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Abstract: An edge-colored graph G is (strong) rainbow connected if any two
vertices are connected by a (geodesic) path whose edges have distinct colors.
The (strong) rainbow connection number of a connected graph G, denoted by
(sre(G)) rc(G), is the smallest number of colors that are needed in order to make
G (strong) rainbow connected. The join Py V P, of P, and P, is the graph
consisting of P, U P, and all edges between every vertex of P, and every vertex
of P,, where P, (resp. P,) is a path of m (resp. n) vertices. In this paper, the
precise values of r¢(Pm V P,.) and src(Pm V Pr) are given for any positive integers
m and n.
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1 Introduction and notations

We follow Bondy and Murty {1] for graph-theoretical terminology and notation
not defined here. Let G be a graph with vertex set V(G) and edge set E(G). A
sequence P, = v v2... v, of vertices in a graph G such that any two consecutive
vertices are adjacent is a path between v, and v,, a vi-v, path for short. The
length of a path is the number of edges it contains. A graph G is connected if
for any two vertices u and v, there exists a u-v path. The distance d(u,v) =
dc(u,v) between two vertices u and v in a connected graph G is the length of
a shortest u-v path. The maximum distance among all pairs of vertices of G is
the diameter of G and is denoted by diam(G). If G and H are vertex-disjoint
graphs, then the join GV H of G and H is the graph consisting of GU H and all
edges between every vertex of G and every vertex of H. The Cartesian product
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X1 x Xoa x...x Xm of nonempty set X; for ¢ = 1,2,...,m is the set of all
ordered m-tuple (z1,z2,...,ZTm), where z; € Xj, that is, X; x Xo x ... x X, =
{(z1,22,...,Zm) : i € X; for any i = 1,2,...,m}. And we simply write X™ for
Cartesian product of the m sets X

Let G be a nontrivial connected graph on which an edge-coloring ¢: E(G) —
{1,2,...,k}, k € N, is defined, where adjacent edges may be colored the same. A
path is a rainbow path if no two edges of it are colored the same. An edge-coloring
graph is said to be rainbow connected if every pair of vertices is connected by at
least one rainbow path. An edge-coloring ¢ under which G is rainbow connected is
called a rainbow coloring of G. If k colors are used, then c is a rainbow k-coloring.
The rainbow connection number of a connected graph G, denoted by r¢(G), is the
smallest number of colors that are needed in order to make G rainbow connected.
For any two vertices u and v of G, a rainbow u-v geodesic in G is a rainbow u-v
path of length d(u,v). The graph G is strongly rainbow connected if there exists a
rainbow u-v geodesic for any two vertices « and v in G. In this case, the coloring
c is called a strong rainbow coloring of G. If k colors are used, then c is a strong
rainbow k-coloring. The strong rainbow connection number of a connected graph
G, denoted by src(G), is the smallest number of colors that are needed in order
to make G strongly rainbow connected.

The concept of rainbow coloring was introduced by Chartrand et al. [4]. For
a general graph G, there are lots of bounds on rainbow connection number (see,
for example, (2, 3, 5, 6, 7, 8, 9, 10]). However, there are very few results about
strong rainbow connection number (see [4]). In [4], Chartrand et al. computed
the precise (strong) rainbow connection number of serval special graph classes
including Petersen graphs, complete graphs, cycles, trees, wheel graphs, complete
bipartite graphs and complete multipartite graphs. In this paper, motivated by
the results of the special graph classes in [4], we will compute the precise (strong)
rainbow connection numbers of join P V P, for any positive integers m and n.

2 Main results

In {4], the authors derived the following result.

Theorem 2.1 ([4]). Let G be a nontrivial connected graph. Then
(a) sre(G) =1 if and only if G is a complete graph.

(b) rc¢(G) = 2 if and only if src(G) = 2.

Theorem 2.2. For any positive integers m and n with m < n,

_ 2’ zfn = 3:
src(Pm V Pa) = { [ %/%), otherwise.

Proof. Since PV P, P, V P, and P, V P; are complete graphs, src(Py V P1) =
src(P1 V P2) = sre(P2 vV P2) = 1 by Theorem 2.1, implying that sre(Pn V Pr) =
1=[%/Flform<n<2 Let Pn=vv2...0m and Pn = wiuz...un.
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Assume that n» = 3. Since Pm V P; is not complete, where m € {1,2,3},
scr(Pp V P3) > 2 by Theorem 2.1. In order to show ser(Prm Vv P3) < 2, we now
provide a strong rainbow 2-coloring ¢: E(Pm V P3) — {1,2} of Pn V P3 such
that c(uiuit1) = c(vivi41) = i and c(usv;) = 1 for all ¢ and j, implying that
ser(Pr V P3) € 2. As aresult, we have scr(Py, V P3) = 2. Hence we may assume
that n > 4. Let ['(/'g'] = k. Then it is easy to see that £k > 2. Note that

k—1< /% < k. Therefore, 3(k —1)™ +1 < n < 3k™.

