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Abstract

Let G° be an oriented graph obtained by assigning an orientation
o to the edge set of a simple undirected graph G. Let S(G°) be the
skew adjacency matrix of G°. The skew energy of G7 is defined as
the sum of the absolute values of all eigenvalues of S(G°). In this
paper, we give the skew energy order of a family of digraphs and
determine the oriented bicyclic graphs of order n > 13 with the first
five largest skew energies, which extends the results of the paper
[X. Shen, Y. Hou, C. Zhang, Bicyclic digraphs with extremal skew
energy, Electron. J. Linear Algebra 23 (2012) 340-355).
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1 Introduction

An important quantum-chemical characteristic of a conjugated molecule
is its total m—electron energy. The energy of a graph has closed links to
chemistry. Let G be a simple undirected graph and A(G) be the adjacency
matrix of G. Gutman [7] firstly defined the energy E(G) of G as follows:

E@G) =) I\,
i=1
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where Ay, Ag,..., A, are the eigenvalues of A(G). For more results about
graph energy, we refer the readers to the surveys [8, 9], the book [14] and
the recent papers [16, 18].

There are various generalizations of graph energy, such as the Randié
energy [5, 15], the distance energy [22], the incidence energy (2, 3] and
the energy of a polynomial (11, 17). In this paper, we focus on the skew
energy of a graph. Let G? be an oriented graph obtained by assigning
an orientation o to the edge set of a simple undirected graph G. The
skew adjacency matriz S(G?) = (sij) of G% is a real skew symmetric
matrix, where s;; = 1 and s;; = —1 if ij is an arc of G?, otherwise s;; =
s;ji = 0. Then the authors [1] defined the skew energy Es(G?) of an oriented
graph G? as the sum of the absolute values of all eigenvalues of S(G?). The
skew characteristic polynomial of G is defined as

Ps(G%;z) = det(zl — S(G°)) = ) _ bz"™".
=0
Since S(G?) is a real skew symmetric matrix, we have b2 (G?) > 0 and
bak+1(G?) =0 for all 0 < i < | %] (see [6]). Thus we have
L3]
Ps(G;3) =Y b (G7)z"%*.
k=0

By the coefficients of Ps(G?;z), the skew energy £5(G?) can be expressed
by the following integral formula as follows [13):

Es(G%) = = / ) In(1 + Z bzkt%)dt.
T J—o0 k=0

Thus £s(G?) is a strictly monotonically increasing function of bar (G?), k =
0,1,...,%]. Consequently, if G™* and H’? are oriented graphs with

bok(G®) > bor(H?) for each k (0 < k < [-'25]), (1)

then
£5(G1) > E5(H"). (2)

Equality in (2) is attained only if (1) is an equality for all 0 < & < |3 ].
If the inequalities (1) hold for all k, then we write G = H or H <X G.
If G = H, but not H > G, then we write G > H. That is exactly
the quasi-order relation defined by Gutman and Polansky [10] on graph
energy, which is generalized to the skew-energy of oriented graph. See
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6, 13, 19, 20, 23, 25] for some recent results about the spectrum and energy
of the skew-adjacency matrix.

Due to the coefficients bg;, > 0, it makes that the skew energy problem
is much easier than the adjacency energy problems. Particularly, as far as
the unicyclic and bicyclic graphs are concerned, Hou et al. [13] determined
the oriented unicyclic graphs with the minimum and the maximum skew
energy respectively. Subsequently, they also [19] characterized the bicyclic
digraphs with the minimum and the maximum skew energy respectively.
Very recently, Wang et al. [24] identified the bicyclic digraphs with the
second maximum skew energy. In this paper, we will determine the oriented
bicyclic graphs of order n > 13 with the first five largest skew energies,
which extends the results in [19, 24].

For the sake of completeness, we say something about the orientation of
G7 that already exists [19]. Let G? be an orientation of a graph G. If C is
an even cycle of G, then we say C is evenly oriented relative to G? if it has
an even number of edges oriented in the direction of the routing; otherwise
C is oddly oriented. Let W be a subset of V(G) and W = V(G)\W. The
orientation G° of G obtained from G° by reversing the orientations of all
arcs between W and W is said to be obtained from G® by a switching with
respect to W. Moreover, two orientations G° and G° of a graph G are said
to be switching-equivalent if G can be obtained from G° by a sequence
of switchings. As noted in {1], since the skew adjacency matrices obtained
by a switching are similar, their spectra and hence skew energies are equal.

It is easy to verify that up to switching equivalence there are just two
orientations of a cycle C: (1) Just one edge on the cycle has the opposite
orientation to that of others, we call it orientation +. (2) All edges on
the cycle C have the same orientation, we denote this orientation —. So
if a cycle is of even length and oddly oriented, then it is equivalent to the
orientation +; if a cycle is of even length and evenly oriented, then it is
equivalent to the orientation —. The skew energy of a directed tree is the
same as the energy of its underlying tree ([1]). So by switching equivalence,
for an oriented unicyclic graph or an oriented bicyclic graph, we only need
to consider the orientations of cycles. Simultaneously, we denote by T the
oriented tree and omit the superscript o since the skew energy of a directed
tree is independent of its orientations.

