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Abstract. Let P, denote the n-th Catalan-Larcombe-French number. Re-
cently, the 2-log-convexity of the Catalan-Larcombe-French sequence was
proved by Sun and Wu. Moreover, they also conjectured that the quo-
tient sequence {%};’f;o of the Catalan-Larcombe-French sequence is log-

concave. In this paper, this conjecture is confirmed by utilizing the upper
and lower bounds for %l_'—] and finding a middle function f(n).
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1 Introduction

Consider the infinite sequence
{P.}olo ={Po, P, P2, P53, Py,---} = {1, 8, 80, 896, 108186, -},

known as the Catalan-Larcombe-French sequence (Sequence No. A053175
in Sloane’s database [6]). In their delightful paper [2], Larcombe and French
developed a number of properties of P,. The sequence satisfies the following
recurrence relation:

8(3n%2 - 3n+1 128(n — 1)?
P, = __(_"112—".2&_1 — _(",:T—)"Pﬂ-% (1.1)

for n > 2, with the initial values given by Py = 1 and P, = 8. For more
details, see [1, 2, 3, 4, 5].

Recently, some combinatorial properties for P, have been proven. Zhao
[11) studied the log-behavior of the Catalan-Larcombe-French sequence and
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proved that the sequence {P,}52, is log-balanced. Recall that an infinite

sequence {a,}%%, is said to be log-concave (respectively, log-convex) if for

any positive integer n,
a,z1 > an-1Gn41, (respectively, a?, < @n-1Gn41)-

Xia and Yao [8, 9, 10] proved that the sequences {Eﬁﬂ};ﬁo and { P},
are strictly increasing. Very recently, Sun and Wu (7] proved that the
sequence {P,}52 is 2-log-convex. Furthermore, Sun and Wu [7] presented
the following conjecture:

Conjecture 1.1 The quotient sequence {75%:_:}?=1 of the Catalan-Larcombe-
French sequence is log-concave, equivalently, for alln > 2,

Pa_oP3 > P P3_,. (1.2)

The aim of this paper is to prove Conjecture 1.1 by using the upper and
lower bounds of T,F."_'T and finding a middle function f(n).

2 Proof of Conjecture 1.1
In order to confirm Conjecture 1.1, we first prove some lemmas.

Lemma 2.1 Forn > 48,

(2.1)

Proof. We prove this Lemma by induction on n. It is a routine to verify
that (2.1) holds for n = 48. Assume that Lemma 2.1 is true for n = m > 48,
that is,

16 18 P,
<

In order to prove this lemma, it suffices to prove that this lemma is true
for n = m + 1, namely,

16 18 Pt
m+1 (m+1)3 Pn

16 — (2.3)
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Thanks to (1.1) and (2.2),

Pmi1 _ 8(3(m+12=3(m+1)+1)  128m® Py

P (m+1)2 (m+1)? P,

S 8(3(m+1)2—3(m+1)+1)  128m? 1
(m+1) (m+1)216- £ - 1§
_ 8(16m® — 16m® — 35m? — 2Tm — 9) (2.4)
T (m+1)2(2m —3)(dm2 +2m +3) ‘
Thanks to (2.4),
Pogr (1o 16 18
P m+1 (m+1)3
L 8(16m® ~16m® —35m? ~27m ~9) (/. 16 _ _ 18
(m+1)2(2m — 3)(4m2 + 2m + 3) m+1 (m+1)3

3_ 2 _ _
2(4m?® — 176m? — 72m — 117) >0 (2.5)

(m+1)2(2m - 3)(4m2 +2m+3) = '

which yields (2.3). This completes the proof of this lemma by induction. §

Lemma 2.2 For n > 48,

Py Paa

Pz < f(n), (2.6)
where
_ (8n3 +4n? —2n — 9)(2n — 1)3
fn) = (2n + 1)3(8n3 — 20n2 + 14n — 11)° (2.7)
Proof. Set
8(3n2 -3n+1
a(n) = (_nz__> 2.9
and
128(n - 1)2
bn) = _%' (2.9)
It is easy to verify that for n > 48,
a’(n+ 1) +4f(n)b(n+1)
=i 0, (2.10)

=¥ D)A(2n F 1)3(8n® — 202 ¥ 1dn —11)
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where ¢(n) is a polynomial in n. Moreover, it is easy to verify that for
n >0,
16 18
27w (16- 35 - 15 ) —atn+1)
4d(n)

T (2n + 1)3(8n3 — 2002 + 14n — 11)(n + 1)2n3 >0 (2.11)

2
(2f(n) (16 - -1-7—? - %) —a(n + 1)) — (e} (n + 1) + 4f(n)b(n + 1))

_ 16(2n — 1)3(8n3 + 4n? — 2n — 9)e(n)
= 78(n + (@0 + 1P (8 —20m2 T 1dn—11) ~ (2.12)

where d(n) and e(n) are polynomials in n. It follows from (2.10), (2.11)
and (2.12) that for n > 0,

16 18 S a(n+1) + /a?(n + 1) + 4f(n)b(n + 1).

