and each v € V;,
in 7, i.e. 7 is an f-coloring of Gs, (= Ga,) with Af(G) = §,(G) colors. Thus
g’ is of f-class 1 by Theorem 2.2, According to Theorem 2.1, G is of g.-class 1.

Corollary 2.2 Let G be a d-regular simple graph, V5, # 0 and S = {v € V}, :
N(v) € Vg, }. If the gc-core of G is S-peelable, then G is of gc-class 1.

Proof. Define a function f on V(G) in such a way that 9 f are a palr of
related-functions of G. Then Vo, = V5, and S = {v € V;, : N(v) C V; 5} =
{v € Va, : N(v) C Va,}. Sothe condition that the g.-core of G is S—peelable is
equivalent to the condltlon that the f-core of G is S-peelable. By Corollary 2.1,
G is of f-class 1. Also, by Theorem 2.1, G is of g.-class 1. ]

For regular graphs, Corollary 2.1, Corollary 2.2 are strictly stronger than
Theorem 1.3 (1), (2), respectively. See the example in Fig. 1. For a subset
T =V(G)\ {w, z}, the graph G in Fig. 1 (1) is not T-peelable because each
vertex of G is adjacent to at least 4 vertices of . When g(w) = g9 (R
f(w) = f(z) =2 and g(‘) f(v) =1 for each v € V(G) Ib w,z v as in 1cated
in Fig. 1(2 ), S={veV,,: N(v)CVA, ={veVs, :N(v)CVs}=1{rg
Clearly, the f-core (g.-core) of G is S-peelable. So G is of f- class 1 and of
gc~class 1 by Corollary 2.1 and Corollary 2.2.

Furthermore, by reassigning functions f,g, we can give an example for a
graph G of f-class 2 (of g.-class 2). When g(p) = g(y) =0, f(p) = f(y) =2
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and g(v) = f(v) = 1 for each v € V(G)\{p, y}, the f-core (g.-core) of G contains
two components A and B. Noting that{S ={veVa :N@v)CVal}={ve
Vs, : N(v) € V5,} = {r,s,t}, the f-core (g.-core) of G is not S-peelable. For
the components B, |E(B)| = 19 > Ag(B) x [-f-ﬂl-z@)lj =6x [f] =18 By
Theorem 3.1, B has no f-coloring with Ay(B) = Af(G) colors. Therefore G

is of f-class 2 and of g.-class 2 when g(p) = g(y) = 0, f(») = f(y) = 2 and
g(v) = f(v) =1 for each v € V(G) \ {p,y} by Theorem 2.2 and Theorem 2.1.

L))

Fig. 1. (1) A regular graph G.
(2) The f-core (g.-core) of G when g(w) = g(2) =0, f(w) = f(z) =2 and
g(v) = f(v) =1 for each v € V(G) \ {w, 2}.
(3) The f-core (gc-corcj) of G when g(p) = g(y) =0, f(p% = f(y) =2 and
g(v) = f(v) =1 for each v € V(G)\ {p,y}-

3 Nonregular graphs

Let A(V) = 3 cv(c) A(v). The following results have symmetrical forms.
Theorem 3.1 (5] Let G be a simple graph with m edges. Then G is of f-class
2ifm>A.(6) |42

Theorem 3.2 Let G be a simple graph with m edges. Then G is of g.-class 2
if m < 8,(G)[ L.

Proof. If G is of g.-class 1, then, for any g.-coloring of G with d4(G) colors,
there are at least [912‘9-] edges colored with a same color. This contradicts with

that m < §,(G)[ £2]. ]
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For a nonregular graph G with a pair of related-functions g, f, there is not
always coincident classification results between f-coloring and g.-coloring. In
Fig. 2, the graph G is of f-class 1 and the graph G is of g.-class 1 as indicated.

However, G, is of g.-class 2 because |E{(G1)| =8 < Jg(Gl)[-"-%Q] =3x3=9;
Gy is of f-class 2 because |[E(Gs)| = 10 > Af(G2)|[ £ =3x3=09.