We denote by G* (resp., G™) the unicyclic graph on which the orienta-
tion of a cycle is of orientation + (resp., —), and denote by G* the unicyclic
graph on which the orientation of a cycle is of arbitrary orientation *. Let
C;,Cy be two cycles in bicyclic graph G with ¢ (¢ > 0) common vertices.
If t <1, then G contains exactly two cycles, and we denote by G%® the
bicyclic graph on which cycle C., is of orientation a and cycle Cy is of ori-
entation b, where a,b € {+,—,*}. If t > 2, then G contains exactly three
cycles. The third cycle is denoted by C,, where z = 2 +y—2t+2. Without
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loss of generality, assume that < z and y < z. Moreover, Let G*%¢
be the bicyclic graph on which cycle C; is of orientation a, cycle Cy is of
orientation b, C, is of orientation ¢, where a,b,c € {+,—,*}. The other
graphs used in this paper are shown in Fig. 1.

(Ph* ur (“' —5-a) GHa,n—-9-a)
: e L3N : O Pucgou Fa =
(“ n=y- a) G n ':-—(L)

Figure 1: Graphs used in the paper.

The rest of this paper is organized as follows. In section 2, some useful
lemmas are stated. In section 3, the quasi-order relations of some graphs
are discussed. In section 4, the oriented bicyclic graphs of order » > 13
with the first five largest skew energies are determined.

2 Some useful lemmas

Let G be a graph. A linear subgraph L of G is a disjoint union of some
edges and some cycles in G [4]. We call a linear subgraph L of G evenly
linear if L contains no cycle with odd length and denote by ££;(G) the set
of all evenly linear subgraphs of G with ¢ vertices. For a linear subgraph
L € EL;(G), denote by pe(L) (resp., po(L)) the number of evenly (resp.,
oddly) oriented cycles in L relative to G°.

Lemma 2.1 [12] Let G° be an orientation of a graph G. Then
b:i(G7) = Y (-2)p-WareD,
LeEL;

Lemma 2.1 implies that b2x(G°) = m(G°,k) for any orientation of a
graph that does not contain any even cycle, particularly for a tree or a
unicyclic non-bipartite graph.
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Lemma 2.2 [12] Let e = uv be an edge of G. Then
Ps(G%;z) = Ps(G° — e;x) + Ps(G° —u—v;x)

+2 Y Ps(G°-Ciz)-2 Y Ps(G°-Cjaz).
ecCe0d(G) ecCeEv(G?)

Corollary 2.1 [12] Let e = uv be an edge of G that is on no even cycle of
G. Then

Ps(G°;z) = Ps(G° — ¢;z) + Ps(G° —u —v; 7). (3)
By equating the coefficient of polynomials in Eq.(3), we have
bor(G?) = ba (G — €) + bog—2(G% —u —v). (4)
Furthermore, if e = wv is a pendant edge with pendant vertex v, then
bok(G7) = bor (G — v) + bok—2(G° —u —v). (5)

A k-matching M of a graph G is a disjoint union of k-edges. The number
of k-matchings of G is denoted by m(G, k).

Lemma 2.3 [13] Let e = uv be an edge of G of order n. Then

(1) m(G,k) = m(G — e, k) + m(G —u —v,k—1).

(2) If G is a forest, then m(G, k) < m(P,,k), k> 1.

(8) If H is a subgraph of G, then m(H, k) < m(G,k), k > 1. Moreover,
if H is a proper subgraph of G, then the inequality is strict.

We define m(G,0) = 1 and m(G,k) =0 fork > 3.

Lemma 2.4 [21] Leta+b=c+d with0<a<band0<c<d Let
a <c. Then

(1) if a is even, then m(P, U Py,1) = m(P,U P,,1). Furthermore, there
ezists ot least one index i such that the above inequality is strict.

(2) if a is odd, then m(P, U Py,i) < m(P, U Py,i). Furthermore, there
exists at least one index i such that the above inequality is strict.

Two results are immediately followed from Lemma 2.3 and 2.4.

Lemma 2.5 [19] Let F,, be a (oriented) forest of order n. Then F, X P,.
Equality holds if and only if F, = P,.

Lemma 2.6 [19] P, - PbUP, 2 > PLUP,_ 4 > - PorUP, o, >
Port1U P gk-1 > Pok—1 U Prokp1 > - = PaU P, 3> PLU Py,

Let B = {Uf(a,b)j0<a<b, a+b=n—-5}.
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Lemma 2.7 [25] Let k = |%52], t = |£] and £ = |%5}]. Then we have
the following quasi-order relation in B} :

Ut0,n— 5) - Ut (2,n=7) = --- = U (2t,n—5-2t) > U;*(2£+1 n—5—
20—1) > .- > U+(7 n—12) » U+(5 n—10) > U}(3,n—8) » Uf (1,n—6).

Let A} = BX\{Uf (5,n — 10), UF (3,n —8), UF (1,n - 6)}.

