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Abstract
The harmonic index H(G) of a graph G is defined as the sum of

the weights of all edges uv of G, where d(u) denotes the

2

d(u) + d(v)
degree of the vertex u in G. In this work we compute the harmonic
index of a graph with a cut-vertex and with more than one cut-vertex.
As an application, this topological index is computed for Bethe trees
and dendrimer trees. Also, the harmonic indices of Fasciagraph and
a special type of trees, namely, polytree are computed.

Keywords : Graph; Degree; Cut-vertex; Cut-edge; Block; Harmonic
Index

1 Introduction

Let G = (V, E) be a simple connected graph with vertex set V(G) and edge
set E(G). The Randié¢ Index of G is one of the most successful molecular
descriptors in structure-property and structure-activity relationship stud-

ies. It is defined as R(G) = 3 L where d(u) is the degree of

wéB(G) Vd(u)d(v)
the vertex u in G [12]. The mathematical properties of this invariant have

been studied extensively in [8] [11]. Motivated by the success of Randié
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index, various generalizations and modifications were introduced, such as
the sum connectivity and the general sum connectivity index.

In this paper, we consider another variant of the Randi¢ index, known as
the harmonic index H(G). For a graph G, the harmonic index H(G) is de-
fined as H(G) = Y 2

weB(c) 4(u) +d(v)
win G. As far as we know, this index first appeared in [7]. Zhong found the

where d(u) is the degree of the vertex

minimum and maximum values of the harmonic index for simple connected
graphs, trees and unicyclic graphs and characterized the corresponding ex-
tremal graphs (17] [18]. Zhong et al. studied the harmonic index of bicyclic
graphs and characterized the corresponding extremal graphs [19]. Deng
et al. determined the trees with the second to the sixth maximum har-
monic indices, and bicyclic graphs with the first four maximum harmonic
indices [6]. The same authors considered the relation between the harmonic
index H(G) and the chromatic number and proved that x(G) < 2H(G) by
using the effect of removal of a minimum degree vertex on the harmonic
index [5]. Wu et al. gave a best possible lower bound for the harmonic
index of a triangle-free graph with minimum degree at least two and char-
acterized the extremal graphs [14]. Zhong et al. gave some sharp lower
hounds for harmonic index in terms of the other vertex-degree-based topo-
logical indices such as Zagreb index, Randié index, sum-connectivity index
and ABC index [16]. Gutman gave a survey of selected degree-based topo-
logical indices and summarized their properties [9]. Xu et al. found the
first and the second Zagreb indices of the set of connected graphs of order
n and size m and characterized the extremal graphs {15].

Assuming that the graph G has more than one cut-vertex, Balakrishnan

et al. obtained an expression for Wiener Index of the graph G in terms of
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the blocks of G and other quantities [3]. Similar to this, we obtain an ex-
pression for the harmonic index of a graph with a cut-vertex and with more
than one cut-vertex. As an application, this topological index is computed
for Bethe trees and dendrimer trees. Also, the harmonic index of Fascia-
graph and a special type of trees, namely, polytree are computed.

We conclude this section with some notation and terminology. Let G
be a graph. The degree of a vertex v of G is denoted by d(v). If d(v) =1
then v is said to be a pendant vertex in G and the edge incident with v
is referred to as pendant edge. The set of neighbours of v is denoted by
Ng(v). For an edge e = uv, the weight of e in G is wg(e) = —J(?)—_%—am
A connected non trivial graph having on cut-vertices is called a block. A
block of a graph is a subgraph that is a block and is maximal with respect
to this property. As usual, P, and S, denote the path and the star on

n vertices respectively. For other notations in graph theory, please refer

to [2] [4].

2 Harmonic index of graphs with more than

one cut-vertex

In this section, we compute the harmonic index of a graph with a cut-vertex

and with more than one cut-vertex in terms of the harmonic index of the

blocks of the graph.

