Some ¢-Dixon-like summation formulas
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Abstract. We give a g-analogue of some Dixon-like summation formulas
obtained by Gould and Quaintance [Fibonacci Quart. 48 (2010), 56-61] and
Chu {Integral Transforms Spec. Funct. 23 (2012), 251-261], respectively.
For example, we prove that
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where [] denotes the g-binomial coefficient.

1 Introduction

Gould and Quaintance [4] established the following identity:

i(_l)",_k 2m\(z+k \(z+2m—k _(2m\(z+m (f:f;)
= k) 2m+r 2m+ 7 m J\2m+r) (5I™)’

(1.1)
which is a generalization of Vosmansky’s identity [6]. Recently, by employ-
ing the finite difference method, Chu [3] further established some alternat-

ing binomial coefficient identities, such as (see [3, Theorem 2]):

i(_l)m_k 2m\ [ z+k \/z+2m-k-1
= k 2m+r 2m +r
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m

where we replaced (';;f::) in [3] by its equivalent form (—1)" (z+§2;f—l
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It is well known that binomial coefficient identities usually have nice
g-analogues. For example, the Dixon identity can be generalized to the
g-Dixon identity (see [5]). In this paper, we shall give g-analogues of (1.1)
and almost all of the identities including (1.2) obtained by Chu (3].

Recall that the g-hinomial coefficients [§] are defined by

k l_qz—i+l
T T II—— ifk20,
el =kl Ty 1-¢
q 0, if k<.

Let N denote the set of nonnegative integers and Z the set of integers.
Three of our main results are as follows:

Theorem 1.1 For m € N and r € Z, there holds
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m(z—m—r) [2m] [x + m] [rasr) (1.3)

=1 m||2m+7r [’;';lm]'

Theorem 1.2 For m € N and r € Z, there holds
2m
Z(—l)m_kq(m;k) [2m] [ z+k ] [x +2m—k— l]
pard k||2m+r 2m+r

m(z—m—r) [2m
_q [m] z—1||lz+m
SR [m + r] [m + r] | (14)

Theorem 1.3 For m € N and r € Z, there holds
2m

Z(_l)m—kq("';l) [2771] [ z+k ] [11 +2m—k — 3]
Fyerd kElI2m+1 2m +1

mr-m?-m [’B - 3] I:x +m— 1]
=q

m m
(1 + q:c—m—l + qz-m—Z + q2z—3 _ qz+m — qz-l _ q:c—2 _ q:c—Sm—S)
" - ) '

(1.5)

It is easy to see that (1.3) and (1.4) are g-analogues of (1.1) and (1.2)
respectively, and Theorem 1.3 is a g-analogue of (3, Theorem 4].

We should concede that it is sometimes quite a routine matter to write
down g-analogues of hinomial coefficient identities. However, this is not
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always the case for the Dixon-like identities in Chu [3]. For example, the
identity (1.5) is a little different from classical ¢-binomial coefficient iden-
tities, for the right-hand side of (1.5) has a strange big factor. Moreover,
it is rather difficult to find g-analogues of the following identities in [3]:

20 () ) (o)
m?(2m ——12:23(:?;; +z—1) (z; 1) (::)’
20 () (23 i)

m?(x —2m)(z +2m —1) (z —- 1\ [~z
12(°7") ( m )(m)
The paper is organized as follows. In the next section, we shall give
a detailed proof of Theorem 1.1 by applying the fundamental theorem of
algebra and the g-binomial theorem. In Section 3, we shall give proofs of
the other five theorems including Theorems 1.2 and 1.3 in a similar way. In
Section 4, another kind of alternating g-binomial coefficient identities will

be proved. In the last section, we shall point out that eight couples of the
identities in [3] are in fact equivalent to each other.

2 Proof of Theorem 1.1

Note that, by the g-binomial theorem

n n—1
3 (1)) [;;] # =[]t - 2¢)
k=0

=0

(see, for example, (1, p. 36]), we have
Z( H"- "[ }q( IR0 for 0ig<n—1. (2.1)

Define the polynormal by the g-binomial sum
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It is easy to see that the coefficient of ¢ in [,2F fr] [’;’i’:‘,‘r’k

polynomial in ¢* consisting of terms of degree hetween —a and a if a <
2m + r, and hetween a —4m — 2r and dm + 2r —a if a > 2m + r. This
means that the coefficient of ¢°* in ¢™*[,=* _fr] [’;i"_:_:k] is a polynomial in
¢* of degree less than 2m if @ < m or a > 3m + 2r. By (2.1), one sees that
Fy(z) is a polynomial in ¢® consisting of terms of degree between m and
3m <+ 2r.