Lemma 2.8 [25] Let n > 31. The oriented unicyclic graphs of order n

with the first |_”—2'—gj largest skew energies are the oriented unicyclic graphs

in A},

3 The Quasi-order Relation in C;

Let ¢} = {Bfjt(e,n—-9-a)0 a<n—-9}and D} 5 = (R U
(P3_5_,)%|0 € a £ n—9}. In this section, we determine the quasi-order
relation in D}_ for n > 13, and then apply it to obtain the quasi-order
relation in C;} for n > 13.

Lemma 3.1 Let0<a < L"'loj
(1) If a is even, then P, U (P _s_a)t > Pag_g U(P, +4)+
(2) If a is odd, then Py U (Pi_g_.)* < Pao—a U (P2 )Y,

Proof. The conditions of the lemma shows that a < n—9—a. Let e; = uyv;
be the edge of P, U (P_s_,)* which connects the cycle C; and the path
P, _9_q, and e; = uyv; be the edge of P,_g_o U (P2, 4)* which connects
Cf and P,. By Lemma 2.2, we get

bok(PaU(Pa_s_a)¥) = bar(C{ UP U Po_g_a) +bak—2(PsU P, UPy_10-a),

bok (Pn—9—-aU(Piy4) 1) = bar(CFUPaUPr_o_o)+b2k—2(P3UPa_1UPr_g_a).
(1)Ifaisevenanda <n—9—a,thena—1lisoddanda—1<n—9—a.
By Lemma 2.6 we have that
Pa U Pn—lO—a - Pa-l v Pn—9—a-

Then bok(Pp U (Pr_5_0)%) 2 bor(Pr-g—a U (P2, 4)*") and there exists at
least one index k such that the above inequality is strict. Hence, P, U

(P:.—S—a) - Pn—9—a U ( +4)
(2)Ifaisoddanda <n—9—a,thena—~1lisevenanda—1<n—-9—a.
By Lemma 2.6 we have that

Pa U Pn—ll)—a < Pa.-—l U Pn—Q—a.-
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Then box(PaU(PA_s_a)*) < bor(Pr-9-aU(P2,4)") and there exists at least
one index k such that the above inequality is strict. Hence P,U(P3_5_,)* <
PogoU ( +4)+

This completes the proof. O

Lemma 3.2 Leta < b < [2512].
(1) If a is even, then P, U (P,‘,‘_s_a)“'" P U(Pi_ .
(2) If a is odd, then P, U(PA_o_.)* < P,U(Pi_,_,)*.

Proof Ifa<b< |252|, thena<n-9-g,a<n-10~q, b<n—-9-b
and b < n—10—b. Let e; = u v; be the edge of P, U (P3_s_,)* which
connects the cycle C; and the path P,,_g_,, and e; = ugvs be the edge of
P, U (P,‘f_s_b)"' which connects CZ’ and P,_g_p. By Lemma 2.2, we get

bok (PaU(Pa_5_a)T) = box(CT U P, U Pr_g_g) +bak—2(P3UPaUPy_10-a),

bok(PoU (Pa_s_p) %) = bok(CH U Py U Pr_g_p) + bok—2(P3U Py U Pr_10-b).
(1) If a is even and a < b, by Lemma 2.6 we have that

PoUP, g o> PoUP,_g_b, PaUPF,_10-a > PU Py_10-s.

Then bai(Pa U (PA_s_o)*) > bak(Py U (PA_s_,)*) and there exists at
least one index k such that the above mequallty is strict. Hence, P, U
(Pa_s_a)* = PoU(Pa_s_y)*.

(2) If a is odd and a < b, by Lemma 2.6 we have that

PaUPn—Q—a'<PbUPn—9—ba PaUPn—-IO—a *PbUPn—IO—b'

Then bo(P, U (Pi_5_.)%) < ba(Pp U (P, _5_b)+) and there exists at
least one index k such that the above inequality is strict. Hence, P, U
(Pi_s o)t < PyU (P p)*.

This finishes the proof. 0

Lemma 3.3 Let [252] <b<aanda'=n—-9—a.
(1) If o’ is even, then P, U(P3_g_,)* = P, U(Pi_,_.)*.
(2) Ifa’ is odd, then P, U (P3_s_. )t <P, U(P:_ o 7.

Proof. Set ¥ =n—9—b. Thena <V < ["'ij Let e; = uyv; be the
edge on the cycle C} of P, U (Pa_s_,)" such that u, is the vertex on the
path, and ez = uv, be the edge on the cycle Cf of P, U (Pi_;_,)* such
that u, is the vertex on the path. By Lemma 2.2, we get

bak(Pa U (Pa_s_a)*) = bak((Pdpa)* U Proo—a’)
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=bo(Par4+4 U Pag—ar) + box—2(P2 U Py U Py_g_g')
+ 2b2k—4(Pa' U Pn—Q—a’)»

and

bok(Po U (Pr_5-5)") = bak((Pyfra)* U Pao-v)
=bok(Py 44U Pr_g_p') + bok-2(P2U Py U Py_g_r)
+ 2box—4(Py U Pr_g_p').