Theorem 1. Let G be a simple connected graph with a cut-verter u. Let

H;, 1< i < r, be the components of G —u. Let G; = G[V (H;)U {u}].
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Then

r r k—k;
H(G):EH(G»—?Z 2 {[ki+d(w)llk+d(w)]} )

i=1 weNg,(u)

where d¢ (u) = k and dg, (u) = k;

Proof.
2
HG) =S H(G,) - + s
Lre-% 2 ety L, e
k—k;
- ZEH(G") B 2;,,0@%(,,) { ke + d (w)] [k+d(w)]}

Our result in this work can be regarded as a generalization of (1). So

we have the following theorem.

Theorem 2. Let ¥ = {v1,v2,...,v1} be the set of all cut-vertices and
= {B1,Ba,...,Bx} be the set of all blocks of a simple connected graph
G. Then

k { 1 1
H(G) = Z H(B) z=: Z; z€Np(v:) {dB(vi) +dp(x) - dg(vi) + dc(l‘)}

i=1
z@¢€

1 1
= Z > {dg(v,-) +dp(z)  do(w) +dG(T)}

i=1 BEB: ze€Ng(v:)
re¥
(2)
where B, = {B € #Jv; € B}, 1<i<l.

k
Proof. Clearly dg(vi) = Y. dg(v;), for 1 <i<land E(G) = |J E(B;).

BeB! =1
Let e = uv € E(G). Obviously e € B; for some i. If u,v ¢ ¥, then the

weight of e in G is the same as the weight of e in B;. Let us consider the
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case that either u or v € ¥. Without loss of generality, assume that u € €.

. . . 1 1
The weight of e in B; is less by 2 { 5.0 + d5.(0) - Tl T da(®) } from
the weight of e in G. Similarly if u,v € ¥ then the weight of e in B; is less

1 1
b - fr t ight of e in G. Hi
y {dai(u>+dai(v) dc(u)+da(v)} om the weight of ¢ in G. Hence

1
ZH(B )— 22 Z Z {dB 'u,) + dB(:lI) dG('Ui) + dG(x)}

i=1 BeB! zeNB(v )
<€

1
‘ZZ Z {dg(v;)+d5($) da(vi)+dc(1)}

i=1 BeB! z€Np(v;)
T€¥

Using the above theorem we can calculate the harmonic index of a graph

with a cut-edge as follows.

Corollary 1. Let uv € E(G) be a cut-edge of G and let G, and G5 be the

two components of G — uv. Then

1
H(G) = H(Gy) + H(Ga) - {weN(uZ)_{v} @0+ w) — 1) + dw)]

1 1
" weNg-{u} [d(v) + d(w) — 1][d(v) + d(w)] ~ d(u) + d(v)}

Using the equation (2), we also find the upper and lower hounds for

harmonic index of trees as follows.

3 Harmonic Index of Generalized Bethe Trees

In a tree, any vertex can be chosen as the root vertex. Suppose T is an

unweighted rooted tree such that its vertices at the same level have equal
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degrees. The root vertex is at level 1 and T has k levels. In [1], Rojo and
Robbiano, called such a tree as generalized Bethe tree. They donoted the

class of generalized Bethe tree of k levels by Bj.

level 1

level 2
level 3

level 4

| Noa-

Figure 1: Generalized Bethe Tree of 5 levels

In this section we compute the harmonic index of Bethe tree using (2).

Theorem 3. Let By, be a generalized Bethe tree of k + 1 levels. If dy
denotes the degree of rooted vertez, d; + 1 denotes degree of the vertices on
the i*f level of Biy) for 1 < i < k+1 and n; denotes the number of vertices
on the it* level of Bryy for 1 <i < k+1, then the harmonic index of By,

is computed as follows.

