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Abstract

A pentangulation is a simple plane graph such that each face is
bounded by a cycle of length 5. We consider two diagonal transfor-
mations in pentangulations, called A and B. In this paper, we shall
prove that any two pentangulations with the same number of ver-
tices can be transformed into each other by A and B. In particular,
if they are not isomorphic to a special pentangulation, then we do
not need B.

1 Introduction

An n-angulation G is a map of a 2-connected simple graph on the sphere
such that each face of G is bounded by a cycle of length n, where n > 3 is an
integer. In particular, for n = 3,4, 5, 6, we call n-angulations triangulations,
quadrangulations, pentangulations and hezangulations, respectively.

In triangulations on the sphere, flipping an edge as shown in Figure 1
is called a diagonal flip. When this transforination breaks the simpleness
of graphs, we don’t apply it. In the literature, Wagner [6] proved that
any two triangulations on the sphere with the same nuinber of vertices can
be transformed into each other by diagonal flips. For related topics, see a
survey [5].
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Figure 1: A diagonal flip

In quadrangulations on the sphere, sliding an edge and rotating a path
of length 2 are two kinds of diagonal transformnations, and they are called
a diagonal slide and a diagonal rotation, respectively (see Figures 2 and 3).
Note that any quadrangulation on the sphere is bipartite, and any diagonal
slide preserves the bipartition of quadrangulations on the sphere hut any
diagonal rotation does not (the bipartition ineans the number of black and
white vertices in the graph).

Figure 2: A diagonal slide Figure 3: A diagonal rotation

For quadrangulations on the sphere, Nakamoto (3] proved that any
two quadrangulations on the sphere with the same number of vertices can
be transformed into each other by diagonal transforinations. Moreover,
Nakamoto [3] also proved that any two quadrangulations on the sphere
with the saine sizes of partite sets can be transformed into each other only
by diagonal slides. Note that if two given quadrangulations on the sphere
do not have the saine sizes of partite sets, then we need diagonal rotations.
For related topics, see [4].

In this paper, we consider diagonal transformations in pentangulations
on the sphere. Hence, we first introduce several facts about pentangulations
on the sphere.

Let G be a pentangulation on the sphere. The set of its vertices, edges
and faces are denoted by V(G), E(G) and F(G), respectively. By Euler’s
formula and 2|E(G)| = 5|F(G)|, we have 3|E(G)| = 5(|]V(G)| — 2) by an
easy calculation. Thus |V(G)| = 3k + 2 (for k = 1,2,...) since |V(G)| = 2
(mod 3). Note that the sinallest pentangulation on the sphere is the 5-cycle.

Now, let us consider two types of diagonal transformations in pentan-
gulations on the sphere, called A and B shown in Figure 4.

300



ojo
Z Z

Figure 4: A and B

A few years ago, the first and third authors (private communication)
proved that any two pentangulations on the sphere with the saimne nuinber
of vertices can be transformed into each other by diagonal transformations.’
On the other hand, the second author recently proved a similar statement
for hexangulations [1], and he completely determined the role of three types
of diagonal transforinations specifically defined for hexangulations by con-
structing the transition diagram of hexangulations [2]. Therefore, we re-
focus on diagonal transformations in pentangulations on the sphere, and
we establish the following theorem. A standard form, shown in Figure 6,
is a pentangulation on the sphere with n vertices which consists of two
vertices u and v such that deg(u) = deg(v) = 5"3;21 and alternate paths of
length 2 and 3 connecting ¢ and v, where the middle vertices have degree
exactly 2.

Theorem 1 Let G and G’ be pentangulations on the sphere with the same
number of vertices. Then G and G’ can be transformed into each other
using only A and B. In particular, if neither G nor G’ is isomorphic to
the standard form, then we do not need B.

We note that neither A nor B can be omitted froin the statement in
Theoretn 1 since only A can be applied to the dodecahedron and only B
can be applied to the standard forin by the definition of diagonal transfor-
mations (see Figures 5 and 6).