(1) If @’ is even and o’ < &' < | 2523 |, by Lemma 2.6 we have that
ParygUPr_g_ar > PyryaUPn_g b, Par UPy_g_a ™ Py U P9y,

then we get box (P4 4)* U Pag—a’) 2 bax (P2 +4)T U Pa_g_p) and there
exists at least one mdex k such that the above inequality is strict. Thus,
bor(Pa U (PA_s_o)F) = baw(Pp U (P2_s_,)") and there exists at least one
index k such that the above inequality is strict. Hence, P, U (Pi_s_o)* >
PyU (P ).

(2) If a’ is odd and o/ < b’ < | 2532, by Lemma 2.6 we have that

Pa‘+4 U Pn—9—a’ = Pb’+4 u Pn—g—b’, Pa’ U Pn—!)—a‘ = Pb’ U Pn—Q—b’-

Then we get bar((Ply4)" U Paco—ar) < b2k((P4,+4)"' U P,_g_p) and there
exists at least one index k such that the above inequality is strict. Thus,
bor(Pa U (PA_g_o)F) < bow(Pp U (PA_s_,)*) and there exists at least one
index k such that the above inequality is strict. Hence, P, U (P, _5_a)+
PU(Pi_s )t

With the similar techniques to those of Lemma 3.2 and 3.3, it is easy to
obtain the following results by Lemma 2.4.

Lemma 3.4 (1) n = 1(mod4), Pns U (P,._s)+ > Pns U (P;__l)"' -
Pn—7 U (P,._.a ) - Pn-s U (P4_7)+
5= 25

(2)n = 3(modd), Pn-sU(P“_,)“" > PagzU(PAs)* = PazeU(PE)* >
Pu-s U (P -5)+

(3)n 2(mod4) Pocs U(P“- )* > Pncs U(P“_2)+ - P_,._?U(P_“z;,‘)"'
Paga U(Pho)*.

(4) n = 0(modd), PacaU(Phs)* = PagsU(PA)* > PacsU(PAL)* >
Pn_;;z U (P‘l_;a_)'*'.

Lemma 3.5 (1) Pa_gU (P{)* = PRoU(Pi_,)*.
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( (42) If)a+is even and 2 < a < | 2522, then Po_g_a U (P 4)* > Paj2 U
Pn—7—a .

£3) If(iis odd and1 < a < [";12J, then P,_q_o U (P:+4)+ < P,ioU
(Pn-7~a) .

Proof. (1) We can choose the edge e; = u,v; on the path P,_g of P,_o U
(Pt which connects P, and P,_11, and the edge e; = uv; on the path of
the uncyclic graph (P2_;)* of P,U(P3_,;)* which connects Cy and P,_1;.
By Lemma 2.2 we get

bok(Pr—g U (p3)*) = bak(CH U Po U Pa_11) + bak—2(CF U PLU Pa_y2),

and
bok(PaU (pA_7)*) = bor(CF U Pa U Pa_11) + bok—2(P3 U Py U Py_v2).

Easily to verify that C} U P, = P;U Pa. So, bax—2(CH U P U P,_y2) >
bok—2(P3 U P2U P,_12). Then, box(Pr-o U (p})*) = box(P2 U (Pi_7)*) and
there exists at least one index k such that the above inequality is strict.
Hence P,_gU (P)* = P,U (PA_)* .

(2) By Lemma 2.1 we have that

bok(Pn—g—a U (Ph,4)T)
=m(P} 4 UPog_o,k) +2m(PaU Prg_q,k—2)
=m(Pypq U Pag—o, k) + M(PyU Pa_g_g,k — 1)
+3m(PaU Py_g_q,k —2),

and

bok(Paya U (Pa_q_g)*)
=m(Pa_4_oUPoro, k) +2m(PayaVU Pa_11_0,k —2)
=m(Poy2U Py_7_g, k) + M(PayoUPr_11-4,k—1)
+3m(Pay2U Pa_11-a,k —2).

By Lemma 2.3, we get

bak(Pr9—a U (Pays)?) — bok(Pas2 U (Pa_7_,)")
=m(Pat+a U Pr_g—q,k) + m(Pa U Pp_g_qg,k —1)

+3m(PaUPpg_g,k—2)—m(Pay2U Pr_7_q,k)

- m(P,,.,.g UP,_j1—a,k — 1) - 3m(Pa+2 UPy_11-a,k— 2)
=m(Py41 U Poga, bk — 1) — m{Pota2 U Py_10-a,k—1)

273



+ m(Pa UP, g0, k— 1) -+ 3m(Pa UP,_g_qg,k— 2)

- m(Pa+2 UPril—ak — 1) - 3m(P,,+2 UPy_11—a,k — 2)
=m(P.,+1 UP,_10-a,k— 1) =+ m(Pa UPu_11—a,k— 2)

+ m(P.,..l UPr_11—ak — 3) -— m(Pa+1 UPr_10—a, k — 1)

- m(Pa UPp_11wa, bk — 2) - m(Pa U Pn—lz—a’k - 3)

+m(PaUP11-aU Po,k — 1) + m(Pa UPy_12—a,k—2)

+3m(PaUPa11-a U Py, k — 2) + 3m(Ps U Pa_12-0, k — 3)

—m(Py UP,U Pa11a k= 1) = m(Py_1 U Pa11-ak —2)

= 3m(Pa U P, U P10,k —2) — 3m(Pac1 U Pa_11-a, k — 3)
—2m(Py U Pa13—a,k —3) — 2m(Pa_y U Pa_11—ar k = 3)

+ Py U Pa_12—a,k —2) — m(Pacy U Pai1oa k — 2).