Fig. 2. (1) Graph G; with an f-coloring with 3 colors, where g(z) = 1,
f(x) =2 and g(v) = f(v) = 1 for each v € V(Gy) \ {z}.
(2) Graph G with a g.-coloring with 3 colors, where g(y) = 1, f(y) = 2 and
g(v) = f(v) =1 for each v € V(G2) \ {3}

In Fig. 2(2), (G2)a, = G —y has an f-coloring with 3 colors. However, G is
of f-class 2. It means that the result in Theorem 2.2 is not true for a nonregular
graph. Similarly, by the example in Fig. 2(1), we know that Theorem 2.3 is not
true for a nonregular graph. Here we give two results, the former of which is
similar to Theorem 2.2 and the latter of which is similar to Theorem 2.3, under
an extra constrain respectively. Especially, the two examples in Fig. 2 show
ug that the bounds in the degree conditions of the following two theorems are
sharp.

Theorem 3.3 Let G be a simple graph. Suppose that Vo, # 0 and d(v) <
Ap(G)(f(v) = 1) +1 for each v € V(G)\ Va,. Then G is of f-class 1 if and
only if the f-core of G has an f-coloring with As(G) colors.

Proof. The proof is similar to the one of Theorem 2.2. Clearly, we only
need prove the sufficiency. If V(G) = Va,, we are done. Let |V(G)| = n,
k= As(G) and C = {c},...,cx}. Assume that V(G)\ Va, = {wy,wa,..., v},
1 <t < n-1, and Ga, has an f-coloring 7 with & colors in C. Denote
G; = G- {w,wy,...,w;} (i = 1,2,...,t). Basing on 7, we can obtain an
f-coloring of G;_1 with k colors in C as follows. If dg,_,(w:) = 0, we are
done. Otherwise, for each edge of {wyu € G;_;}, we color w,u with a color
in M(u) = {c € C: c(u) < f(u)}. Clearly, c(v) < fg)) for each ¢ € C and
each v # w, in G_y. If ¢(w,) < f(w,) for each ¢ € C, this is an f-coloring
of Gy_1 with & colors in C. Otherwise, there exists a color 8 € C such that
B(w) 2 f(w) + 1. Since d(w) < k(f(w) — 1) + 1, there must exist another
color v € C such that 'y(ua) <f (wg — 2. Construct a B~v-alternating walk W
starting at w,. Switching W makes f(w,) decrease by 1 or 2 and y(w;) increase
by 1 or 2, respectively. Note that there is still y(w,) < f(w,;) and ¢/ (v) does
not decrease for each v with ¢/(v) = k after switching W. Use the operation
until ¢(w,) < f(w,) for each ¢ € C. If t = 1, we are done. Otherwise, basing on
an f-coloring 7; of G;_; with k colors in C, we can get an f-coloring of Gy_;_;
with k colors in C with same operations, for each 1 < ¢ <t — 1. (Note that
Go =G.) So, G is of f-class 1.
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Theorem 3.4 Let G be a simple graph. Suppose that Vs, # @ and d(v) >
84(G)g(v) +1) —1 for eachv € V(G)\Vs,. Then G is of gc-class 1 if and only
if the degree restoration subgraph of G based on the g.-core has a g.-coloring
with §4(G) colors.