2 The structure X in pentangulations

In this section, we consider the special local structure X in pentangulations
on the sphere, which is a subgraph included in a pentagonal non-facial
region. Let R = v vouavgvs be the pentagonal non-facial region, where
v; # vj if ¢ # j for every 4,5 € {1,2,3,4,5}. The structure X’ consists
of three vertices a,b and c inside R, three vertices v,,v3 and v4 on the

IThey showed that any pentangulation on the sphere can be transformed into the
standard form (which is defined in this page) by diagonal transformations. However,
they did not care about how two transformations .4 and B are used in the procedure of
their proof.
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Figure 5: The dodecahedron Figure 6: The standard forin

boundary of R and edges avi,ab, ac, bus, cvy, where deg(a) = 3,deg(b) =
deg(c) = 2 and deg(vx) > 3 for each k € {1, 3,4} (see Figure 7). Moreover,
we sometiines denote X by X(a, b, ¢ : v1,v3, v4), specifying these six vertices

in X.

v

Vg4 LX)
Figure 7: The structure X

Now we consider the following two operations. Adding X means that we
add three vertices a, b and c to the interior of a pentagonal face vy vav3v4v5
and add edges ab, ac, avy, buvz and cv4 as shown in Figure 8, and Removing
X is the inverse operation of adding X as shown in Figure 8.

v Uy

Vs Adding X s

—_— v2

[ S
Removing X

Vq V3 V4 U3

Figure 8: Adding X and removing X

It is easy to see that adding (or removing) X preserves that the graph
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is a pentangulation on the sphere since all v;’s are distinct. Moreover, for
adding &, there exist five possibilities for the neighbor v; of a in the interior
of the 5-cycle shown in Figure 8, but Figure 9 shows that all positions can
be regarded as the same up to A. In this case, we note that the operation
shown in Figure 9 does not break the simpleness and the 2-connectedness.
Here, we shall prove the following lemina.

! U1 (4]

Figure 9: The rotation of A

Lemma 2 Let G be a pentangulation on the sphere. Any two pentangule-
tions on the sphere obtained from G by adding X can be transformed into
each other by a sequence of only A.

Proof. It suffices to prove that we can move X in a face of G into any other
face of G only by A. If G is the 5-cycle, then two pentangulations obtained
from G by adding X are clearly isomorphic. Hence, we may suppose that
G is not the 5-cycle, that is, G has at least three faces. Let I’ = ejezezeqes
be a pentagonal region which has three inner vertices of X’ in the interior,
where e; is an edge for each ¢ € {1,2,3,4,5}. Let f be a neighboring
face of I and, without loss of generality, we may suppose that ey € f NI
and es ¢ fNI. In this case, we can move X to f only by A as shown
in Figure 10. Therefore, by repeating the operations shown in Figures 9
and 10, X can be moved to any other face of G only by .A. B

3 Proof of Theorem 1

In this section, we shall prove Theorem 1. We first prove the following
lemma. Let zy be an edge of a pentangulation on the sphere and we
suppose that zy can be flipped by A to join two vertices a and b. In this
case, we denote it by xy — ab.

Lemma 3 Suppose that zy is an edge of a pentangulation G on the sphere
such that deg(z) > 3 and deg(y) > 3. Let xyujusuz and zyv,vavz be the
faces sharing the edge xy. If the operation xy — vaui cannot be applied,
then one of the following situations occurs:
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Figure 10: Move X to f

(1) {w1,uz,us} N {v1,v2,v3} =0 and vyvs € E(G).

(2) uy = vs.
(3) Uy = V3.
(4) u) = vs.

Proof. By the assumption, the operation zy — vsu; yields either a pair of
multiple edges or a self-loop. If at least one of the situations (1), (2) and
(3) occurs, then the operation yields multiple edges. If the situation (4)
occurs, then the operation yields a self-loop. On the other hand, if none
of those situations occurs, then it is easy to see that zy — wvsu; can be
applied preserving the simplicity, which is a contradiction. ®

By the above lemma, we can immediately obtain the following lemma
since if G has one of the four situations in Lemma 3, G does not have the
similar situation for zy — uzv, by the planarity.

Lemma 4 Suppose that zy is an edge of a pentangulation on the sphere
such that deg(z) > 3 and deg(y) > 3. Let zyujusus and zyvivevs be
the faces sharing the edge zy. Then, one of the operations Ty — v3u, or
zy — uzvy can be applied. M

Next, we show the following two lemmas. The second lemina (Lemnina 6)
is essential to prove Theorein 1.
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Lemma 5 Let G be a pentangulation on the sphere with |V (G)| > 8 which
is not the standard form. Then we can obtain a face f = ujususuqus such
that deg(u) > 3,deg(u2) > 3 and deg(uz) = 2 by applying A to G at most
once.