If a is even and 2 < a < | 252, then by Lemma 2.4 we have
m(Pa UP, —12—ay k— 2) 2 m(Pa—l UP, —1l—a» k— 2)»

and
m(PaU Pp_y2_g,k —3) 2 m(Pa—q U Pp_y1-a,k — 3).

Furthermore, there exists at least one index k such that the above inequality
is strict.

So, we have box(Pr—9—a U (P2, 1)) = box(Pay2 U (Pa_7_,)") and there
exists at least one index & such that the above inequality is strict. Then
Pn—9—a U (P:+4)+ >~ Pa+2 U (P:—7—a)+'

(3) If a is odd and 1 < a < | 25!2], then by Lemma 2.4 we obtain

m(Pa UPR —1‘2—aak - 2) < m(Pa—l UPu11-a k— 2),

and

m(P, U Py_y2-0,k —3) S m(Pa—q U Pp11—g,k — 3).
Furthermore, there exists at least one index k such that the above in-
equality is strict. Therefore, we have bak(Pn_g—q U (P2 4)*) < bog(Paga U
(PA_;_,)%) and there exists at least one index & such that the above in-
equality is strict. Thus, Pr_g_q U (P2, )t < Pay2 U (Pi_;_,)*. a

From Lemmas 3.1-3.5, we can easily obtain the following results.

Theorem 3.1 Letn>13 and 0 <k < [-’%J Then guasi-order relation
in D}_g are determined as follows.

(1) n = 1(mod4), PoU(PA_5)* = PacgU(PH)T > PaU(PA_ ) > - >
Py U (P2 5 o)™ = Paog—ak U (Pligp)t » P2§+2 U(PA g ge)t = >
PL-#U(P%_S)’*' > Pa_s U(P;?)"' > Pn_s U(P_;_A)"' > Pa1 U(P:%_a)"' -

274



Pazn U (Pﬂ_;;)“L =+ = Pokya U(Pr_g_x)* = Pn-10-2¢c U (P24k+5)+ >
P2k+1U( —6— 2k)+ > P3U(P4_8)+ b Pn._loU(P4)+ - PlU( 6)+
(2) n = 3(mod4), P(,u(P;z 8)T = PagU(P)t = PRU(P_7)* >
Py U (P; —5- ok) ¥ > Paog—2k U (Piya)™ > Pakt2 U (Po_q )t > - >'
Pazs U(PEL)* > PazzU(PLo)* > PageU(PLL)* = Pas U(PS _5)+
T 2 = o
Pn_—ix_a U (Pigg)‘*- =+ > Pary3 U (P:—8—2k)+ > Pn—10—2k U (Parys)™ >
P2k+1U(P4_6_.2k)+ e > PgU(Pg_s)"- > Pp_ oU(P4)+ - P]U(P:_s)*'.
(3) n = 2(mod4), PoU( _s)t > P 9U(P4)+ =PUPL_) =
Pore U (P25 o)™ > Poo—ak U (Piior)t = Pakia U (Po_q_g)t > -+ =
Pa_10 U(P,;)"' b Pn-s U( ,._g)+ - Pn-e U(P;‘._,.) = Pn-12 U(P%\_g)"'
> Pary3U( n—-8—2k)+ > Pn-—lo 2kU(P§1k+5) > Paky1 U(Pn—G—Zk)+
> PU (P:—B) = Pp_10U (P54)+ P U (P4—6)+
(4) n = 0(modd4), PoU(Pi_g )t >~ Pn_gu(P“)*' > Pgu(P S AR
Poi U (P _g_gk)t = Paog—2x U (P4+2k) - P2k;i-2 U (Pa_7_2k)* >'4 >
Proiz U( 25,_,)+ > Pn-s u(PL.’__,,)+ > Pus u(P,._ )* > Proio U(Pyg )t~
s+ > PoryaU(Py_g. Zk) > Pn_10- 2kU(P2k+5)+ - Pojea U(Pn 6—-2k)+
= P3U(Pa_g)t > Po_1oU (P = PLU (P g)t.