Proof. We only need prove the sufficiency. If V(G) = V;,, we are done. Let
[V(G)] = n, k = 84(G) and C = {ey,...,cx}. Assume that V(G)\ Vs, =
{wy,wa,...,we}, 1 <t < n-1,and (Gs,)*, the degree restoration subgraph
of G based on Gs,, has a gc-coloring 7 with k colors in C. Denote G; = G —
{wy,wa,...,w;} (i = 1,2,...,t). Basing on 1 and (Gj,)*, we can obtain a g.-
coloring of (G;~1)* with k colors in C as follows: For each edge of {w,u € G,_1},
we add the edge wyu to (Gs, )*, color wyu with a color of a new pendent edge uv/,
where uu’ € E((Gs,)*) \ E(Gs,), and then remove the edge uu'. If necessary,
we add some new pendent edges at w, to obtain the graph (G,_;)* and color
the pendent edges with a color in C. Clearly, ¢(v) 2 g(v) for each ¢ € C and
each v # wy in (Ge—1)*. If c(w) > g(w,) for each ¢ € C, this is a g.-coloring
of (G¢-1)* with k colors in C. Otherwise, there exists a color 8 € C such that
B(we) < g(we) — 1. Since d{w,) > k{g(w:) + 1) — 1, there must exist another
color 4 € C such that 'y(zc{) > g(w:) + 2. Construct a vyf-alternating walk W
starting at wy. Switching W makes y(w;) decrease by 1 or 2 and B(w;) increase
by 1 or 2, respectively. Note that there is still y(w;) > g(w;) and a4(v) does
not decrease for each v with g,(v) = k after switching W. Use the operation
until c{w;) > g(w;) for each c € C. If ¢t = 1, we are done. Otherwise, basing
on a ge-coloring 7; of (Gy—;)* with k colors in C, we can get a g.-coloring of
{Gy—i-1)* with & colors in C with same operations, for each 1 < i <t - 1.
(Note that (Go)*t = G.) So, G is of g.-class 1. [ |

When f, g are a pair of related-functions on G, the f-core of G has an f-
coloring with Ag(G) colors if and only if the degree restoration subgraph of
G based on the g.-core of G (which is same to the f-core of G in this case)
has a gc-coloring with 84(G)(=4;(G)) colors. So we can obtain a coincident
classification result between f-co{oring and g.-coloring for simple graphs by
Theorem 3.3, Theorem 3.4 and Corollary 1.1.

Theorem 3.5 Let G be a simple graph, f, g be a pair of related-functions on G
and k = Af(G) = 6,(G). When k(g(v) +1) —1 < d(v) < k(f(v) - 1)+ 1 for
each v € V(G)\ V*, G is of f-class 1 if and only if G is of g.-class 1.

Remark 2. The degree conditions that d(v) < k(f(v) — 1) + 1 for each
v € V(G) \ Va, is not sufficient for a simple graph G to be of f-class 1, and
the degree condition that d(v) > k(g(v) +1) — 1 for each v € V(G)\ V5, is
not sufficient for a simple graph G to be of g.-class 1. See the example in
Fig. 3. Clearly, k = Ap(G) = 6,(G) = 3, Va, = V5, = V(G)\ {z} and
3(g(z)+1)—1 < d(z) < 3(f(x)—1)+1. It is well known that any component of
G — z has no f-coloring with 3 colors. This means that G — z, the f-core of G,
has no f-coloring with 3 colors and (G — z)*, the degree restoration subgraph
of G based on the g.-core of G, has no g.-coloring with 3 colors. So G is of
f-class 2 and g.-class 2.
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By Theorem 3.3, the following result is easy to be verified with a proof
similar to the one of Corollary 2.1.

Corollary 3.1 Let G be a simple graph, Va, # 0, d(v) < Af(G)(f(v) - 1) +1
for each v € V(G)\ Va, and S = {v € Va, : N(v) C Va,}. If the f-core of G
is S-peelable, then G is of f-class 1.

By Theorem 3.4, the following result is ready to be verified.

Corollary 3.2 Let G be a simple graph, Vs, # 0, d(v) 2 d,(G){g(v) +1) -1
for eachv € V(GY\ Vs, and S = {v € Vs, : N(v) C V5,}. If the gc-core of G is
S-peelable, then G is of g.-class 1.

Proof. Let C = {c1,c¢2,...,¢5,(¢)} be a color set. Clearly, we can get a g-
coloring n (not gc-coloring ) of Gs, with the d,(G) colors in C because the
gc-core of G is S-peelable. Basing on 7, we can obtain a g.-coloring of (Gs,)*,
the degree restoration subgraph of G based on Gj;,, with the d,(G) colors in
C as follows: For each pendent edge uu' in E((Gs,)*) \ E(Gs,) with u € V;,,
color uu’ with a color in {c € C : c(u) < g(u)}. (Note that g(u’') = 0 for each
end vertex with degree one in these pendent edges in E((Gs,)*)\ E(Gs,).) By
Theorem 3.4, G is of g.-class 1. | |
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