When r < 0, we have Fy(z) =0forz=-m,...,7—-1,0,...,.m+r—1
by the following facts:

] is a Laurent

e If -m<x<<r—1,then [;:_fr] =0form < k € 2mand [z-;:lr::k] =
Ofor0<ksm-1.

eIf0Kx<m+r—1 then [FT] =0for 0 <k <m=-1and
[";3:’_;:"] =0 form <k < 2m.

This implies that F¢(x) have the same 2m + 2r zeros as

2m|lz+m [fnt,':
m | |2m + ¢ FEO]

When r > 0, we have the following facts for Fj(z):

Gq(l‘) = qm(z—m—r)[

o If—m <z < —1,then [ZFf] =0form < k< 2mand 732775 =0

for0g<k<m—1.
o If0 <z <r—1,then [ZH] = [*32™* = 0 for 0 < k < 2m.
That is to say, as a polynomial in ¢%, [,Z+ _{_‘r] [*32m~*] is divisible by

(1-¢*)2(1—¢*="1)2... (1 —¢g=~"+1)2, which implies that 0,1,...,7~1
are double roots of Fy(z).

elfr <z <m+r-1, then [;::fr] =0for0 €<k €<m-1 and

[’;’3:1:"] =0form<k<2m.

This again implies that F,(z) have the same 2m 4 27 zeros as G4(z).
Moreover, Fy(m +r) has only one nonzero term [*], which is equal to

Gq(m+7). Since both g~™*Fy(x) and ¢~™*G,(z) are polynomials in ¢* of

degree at most 2m + 2r, they must he identical. This completes the proof.

3 Proof of four Theorems
Proof of Theorem 1.2. Let

kL o (m=ky [2 k]fz+2m—k—1
Agz) = 3 (~1)"Hq("3 )[;n] [2iz++r] [x 2:+r ]

k=0



When r € 0, we can prove this theorem by verifying the following state-
ments:
e A,(z) is a polynomial in ¢* consisting of terms of degree hetween m
and 3m + 2r.

e All the zeros of g~ ™% A (z) are {i,r —i: 1 <i<m+r}
(2")-{-1‘4-[

e For £ = m+7 + 1, both sides of (1.4) are equal to g™ [*7] ‘—'ll_-q—_n——

When r > 0, let Kq(x) = Ag(z)[*21 2. Then we can confirm this theorem

r—1

by checking the following statements:

. Zq (z) is a polynomial ¢* consisting of terms of degree between m and
Im + 2.

e All the zeros of g™ Ay(z) are {i,r —i:r <i<m+r}.

e For z = m +r + 1, the two sides of (1.4) are equal. a

Proof of Theorem 1.3. Let
2m
_ _qym—k (54 [2m z+k]fz+2m—-k-3
Bq(z) Z%( D™ [k 2m + 1 om+1 |
Then we can prove this theorem by verifying the following statements:

e B,(x) is a polynomial in ¢* consisting of terms of degree between m
and 3m + 2.

e All the zeros of g~™%By(z) are {1,3 -i:3<i<m+2}.

o The identity (1.5) holds for £ = 1,2, m + 3 by noticing that the left-
hand side of (1.5) has only one or two non-zero terms for such z’s.

When z = 1, since [2:,;":_‘1] =0for 0 < k< 2m —1, we have

By() = (e[, ]

1 —3:::2;9,,,,_4 (1 — q2m+2)

=(-1)"""q BT

which is equal to the right-hand side of (1.5) with z = 1. Similarly,

we have
sen- i)

B 3y — 2m 2m + 2 _ 2m 2m + 2
dm+3)=a| - ollom+1] ™ |m-1]lem+1]
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The following theorem is a g-analogue of [3, Theorem 7].

Theorem 3.1 For m € N and r € Z, there holds

2§l( l)m—k ("-—;4-1) 2m+ 1|l z+k ] fz+2m -k -1

k=0 ! k 2m+r 2m+r
2m+4-2

— q(m+l)(z—m—r—l) [m+1 z—-2 r+m (3 1)

i lm+r =1 fm+r—1) :

Proof. Let

Culz) = 2§l(—1)m_k (m=k+Y) 2m+1{[z+k ][z +2m -k -1
= k=0 I k 2m+r om+r ’

When » < 0, we can prove this theorem by checking the following state-
ments:

o Cy(z) is a polynomial in ¢ consisting of terms of degree hetween
m+1and 3m 4 2r — 1.