First, we claim that src(PmVP,) > k. Suppose, to the contrary, that sr¢(PmV
P.) < k—1. Then there exists a strong rainbow (k—1)-coloring c: E(PmVP,) —
{1,2,...,k =1} of PV P,. For 1 < i < n, we can associate an ordered m-tuple
code(u;) = (ai1,ai2, . .. ,aim) called the color code of u;, where a;; = c(u.v;) for
1< j<m. Sincel < a;; < k-1 for all 7 and j, the number of distinct color
codes of the vertices of P, is at most (k—1)™. However, sincenn > 3(k—-1)™ +1,
there exists S C V(P,) such that |S| > 4 and all vertices in S have the same
color code. This implies that there exist at least two vertices ua,us € § such
that |a — b| > 3 and c(uqv;) = c(upv;) for 1 < j < m. Thus, there is no rainbow
u.-up geodesic in P, V P,, a contradiction to our assumption that c is a strong
rainbow (k — 1)-coloring.

Next, in order to show that src(PmVP,) < k, we will provide a strong rainbow
k-coloring c of P, VP,,. Let A={1,2,...,k} and B={1,2,...,k—1}. Let A™
and B™ be Cartesian products of the m sets A and m sets B, respectively. We
observe that |[A™| = k™ and |B™| = (k- 1)™. Hence 3|B™|+1 < n < 3|A™|.
Let the color code code(u;) = (2i1,a:i2,...,aim) € A™ for 1 < i < n, where
ai; = c(uiv;) for 1 < j < m. We consider two cases as follows.

Case 1. k>3, ork=2and m<3,ork=2and3-2" ' +1<n<3 2™

Let code(usi+1) = code(ugi+2) = code(usiys) € A™ for i € {0,1,2,...} such
that code(u;) € B™ for 1 < i < 3(k —1)™. Note that n < 3k™. Therefore, we
may assume that code(usi+1) # code(usjt1) for § > ¢ > 0. This implies that
code(u;) # code(u;) for all ¢ and § with [¢ — j| > 3. We now provide a strong
rainbow k-coloring ¢: E(Pr V Pn) — {1,2,...,k} of Py V P, defined by

1, if e = u;u;4y for odd integer 7, or if e = v;vi41 for odd integer i,
c(e) = 2, if e = u;u;4; for even integer ¢, or if e = v;v;41 for even integer ¢,
aij, if e=wu;v; for all ¢ and j.

Now we show that c is a strong rainbow k-coloring of P, V P,. It is easy to see
that u;v; is a rainbow u;-v; geodesic for i € {1,2,...,n} and j € {1,2,...,m}.
Let1<a<b<n Ifb=a+1 (resp. b=a+2), then uqup (resp. uauatius) is
a rainbow u.-up geodesic. Hence we may assume that b > a + 3. Recalling that
code(ua) # code(us), there exists some ! with 1 < 1 < m such that code(u,) and
code(us) have different [-th coordinates. Therefore, c(uav) # c(upvr), implying
that uavius is a rainbow u,-up geodesic.

It remains to show that there exists a rainbow va-vp geodesic for 1 < a <
b<m Ifb=a+1 (resp. b = a-+2), then vouy (resp. vavVa+1up) is a
rainbow ve-vp geodesic. This implies that if m < 3, then clearly there ex-
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ists a rainbow v,-vs geodesic. Hence we may assume that b > a + 3. Note
that code(usi+1) = code(usi+2) = code(usiys) € A™ for ¢ € {0,1,2,...}, where
code(ugi+1) # code(usj41) for j > @ > 0, and code(u;) € B™ for1 < ¢ < 3(k—1)™.
Therefore, if k > 3, then there exists some ! € {1,2,...,3(k — 1)™} such that
c(urva) # c(wvs), implying that vawvy is a rainbow ve-vp geodesic. If k = 2
and 3-2™"1 4+ 1 < n < 3-2™, then there exists some ! € {1,2,...,n} such that
c(wva) # c(uivs) (otherwise, n < 3 - 2™~ since code(uzi+1) = code(uaiy2) =
code(usi43) € A™ for any i € {0,1,...}, a contradiction), implying that veuvs
is a rainbow v,-vp geodesic. Then it follows that c is a strong rainbow k-coloring
of PV P,.