Theorem 3.2 Letn > 13 and 0 <k < L"“ij, then we have the following

quasi-order relation in C}:

(1) n = 1(modd), Bf }(0,n—9) = Bfst(n~9,0) » BiyF(2,n—11) »

-+ Bt (2k,n — 9 - 2k) = B} ;" (n—9—2k,2k) > Bj‘4+(2k+2 n—11-—

++ n—13 —5 ++ n— 5 n-13 n— 9 n—g
2Bk-2-:-n—7 . ?l ++ n2—1)l i-—é ( +) > B ( ) ”
7 )= By (25, 850) > - >B44(2k+3n—12 2k)

B;;f:(n-lo 2k, 2k +1) > B;*4+(2k+1 n—10—-2k) > --- > B ;¥ (3,n—
12) = B ;¥ (n—10,1) = Bf;*(1,n - 10).

(2) n = 3(mod4), B;§4+(o n—9) = Bf;it(n-9,0) »B;j;,*(z,n— 11) »
--B;f:,*(zk n—9-2k) > Bfit(n—9—2k,2k) ~ B ;" (2k+2,n—11 -
2k) RN B (n—ll n—7) - B;l-+ n-7,n—11) - B:' +(n-2-9’n29) -
B“"" 13)>B++"—-£ 228) > - = Bt (2k+3,n — 12— 2k) >
B;§4+(n 10 — 2k, 2k+1)>—B4'4+(2k+1 n— 10—2k)>-..»33§;+(3,n-
12) > Bi;F(n-10,1) = Bf;*(1,n - 10).

(3) n = 2(mod4), B} ;7 (0,n - 9) > Bf;F(n-9,0) > B;ff(z,n -11) >
--B;;;f(zk n—9—2k) = Bf;t(n—9—2k,2k) = B{;"(2k+2,n—11 -
2k) e B:— +(n 10 n— 8) . B;i'-l- n—8,n-10) > B;|-+ n;G,n—212) -
B;tf(";”, 2-8) » ... B} 4+(2k+3 n—12-2k) » B ;¥ (n—10—2k, 2k+
1) = Bf ¥ (2k+1,n—~10~2k) > --- > Bf3"(3,n—12) >-BI;+(n—10,1) -
Biit(1,n—10).
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(4) n = 0(modd), B} ;¥ (0,n ~9) = BfiF(n-9,0) > B{ ¥ (2,n - 11) »

B;f;f(zk,n 9 —2k) = Bf ;" (n—9 —2k,2k) >~ B;*4+(2k+2 n—11-—
2k) s B+ +(n—12 n—6) - B+ +(n;6 n—12) - B+ +(n—8 n—:-llO) -
Bf; ("-lo "~8)>- >-B44+(2k+3n 12— 2k)>B;"4+(n 102k, 2k +
1)>-B;ﬁ4+(2k+1 n—10-2k) = --- = Bfi¥(3,n— 12)»31:(7; 10,1) >
B;':;"'(l, n —10).

Proof. Let e = uv be the edge on the cycle CJ of B;':f(a,n —9—a), and

e; = ujv; be the edge on the path of GI(a, n — 9 — a) which connects Py
and (P}_,)*. By Lemma 2.2 we have that

bgk(B;':f(a,n —9—a))
=bok (G (2,0 — 9 — @) + bak—2(Pa U (PA_y)*) + 2bak—sa((Pa_s)T)
=bok ((Pr—4)* U Py) + bok—2(Ps U Pa U (Pi_5_o)")

+ bok—2(P2 U (PA_g)T) + 2bok—a((Pa_g)t),

Obviously, we just need to consider the quasi-order in D} ;. Then by
Theorem 3.1 we can get the results. O

4 Oriented bicyclic graph with the first five
largest skew energies

In this section, we determine the oriented bicyclic graphs with the first
five largest skew energies. With the help of the ordering of skew energy
of C} in Section 3, we focus on the graph Bj ¥ (4,n — 13). We need the
followmg lemmas.

Lemma 4.1 [19] For any bicyclic graph G witht <1, G** X G,
Lemma 4.2 [19] P, U(P2_ )t < PR U(PA_,)* ,a#2.
Lemma 4.3 (19 m(Pp—2,k—1) 2 m(Pn-4,k—2) 2 -+ 2 m(Pn_g¢,k—¥£).

Theorem 4.1 [19] Among all oriented bicyclic graphs with order n > 8,
B;':}{" (0,n — 9) has the mazimal skew energy.

We are now in the stage to get the main results in this paper.

Lemma 4.4 Let G° be an oriented bicycle graph of order n witht < 1,
G ¢ C. Then G° < Bf;t(4,n —13) forn >13.
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Proof. (i) We first consider ¢ = 1. We can choose the edge e = uv
on C; such that u is the common vertex of two cycles, and G° — e #
(PH+,UF(2,n—7). Obviously, G° — e is a unicyclic graph and G° —u—v
is a forest. By Lemmas 2.1 and 2.3 we get

bok(B7 4" (4,n — 13))
=m(Ba4(4,n — 13),k) + 2m(Us(4,n — 13), k — 2) + 2m(Pr_4,k — 2)
+ 4m(P,._g, k— 4)
=m(U4(4, n— 9), k) + m(Pz U U4(4,n - 13),k - 1) ]
+2m(Us(4,n — 13),k — 2) + 2m(P3_4 k — 2) + 4m(Pn_s, k — 4)
=m(Us(4,n — 9), k) + m(Us(4,n — 13),k - 1)
+3m(Us(4,n — 13),k — 2) + 2m(P3_,, k = 2) + 4m(Pn_s, k — 4).