Proof. First, it is clear that each pentagon bounding a face contains at
least two vertices of degree at least 3; otherwise, either G is the 5-cycle or
G has a cut vertex. Secondly, it is clear that if each pentagon bounding a
face contains only two non-adjacent vertices of degree at least 3, then G is a
standard form. Hence, there is a pentagon bounding a face which contains
at least two adjacent vertices of degree at least 3, and if it does not have
the required property, all five vertices have degree at least 3. In this case,
since the average degree of G is less than 4, we can obtain a required face
by applying A at most once to make a vertex of degree 2. B

Lemma 6 Let G be a pentangulation on the sphere which is not the stan-
dard form. Then G can be transformed into a pentangulation on the sphere
with ot least one X using only A.

Proof. If G already has X, then we are done. Hence, we may suppose that
G has no X and |V(G)| > 8 (otherwise, G is the standard form with five
vertices). By Lemnma 5, G has a face f = zyzvivs such that deg(z) > 3,
deg(y) > 3 and deg(z) = 2 by applying A once. Then we consider the
following steps for surroundings of f.

Step 1. Make deg(y) =3

Suppose that deg(y) > 4. Let f' = zyua,ay be the face sharing zy with
f, and let f’ = yubbybs be the face sharing yu with f’ (see Figure 11).
We consider to reduce deg(y) by A.

az az

V2
by

b2

U1
v )

b3 b3

Figure 11: Case 1 Figure 12: Case 2

Case 1. deg(u) > 3 (Figure 11)
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We can always reduce deg(y) hy applying A to yu by Lemina 4.

Case 2. deg(u) = 2 (Figure 12 : This configuration is obtained from Figure
11 by identifying a; and b;.)

After applying A to zy to make deg(u) = 3, we replace u as z. If this
operation is applicable, we can reduce deg(y). (Note that this operation is
also applicable if as = bs.) Otherwise, by Lemma 3, we have u' = v, since
u & {v1,va}. In this case, if deg(ag) > 3, then after applying A to vaas to
make deg(u) = 3, we reduce deg(y) similarly to Case 1.

Hence, we suppose that deg(az) = 2. Note that we now have deg(z) > 4,
otherwise, the removal of v’/ would separate the inside of w'asz and the
remaining part, which contradicts that G is 2-connected. Let r # vs,as
be the next vertex of va on the clockwise rotation of = in Figure 13. After
vax — vy, we can reduce deg(y) by zy — ru. These operations can be
applied since the 3-cycle zasvs separates vy, u and r. Following this, we
replace r and u as vp and z, respectively.

A

Figure 13: Case 2 (v’ = v;)

For the operations in each case, note that we preserve deg(z) > 3 and
deg(z) = 2. Therefore, since we can reduce deg(y) preserving deg(z) > 3
and deg(z) = 2 in each case, we suppose that deg(z) = 2 and deg(y) = 3,
and we consider the next step.

Step 2. Make deg(z) =3

Let f' = z'yzv1v5 be the face sharing a path yzv; with f. Also, we
let fy = zyx’'ror; be the face sharing a path zyz’ with fU f’, and let
fa = zriaza,u be the face sharing an edge zr; with f;. Now, if u = vy,
then we already have deg(z) = 3. Hence, we may assume that u # vs and
deg(z) > 4. We consider the following two cases to reduce deg(z) only by
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Case 1. deg(ry) >3

If we can apply zr; — urs, then we are done. Hence, we suppose that
the operation is not applicable, that is, (1) u =72, (2) v =/, (3) a1 = 72
or (4) {u,a1,a2} N {2’,72} = @ and an edge ury occurs by Lemma 3. In
the case (1) or (4), we can apply zr; = yap; — 2'a; if a1 # z'. (If a; =2/,
then we can apply zr; — urs.) In the case (2) or (3), after xr; — yaq, we
apply yz’' — asv5 and replace a; with z’. Hence, we can always decrease
deg(x) in this case.

Case 2. deg(r)) =2 (a2 =12)

After applying zy — 712 and vz — vay, we replace =/, 79,y and r; as
v}, z', 1) and y, respectively. If this operation is applicable, then we are
done. Otherwise, we have v = z’. In this case, after applying yz' —
zro = vy and zr) — yrg, we replace 71 and 72 as vj and z’, respectively.
(Note that this operation is now applicable since the 3-cycle z'yx separates
v; and ap(= r3) in the interior and the exterior.)

Therefore, we can reduce deg(z) only by A, which preserves deg(z) = 2
and deg(y) = 3 in both cases. Hence, we suppose that deg(z) = 2 and
deg(z) = deg(y) = 3 (see Figure 14), and we consider the final step.