n n
H B = 2 l+l k+l
(Bi+1) {d1+d2+1 Zd +di+1+2+dk+2 (3)
Proof. Clearly ny = 1 and n; = dydadz---d;_y for 1 < i < k4 1. Also
[V(Bks1)l = 1 + Z H d; and each block of By is K2, nothing but the

i=1j=1
edges of Byy1. In Biy; the rooted vertex belongs to d, blocks and the

vertices in i** level of By, belongs to d; + 1 blocks, 2 < i < k. Using
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equation (2)

ki
1 1
H(Bk+l) = Z Hd_, — 2d;dodz - - - dy. (5 - m)

i=1 j=1

1 1 1 1
“2{‘11 (5 - m) +did (5 - m) +
1 1
+didady iy (5 - m) }

1 1
=oldy—on  ddp——— ...
{‘d1+d2+1+ R A

1 1
+ coedpy——-—— t dydp - - - dpg ——
d1d2 k ldk_l-i-dk-i-? 1%2 kdk+2}

k-1
n2 i+ Nkl
ol M2
{d1+d2+1 +i§d +di+1+2+dk+2}

A dendrimer tree T 4 is a rooted tree such that degree of whose non-
pendant vertices is equal to d and distance between the rooted vertex and
pendant vertices is equal to k. So T} 4 can be considered as a generalized
Bethe tree with & 4 1 levels such that non-pendant vertices have equal
degree. We can compute the harmonic index of dendrimer tree as follows

using equation (3).

Corollary 2. Let Ty 4 be a dendrimer tree of k + 1 levels whose degree of

the non-pendant vertices is equal to d. Then

(2d — 1)(d — 1) — (d + 1)
d+1){d-2)

H(Trq) = (4)

Proof. Comparing this Ty 4 with Byy,, wehaved; =d, di+1=d;2<i<k
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e d
\
Figure 2: To3 T35

and n; =d(d—-1)"2% 2<i<k+1.

k-1

~ d(d — 1)1 d(d — 1)1

H(Tk,d)—2{d+d +Zd—l+d—1+2+ d—1+2
k—1
. d(d — 1)1

_ _1)i-1 7

_1+§(d )+ 2=

_(d=1)1-1 + 2d(d — 1)*~}

- d-2 d+1

_(2d—1)(d—1)F - (d+1)

= (d+1)(d-2)

Remark 1. Chemically more interesting, special cases of the equation (4)

correspond to d = 3,4
H(Tk3) =522 -1

and

2T = (1) % -3
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4 Harmonic index of fasciagraph and poly-

tree

In this section we give the exact formula of harmonic index for growing

graphs namely fasciagraph and growing tree namely polytree.

Figure 3: Gi

Theorem 4. Let G be a simple connected graph and u,v € V(G) such that
u and v are non adjacent. Let Gy be a graph obtained from k copies of G
such that the vertez u of one copy of G is adjacent to the vertex v of the
next copy of G except the terminals(see figure 3). Then

1
H(Gy) = kH(G) — 2(k - 1){ wGNZG(u) [d(u) + d(w)][d(u) + d(w) + 1]

1 1
+ we%(u) [d(v) + dw)][d(v) + d(w) +1] ~ d(u) +d(v) + 2 }
()

Proof. We can prove this by the method of induction on k. Let k = 2.
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Then
2 2
H(Gy) =2H(G) - ) () + d(w) 2 d(v) + d(w)

weN(u) weN(v)
2 2 2
* wg;?u, dlw) + () +1 wez,,:(u, T T d@) +1 T )+ dw) + 2
1
=) - 2{ 2 [d(w) + d(w)]id(u) + d(w) + 1]

weEN(u)

1 1
+ we;(v) [d(@) + d(w)[d(v) + d(w) + 1] ~ d(w) + d(v) + 2}

Assume the result for Gr_; . Let u and v be the vertices corresponding to

(k = 1)** and k** copies of G in Gy respectively. Then

2 2
H(G) = HGe) + HO) - 3. Joyvam 2o T+ dw)
2 2 2
+ 2 Ao +dw)+1 T 2 d0) + dw) +1 T d) + dv) + 2

weN (u) weN(v)
1

[d(u) + d(w)){d(u) + d(w) + 1]