By Lemmas 2.2 and 4.1 we have that

bak(G7) < b (GH)
szk(G+’+ - e) + bzk_g(G+'+ bl ’U) + 2b2k-x(G+’+ - C:)
<bzk(U:'(4, n— 9)) + bzk_z(Pz U Pn_4) + 2m(Pn_4, k— 2)
=m(Us(4,n — 9),k) + m(PoU Pp_g, k — 1) + 4m(Pp_4,k — 2)
<m(Uqs(4,n — 9),k) + m(Us(4,n —13),k — 1)

+ 3m(Us(4,n — 13),k — 2) 4+ 2m(Pa_, k — 2) + 4m(P_g, k — 4)
=ba (B3 (4,n — 13)).

(ii) If t = 0, then we can choose the edge e = uv on C; such that u is a
vertex in a path which connects C, and Cy, with G7 —e # (P3)*,U}t(2,n—
7). Obviously, G? —e is a unicyclic graph and G —u—v is the disjoint union
of a forest and a unicyclic graph. The following two cases are distinguished.

Casel: Ifz = y = 4and G° ¢ {B] ;" (0,n—9), Bf;*(n—9,0), B} ;" (2,n—
11), Bf i (n—11,2), B{;*(4,n—13)}, then by Lemmas 2.2 and 4.1 we have
that

bak(G?) < by (GTT)
Sbgk(G+’+ —e)+ bgk_g(G+’+ —u—v)+ 2b2k_4(G+‘+ - CI)
<bor(UF (4,n — 9)) + bax—2 (P2 WU (4,n — 13))
+2m(Uy(4,n — 13),k — 2) + 4m(P, — 8,k — 4)
=m(Us(4,n — 9),k) + 2m(Pn—a,k — 2) + m(P,UUs(4,n — 13),k — 1)
+2m(Pa U Py_g, k — 3) + 2m(Us(4,n — 13),k — 2)
+4m(P, — 8,k — 4)
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=m(Us(4,n — 9), k) + m(Us(4,n — 13),k — 1)
+3m(Us(4,n — 13), k — 2) + 2m(P3_4, k — 2) + 4m(Pn—s,k — 4)
=bok (B 1" (4,n - 13)).

Case 2: There is at most one cycle of length 4. We can choose the edge
e = uv such that G — e contains no Cy. Then by Lemmas 2.2 and 4.3 we

have

bok(G7) < b (GTF)
szk(G+'+ - e) + bgk..g(G+’+ —u—v)+ 2b2k_,(G+’+ - C:)
Sbgk(G+’+ —e)+ bzk..z(G‘*"*' —u—v)+ 2b2k_x(U:'(7, n—z—12))
<b2k(U‘i+ (4,n — 9)) + bzk_z(Pz U UI(7,TL - 16))
+2m(Uy(7,n — 16),k — 2) + 4m(P, — 8,k — 4)
=m(Uy(4,n — 9), k) + 2m(Pp—4,k —2) + m(P, U Uy(7,n — 16),k — 1)
+2m(Py U Py_g, k — 3) + 2m(Us(4,n — 13),k — 2)
+4m(P, — 8,k — 4)
<m(Us(4,n — 9), k) + m(Us(4,n — 13),k — 1)
+ 3m(Us(4,n — 13),k — 2) + 2m(P2_, k — 2) + 4m(Po_g,k — 4)
=b2k(B::,'1+(4, n - 13)).

Combining the above two cases, we complete the proof. O

Lemma 4.5 Let G° be an oriented bicycle graph of order n witht > 2 and
G° ¢Cr. Then G < BZ:11+(4,n —13) forn > 13.

Proof. We prove the statement by dividing into four cases.

Case 1: z =y =z =4. Then t = 3. If both C; and C, are oddly
oriented, then C, must be evenly oriented. We can choose the edge e = uv
such that u is the common vertex of C;, Cy and G° —e # (P3)*, U (2,n—
7). Without loss of generality, set e € Cy. So, G° —C; = G° —e - C;.
Then

box (G 7)

=m(G, k) + 2m(G — Cy, k — 2) + 2m(G — Cy, k — 2)
—2m(G — Cy k — 2)

<m(G -ek)+m(G—-uv—-v,k—1)+2m(G—e—C:,k—2)
+2m(G — Cy, k—2)

<bor(G° —e) + m(P _o,k— 1) + 2m(P,._4, k— 2)
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<ok (Uf (4,2 —9)) + m(Pr—2,k — 1) + 2m(Pr_g,k — 2)
=m(Us(4,n — 9), k) + m(Pp—-2,k — 1) + dm(Pr_4,k — 2)
<m(Us(4,n —9), k) + m(Us(4,n — 13),k - 1)

+3m(Us(4,n — 13),k — 2) + 2m(Pr_4 k — 2) + dm(Pn—s, k — 4)
=box(B{ 3 (4,n — 13)).