16 — — =3 () (2.13)
In view of (2.1) and (2.13),
P, S a(n+1) + /a?(n + 1) + 4f(n)b(n + 1)
Pn—l 2f(n) '
which implies that for n > 48,
P, \* P,
f(n) (Pn—1> —a(n-l—l)Pn_l —b(n+1)>0. (2.14)
Thanks to (1.1),
P. \° P,
F(R)P2 = Po_yPayy = P2_, (f(n) (P n ) —a(n+1)5 " —b(n+ 1)) .
n-1 n—1
(2.15)

Lemma 2.2 follows from (2.14) and (2.15). This completes the proof. 1
Lemma 2.3 For n > 48,
PPy

where f(n) is defined by (2.7).
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Proof. Let a(n) and b(n) be defined by (2.8) and (2.9), respectively. It is
easy to check that for n > 48,

a’(n+1) +4f(n+1)b(n +1)
64g(n)

“mF DI P a2 =9) (2.17)
and
2f(n+1) (16— lng - 111_2) —a(n+1)
L 0, (2.18)

=n:"(n +1)2(2n + 3)3(8n3 + 4n2 — 2n - 9) >
where g(n) and f(n) are polynomials in n. By (2.17) and (2.18),

a(n+1) - a2(n+1)+4f(n+1)b(n+1) <16 16 18

—. 2.19
2f(n+1) n nd (2.19)
Furthermore, it is easy to check that for n > 0,
16 16
2f(n+1) (16— 71' - n—s) —a(n+1)
_ 8k(n)
" n3(n+1)2(2n + 3)3(8n3 + 4n2 — 2n — 9) >0, (2:20)
and
(a*(n + 1) +4f(n + 1)b(n + 1))
16 16 2
- (2f(n+ 1) (16— - -n—s) —a(n+ 1))
3(8:,3 2
_512(2n + 1)%(8n’ + 28n® + 0n + D)s(n) 2.21)

" n8(2n + 3)8(n + 1)2(8n3 + 4n2 — 2n — 9)

where k(n) and s(n) are polynomials in n. Combining (2.17), (2.20) and
(2.21) yields

16 16 < a(n+1)+ va2(n+1) +4f(n+ 1)b(n + 1)

—-—— 2.22
16 n nd 2f(n+1) (2.22)
Sun and Wu {7] proved that for n > 6,
P, 16 16
p < 16— - (2.23)
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It follows from (2.19), (2.22) and (2.23) that for n > 48,

a(n+1) -V + D+ 4f(nF Do(n+1) _ Pa

2f(n+1) Pny
a(n+1)+ /a?(n+1) +4f(n + 1)b(n + 1)
< 2f(n+1) ’
which yields
2
fin+1) (PP"I) —a(n+1)PP"1 -bn+1)<0. (2.24)

In view of (1.1),
f(n+1)P} ~ Poo1Prsy

2
:ﬁ(ﬂn+n(éi) —dn+nﬁj-wm+n>. (2.25)

Lemma 2.3 follows from (2.24) and (2.25). This completes the proof. |
Now, we turn to prove Conjecture 1.1.

Proof of Conjecture 1.1. Replacing n by n — 1 in (2.16), we deduce that
for n > 48,

P,P,_
2522 > f(n). (2.26)
P‘n—l

In view of (2.6) and (2.26), we deduce that for n > 48,

Pn-Pn—2 > Pn+1Pn—1
Pl 12

(2.27)

It is a routine to verify that (2.27) also holds for 2 < n < 47. This completes
the proof of Conjecture 1.1. |

3 Summary

By establishing the upper and lower bounds for p}—:l: and constructing a

middle function f(n), in this paper, we provide a proof of the log-concavity
of the quotient sequence { )55: }32, for Catalan-Larcombe-French sequence

{Pn}%.4, which confirms a conjecture presented by Sun and Wu (7. Sun
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and Wu [7] also conjectured that the Catalan-Larcombe-French sequence
P, is oo-log-convex. Unfortunately, our method can not be used to prove
the oo-log-convexity of P,. Therefore, it is interesting to find a proof for
the oo-log-convexity of P,.

Acknowledgment. The authors would like to thank the anonymous ref-
eree for valuable corrections and comments which resulted in a great im-
provement of the original manuscript.
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