Figure 14: deg(z) = 2 and deg(z) = deg(y) =3

Step 3. Make X
If deg(z’) = 2, deg(v1) = 3 and deg(vy) > 3, then it is easy to see
that we already have X (y, 2, z : z, v}, v;). Therefore, we may suppose that

deg(z’) > 3 or deg(vy) = 2 or deg(v5) = 2, and hence, it suffices to consider
the following cases.

Case 1. deg(z’) > 3 and deg(vy) > 3
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If deg(vy) = deg(r1) = 2 (a1 = v1 and ag = rg), then we already
have X (z,vq,71 : y,v1,72) since 7o has distinct neighbors v;,z’ and ;.
Hence, we may assumne that deg(vz) > 3 or deg(r1) = 3. In this case, we
can obtain X(y,z,x : z’,v1,71) (resp., X(y, 2,z : /,v1,v2)) if vex — vy
(resp., 11T — ravq) is applicable. If vaz — vyry (resp., 712 — 7r3v2) is not
applicable, then v; = 71, v; = a2 or vir; € E(G) and v # {r1,az2} (resp.,
To = v, Ty = a1, U3 =z’ or vir; € E(G) and 73 ¢ {vg,a,}) by Lemma 3.
However, in each of the three (resp., four) cases, we can apply the other
operation by the planarity (for example, if v; = r1, then the 4-cycle ryzyz
separates {rg,z’'} and {vz,a;} in the interior and the exterior).

Case 2. deg(z') > 3 and deg(v1) =2

We now have ve = v5 and deg(vy) > 3 (note that if deg(vy) = 2, then
we have x = z/, which contradicts to the simplicity of G). Hence, we can
obtain X(z,y,v; : 71,Z',v4) by zy — r12.

Case 3. deg(z’) = 2 and deg(v;) = 2

Now, since v§ = r; = vp and z,v;,2',a, and r; are clearly distinct,
we have deg(vj) > 5. In this case, we can obtain X(z,y,v; : r1,2’,v5) by
flipping vory to make deg(z’) =3 and zy — 2.

Case 4. deg(z’) = 2,deg(v1) = 3 and deg(vy) =2 (vy =72 and v =ry)

We now have deg(v;) > 4 and deg(vs) > 3 since deg(z) = 3. Hence we
can obtain X(z’,v5,y : ve,v1,2) by flipping viv2 to make deg(z) = 3 and
Ty — vox'.

Hence, since we can make X only by A in all cases of Step 3, the lemnma
holds. W

We have prepared to prove Theorem 1.

Proof of Theorem 1. Let G and G’ be pentangulations on the sphere with
the same number of vertices and let G and G’ be not isomorphic to the
standard form. Since any pentangulation on the sphere with five vertices is
isomorphic to the 5-cycle, we may suppose that |V(G)| > 8. By induction
on |V(G)|, we shall prove that G and G’ can be transformed into each other
only by A.

By Lemma 6, G and G’ can be transformed into pentangulations on
the sphere with at least one X. Let X and X’ he two A’s in G and
G', respectively, and let H (resp., H') be a pentangulation on the sphere
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obtained from G (resp., G') by removing X (resp., X'). If H and H' are
not isomorphic to the standard form, then they can be transformed into
each other only by A by the inductive hypothesis, but such a deformation
might touch the face to which X (resp., X’) is added to obtain G (resp.,
G'). However, we can move X (resp., X’) to another face by Lemina 2, so
that the deformation does not touch X (resp., X’). Finally, by moving X
(resp., X’) back to the original position to recover G (resp., G'), G and G’
can be transforined into each other only by A.

Now, we may suppose that H is isomorphic to the standard forin. In
this case, Figure 15 suggests that B deforms the standard forin H into
another pentangulation Hj, which is not a standard form and that G can
be transformed into H; with X added by a sequence of A. Similarly, G’ can
be transformed into Hs with X added, where H; is not a standard form.
Therefore, G and G’ can be transformed into each other by a sequence of
A as well as in the previous case.

Finally, we describe the role of B. If a pentangulation G on the sphere
is isomorphic to a standard form with at least eight vertices, then we can
transform G into another pentangulation which is not a standard forin
by applying B once. Therefore, by the above proof, for any two pentan-
gulations on the sphere with the same number of vertices, they can be
transforined into each other by A and B, where the number of application
of B is at mnost once. B

7
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Figure 15: Applying B and A twice
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