Case 2. k=2and4<m<n<3.-2m},

For 1 € 4,7 < m,leta;j =1ifi=7and a;; = 2 otherwise. And let

code{Uum+3i+1) = code(um+3it+2) = code(um43ivs) for anyi € {0,1,2,...} and let
code(um+3i+1) # code(um43j+1) for 7 > 7 > 0. Note that for m > 4,
n—m 3.2m"1 _m
7| St [———
Therefore, we may assume that code(um+3i+1) # code(u;) for i € {0,1,2,...}
and j € {1,2,...,m}. This implies that code(u;) # code(u;) for all i and j with
|¢ - j] > 3. We now provide a strong rainbow 2-coloring ¢: E(Pn. V P,) = {1,2}
of Pn V P, defined by

{ 1, if e = u;ui4q for odd integer ¢, or if e = v;vi41 for odd integer ¢,
c(e) =

m+[

]=2’""+m+[l321 <™ lyem<c 2™

2, if e = uw;u;4 for even integer %, or if e = v;vi4) for even integer 1,
aij, if e =wu;v; for all 7 and j.

Now we show that c is a strong rainbow 2-coloring of P, vV P,. Clearly u;v; is
a rainbow u;-v; geodesic for 1< i<nand1<j<m Letl<a<b<m If
b = a + 1, then clearly v,vs is a rainbow ve-vs geodesic; otherwise, vauqvp is a
rainbow ve-vp geodesic since aii =1 and a;; =2for1 <i<j<m.

It remains to show that there exists a rainbow ugs-u; geodesic for 1 < a <
b<n Ifb=a+1 (resp. b =a+2), then clearly uaus {resp. uauat+iusp)
is a rainbow uq-u; geodesic. Hence we may assume that b > a + 3. Recalling
that code(u,) # code(us), there exists some [ € {1,2,...,m} such that code(u,)
and code(us) have different [-th coordinates. This implies that c(uqv) # c(upwi)
and hence u,viu is a rainbow uq-up geodesic. Then it follows that ¢ is a strong
rainbow 2-coloring of P, V P,. a

Theorem 2.3. For any integers m and n with m < n,

1, ifn<2,
re(PmnVP)=¢ 2, if3<n<3 2™
3, otherwise.

Proof. By Theorem 2.2, we have 7¢(Pp V Pn) < sre(Pm V Py) =
n < 2 and hence rc(Pm V P,) = 1. Since src(Pm V Pn) = 2 fo
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by Theorem 2.2, it follows from Theorem 2.1 that re(Pm V Pp) = 2. Note that
s7¢(PmV Pp) = [ %/%] 2 3 forn > 3-2™ +1 by Theorem 2.2 and r¢(Pm V P) 2
diam(Pm V P,) = 2. Hence by Theorem 2.1, r¢(Pn, V P,) > 3 forn > 3-2™ + 1.
We now show that rc(Py V P,) < 3forn > 3-2™ + 1. Let Pn = v1v2...Um
and P, = ujuy...un. In this case, we now provide a rainbow 3-coloring c:
E(Pn Vv P,) = {1,2,3} of P, V P, defined by
1, ifi=3+1fork>0and1<j<m,
c(uiv;) =< 2, ifi=3k+2fork>0and1<j<m,
3, ifi=3k+3fork>0and1<j<m,

3, ifi=3k+1fork>0,

C(u,”u,"+1) = l, ifi =3k + 2 fOl' k 2 0,

2, ifi=3k+3fork>0,
and ¢(vjvj+1) = 1for 1 < j < m—1. Now we show that ¢ is a rainbow 3-coloring
of Pn vV P,. It is easy to see that u;v; is a rainbow u;-v; path for all 7 and j.
And we observe that v;ujuzv; is a rainbow v;-v; path for 1 < 7 < j £ m. Let
1<i<j<n Ifj <i+3, then uiuis1...u; is a rainbow u;-u; path; and if
7 2 i+ 4, then u;vju; or uiuiy1v14; is a rainbow u;-u; path. As a result, cis a
rainbow 3-coloring of P, V P, and hence r¢(Py, V P,) < 3. Therefore, we have
re(PnVP,)=3forn>3-2"+1. o
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