If either C; or Cy is oddly oriented, then C, must be oddly oriented.
If both C; and C, are evenly oriented, then C; is also evenly oriented.
Similarly, we can prove that by, (G?) < bzk(B"{ W (4,n -13)).

Case2: z=y=4, z#4. Thent =2 and z = 6. If both C; and C,, are
oddly oriented, then C, is oddly oriented. Since n > 13, we can choose the
edge e = uv such that u is the common vertices of C; and C, but v is not
and G—u—v is acyclic. Clearly, we can make G®—e ¢ {(P3)*,Uf (2,n-7)}.
Without loss of generality, let e € Cy. Note that G° - C; = G° —e— C;
and G° — Cy, G° — C,; is acyclic. Then

bzk(G+’+'+)
=m(G, k) + 2m(G — Cy, k — 2) + 2m(G — Cyy, k — 2)
+2m(G - C,, k — 3)
<m(G-e,k)+2m(G—-e—Cr,k—2)+m(G—-u—v,k—1)
+2m(Pp_g,k — 2) + 2m(Pp_6,k — 3)
<ba(G? —e) + m(Pp_2,k — 1) + 2m( P-4,k — 2)
+2m(Pps,k —3)
Sbgk(U; (4, n-9))+ m(P,,_g, k — 1) + 2m(Pn_4, k— 2)
+2m(P,_g,k ~ 3)
=m(Us(4,n — 9), k) + m(Pn—2,k — 1) + 4m(Pn—_g,k — 2)
+2m(Pp—g,k — 3)
<m(Us(4,n — 9),k) + m(Us(4,n — 13),k - 1)
+3m(Ug(4,n — 13),k — 2) + 2m(P2_,, k — 2) + 4m(Po_s, k — 4)
=bok(BF 3" (4,n — 13)).

If either C; or Cy is oddly oriented, then C, is evenly oriented. If both
C,; and C, are evenly oriented, then C, is oddly oriented. We can also
prove that b2 (G%) < bai(Bj ;' (4,n — 13)).

Case 3: If x = 4, z > y > 5, we can choose the edge e = uv on C;

satisfying that u is the common vertex of C; and C,. Obviously, G° —u is
acyclic and G° —e & {(P)*,Uf(2,n—7),G° —Cy = G° —e—Cy}. Then

bar (G7)
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<m(G, k) + 2m(G — Cy k — i;-) +2m(G - Cyr k — g)
+2m(G — Cy b — g)
<m(G — e, k) +2m(G —e — Cy, k — %) +m(G—u—vk—1)
+ 2m(Pn_4, k— 2) + 2m(Pn-s, k- 3)
<bok(G° — €) + m(Pn—2,k — 1) + 2m(Pp_yg, k — 2)
+ 2m(Pn—6,k — 3)
<bo (U (7,7 — 12)) + m(Pr-2,k — 1) + 2m(Po_yg, k — 2)
+ 2m(Pn—¢,k — 3)
=m(Uy(7,n — 12}, k) + m(Pp_2,k — 1) + dm(Pp_4, k — 2)
+ 2m(P,,_5, k- 3)
<m(Uys(4,n —9),k) + m(Us(4,n — 13),k - 1)
+ 3m(Us(4,n — 13),k — 2) + 2m(P3_,, k — 2) + 4m(Pn_s, k — 4)
=bar(B7 s (4, — 13)).

Case 4: If thereis no cycle of length 4, then z >y > 5,z > ¢ > 5. Wecan
choose the edge e = uv on Cj, such that u is the common vertex of C; and
C,. Note that G* —e & {(PH)*, UFf (2,n-7)} and G* —C, = G —e—C;.
Then

b2k (G?)
<m(G, k) + 2m(G — Cg, k — g) +2m(G — Cy k — %)

+2m(G — Cy, k — %)
<m(G — e,k) + 2m(G — e — Cy, k — 3)
+m(G—u—v,k—1)+4m(P,_6,k — 3)
<bok(G® —e) + m{Ppn—2,k — 1) + 4m(P,—¢,k — 3)
<bgk(UI(7,n —12)) + m(Pn—2,k — 1) + 4m(Ppr-¢,k — 3)
=m(Uy(7,n — 12),k) + m(Pa_z,k — 1) + 2m(Pp_yg, k — 2)
+ 4m(Pp—6,k — 3)
<m(Uq(4,n — 9), k) + m(Ua(4,n —13),k — 1)
+ 3m(Ua(4,n — 13),k — 2) + 2m(P2_,, k — 2) + 4m(Pn—g, k — 4)
=bak (B3 (4,n — 13)).

Combining all these cases above, we complete the proof. a

By Lemma 4.4, 4.5 and Theorem 3.2, we obtain the following main result.
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Theorem 4.2 Among all oriented bicyclic graphs with order n > 13, the
graphs Bf;t(0,n — 9) = Bf;t(n —9,0) = BiF(2,n - 11) = Bf;*(n -
11,2) = BI T (4,n — 13) have the first five largest skew energies.
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