= H(Gi-1) + H(G) - 2{ >

weN (u)

1 1
+ GZN%) [d(v) + d(w)][d(v) + d(w) + 1] ~ d(u) + d(v) + 2 }
1

= (k- 1)H(G) — 2(k - 2){ > [d(u) + d(w))[d(u) + d(w) + 1]

wENg(u)

1 1
+ wegcl(v) [d(v) + d(w)][d(v) + d(w) +1] ~ d(u) + d(v) + 2}

1
+H(G) -2{ o T T T I 1]

1 1
+ wGZN%u) [d(v) + dw)][d(v) + d(w) + 1]  d(u) + d(v) + 2}
1

= kH(G) - 2(k - 1){ we);(u) [d(w) + d(w)][d(u) + d(w) + 1]

1 1
+ we%m [d() + d(w)][d(v) + d(w) + 1] d(u) +d(v) + 2}
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Fasciagraph is a class of polygraph. The structure of the simplest fas-
ciagraph F is uniquely specified by the structure of the monomer unit G
and the number of monomer units. Every unit of F is adjacent with two
units except the terminal units.

A fasciagraph is a polygraph with k copies of a fixed graph G such that the
vertex u in the it* copy is adjacent to the vertex v in the (i + 1)** copy of

G,i=12,.. . k-1

Corollary 3. Let F be a fasciagraph composed of k copies of a graph G.
Then

1
H(F)=kH(G) - 2(k - 1){ weNZG(u) [d(u) + d(w)][d(x) + d(w) + 1]

1 1
+ weNZ( , (@) + d(w))|[d(v) + d(w) + 1] ~ d(w) +d(v) + 2}

Theorem 5. Let G be a simple connected graph and u € V(G). Let Gy
be a graph obtained from k > 3 copies of G such that the vertez u of one
copy of G is adjacent to the same vertex u of the next copy of G except the
terminals. Then

1
H(Gy) = kH(G) - 4{%% | &) + d(w)[d() + d(w) + 1)

1 1
+ (k- Q)wg;%) [d(w) + d(w)][d(w) + d(w) + 2] _ 2d(u) + 3

1
R TR e }

Proof. We can prove this by the method of induction on k. Let k& = 3.
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Then

2 2
H(G3) =3H(G) -3 we%:(u) @ +d@) T 22%1) d(u) + d(w) +1

2

2
¥ wexzv%u) d(u) + d(w) + 2 + 2d(u) +1+d(u)+2

1

=3H(G) - 4{ ,,,:%’(u) [d(u) + d(w)][d(w) + d(w) + 1]

1 1
+ we%) [d(w) + d(w)][d(w) + d(w) + 2]~ 2d(w) + 3}

Let us consider Gi_;. Let u he the vertex corresponding to (k — 1)** and

kth copies of G in Gy.

2 2

HC) = HC-) +HO - X qoysivdw ~ 2 T+ dw)
2 2 2
P Er e AP OEr R A CEEET OFS
1 1
= H(Gi1) + H(G) - 4{ wé;(u) [d(w) + )[4 + d(w) + 2] + 4(d(w) + 2) }
1
=(k-1)H(G) - 4{ we;(") [d(w) + dw)][d(x) + d(w) + 1]
1 1
k-3 Y G T dwe T dw T M+ 3

weN(u)
1 1
4[d(u+2>1}+” ‘G"“{ > ) T ) ) T 4w T

weN(u)

- (k-4)

Teorl)
* w2

1
=kH(G) - 4{ ) [d(u) + d(w)](d(w) + d(w) + 1]

we€N (u)
. 1
**k‘”wgiow@y+awmﬂw+dwo+ﬂ_2MW+3
1
B FTon 21}
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Consider a chemical polytree F,x consisting of k copies of the star S,
such that u is the centre vertex of S, (see figure 4). Using the above

theorem we have harmonic index of polytree in terms of order of the star.

111 B

F2m F3m

Figure 4: Chemical Polytrees

Corollary 4. Let F,; be a chemical polytree consisting of k copies of the

star S, such that u is the centre vertez of S,,. Then

_ 2k(n-1) n—1 (k—2)(n-1) 1 k-3
H(Fo) = —= _4{n(n+1) n(n + 2) _2n+1_2(n+1)}

Proof. Since u is the centre vertex of S, d{u) =n —1 and d(w) =1, we

get the result. |

Remark 2. Chemically relevant fasciagraphs F,; correspond to the cases

n=2andn=3.

15k — 22
H(Fa) = =5
and
189k — 213
H(Fs) = =05 —

295



References

[

2l

3l

(4]

(5]

(6]

(7]

Abbas Heydari, On the Wiener and Terminal Wiener Index of Gen-
eralized Bethe Trees, MATCH Commun. Math. Comput. Chem. 69
(2013) 141-150.

Balakrishnan R, Ranganathan K, A Textbook of Graph Theory,
Springer-Verlog, New York, 2000.

Balakrishnan R, Srinivasan N, Vishvanathan Iyer K, Wiener index of
graphs with more than one cut-vertex, Appl. Math. Lett, 21(2008)
922-927.

Bondy J A, Murty U S R, Graph Theory with Applications, Macmillan
Press, New York,1976.

Deng H, Balachandran S, Ayyaswamy S K, Venkatakrishnan Y B, On
the harmonic index and the chromatic number of a graph, Discrete

Appl. Math. 161(2013) 2740-2744.

Deng H, Balachandran S, Ayyaswamy S K, Venkatakrishnan Y B,
On harmonic indices of trees, unicyclic graphs and bicyclic graphs,

preprint.

Fajtlowicz S, On conjectures on Graffiti-II, Congr. Numer.60(1987)
187-197.

Gutman I, Furtula B(Eds.), Recent Results in the Theory of Randié
Index, Mathematical Chemistry Monographs 6, University of Kragu-

jevac, 2008.

296



(9]

[10]

(11)

(12]

23]

(14]

(15]

[16]

[17]

[18]

Gutman I, Degree-based topological indices, Croat. Chem. Acta 86
(4)(2013)351-361.

Liu B, Gutman I, On a conjecture in Randi¢ indices, MATCH Com-
mun. Math. Comput. Chem. 62 (2009) 143-154.

Li X, Shi Y, A survey on the Randié¢ index, MATCH Commun. Math.
Comput. Chem. 59 (2008) 127-156.

Randié M, On the characterization of molecular branching, J. Am.

Chem. Soc. 97 (1975) 6609-6615.

Rojo O, Robbiano M, An explicit formula for eigenvalues of Bethe trees
and upper hounds on the largest eigenvalue of any tree, Lin. Algebra

appl. 427 (2007) 138-150.

Wu R, Tang Z, Deng H, A lower bound for the harmonic index of a

graph with minimum degree at least two, Filomat, 27 (2013) 51-55.

Xu K, Das K C, Balachandran S, Maximizing the Zagreb indices of
(n,m)-graphs, MATCH Commun. Math. Comput. Chem. 72 (2014)
641-654.

Zhong L, Xu K, Inequalities between vertex-degree-based topological
indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 627-642.

Zhong L, The harmonic index for graphs, Appl. Math. Lett. 25 (2012)
561-566.

Zhong L, The harmonic index on unicyclic graphs, Ars Combinatoria,

104 (2012) 261-269.

297



[19] Zhong L, Xu K, The harmonic index on bicyclic graphs, Utilitas Math-
ematica, 90 (2013), 23-32.

(20] Zhou B, Trinajstli¢, On a noval connectivity index, J. Math. Chem. 46
(2009) 1252-1270.

[21] Zhou B, Trinajstli¢, On general connectivity index, J. Math. Chem. 47
(2010) 210-218.

298