o All the zeros of g~ (m+1)=C,(z) are {i,r —i:2<i<m+r}

1—g2mtr+t

e For z = m +r + 1, both sides of (3.1) are equal to [21;"_;_"12] —IZF;,—
When r > 0, we can prove this theorem by defining
= 2] 2z 17!
G =021 |7 ]
and then verifying the following statements:

. 6q(:v) is a polynomial in ¢* consisting of terms of degree between
m+1 and 3m + 1.

o All the zeros of q'("‘“)’éq(z) are {i,r—i:7+1<i<m+r}.
e For z = m + r + 1, both sides of (3.1) are equal. a

The following theorem is a g-analogue of [3, Theorem 8.

Theorem 3.2 For m € Ny and r € Z, there holds

ZmZ-H l)m'k (k¥ 2m+1 r+k r+2m—k
k—o(— 1 k 2m+r+ 1| [2m+r+1
2m+1
—_ m+)(z—-m—-r=-1) [m-|-1 ] z—-1ljiz+m (3 2)
=4q 2""';*'_:1'“] m+r||m+r] '
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Proof. Let

2m+1

_ ym—k (n...kn) 2m +1 x4+ k z+2m—k

Dy() g( D" [ k 2m+r+1)[2m+7r+ 1)
When 7 € 0, we can prove this theorem by showing that

e D,(x) is a polynomial in ¢* consisting of terms of degree between
m+1 and 3m + 2r 4- 1.

e All the zeros of g~ (m+1=D,(z) are {i,r —i: 1 <i<m+7}.
e For x = m 4+ r + 1, both sides of (3.2) are equal to [2,;":11 .
When » > 0, we can prove this theorem by defining

Dy(z) = Cy(x) [fv - 1]-1 [:]-1

r

and then verifying the following statements:

. ﬁq(x) is a polynomial in ¢* consisting of terms of degree between
m+1and 3m + 1.

o All the zeros of g~ (™+Dz D (x) are {i,r —i:r +1<i < m+71}.

1

e For x = m +r + 1, hoth sides of (3.2} are equal.

We end this section with the following g-analogue of 3, Theorem 9).

Theorem 3.3 For m € Ny and r € Z, there holds

k=0

k 2m+r 4+ 2 2m+r +2
Proof. Let
E@)= 3 (1)fqC [P A T|[ w4k Jfod2mok4d
s o] 9 k om+r+2|| 2m+r+2

When r < 0, we can confirm this theorem hy checking the following state-
nients:

e E () is a polynomial in ¢ consisting of terms of degree hetween
m+ 1 and 3m + 2r + 3.
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. q"("’“)’Eq(z) has zeros {i,7—i: 0 € ¢ < m+r+1}, whose cardinality
is 2m + 2r 4-4, greater than 2m + 2r + 2, which means that E,(z) =0

When r 3 0, we can confirm this theorem by defining E. o(7) = Eq(z)], :-1] -2
and then checking the following statements:

° Eq(:r) is a polynomial in ¢* consisting of terms of degree between
m+1 and 3m + 1.

e g~(M+DTE (1) has zeros {i,” —i:7+1 < i < m+r + 1}, whose
cardinality is 2m + 2, greater than 2m, which leads to Eq(z) =0. O

4 Another kind of g-series identities

Applying the Leibniz rule for the product of two functions, Chu [3, Corollary
13] establishes the following transformation on alternating binomial sums:

s () (i)

e (@0 e

which enables him to deduce some other closed formulas including Dixon’s
identity.

Although we cannot find a g-analogue of (4.1), we may give a g-analogue
of most of the binomial coefficient identities in [3, Section 4]. The following
theorem is a g-analogue of (3, V. (7, 7|z)]. Its proof is a little different from
those in the previous section, but much similar to that in [5].

Theorem 4.1 For m € N and r € Z, there holds

2Zm(—1)m—k e el R tol
k=0 ! el rrilam =k
_ 2::] z+m|lz—-1 (42)
Pl el lm o] |
Proof. Let
H, s e R N !
o2 =3 (-D" e kLlkar]omer— &)
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Then Hy(z) is a polynomial ¢* of degree less than or equal to 2m + 2r.
We first consider the r < 0 case. It suffices to verify (4.2) for 2m + 2r +1

distinct values of z. For z = 1,...,m + r, we have H,(z) = 0 since
[kir] =0 02r J[?Tl_w ) =0. For x = m+7+1, both sides of (4.2) are equal
to [27] -—}"Fr For z = —p (1 — r € p < m), noticing that

[_k] = (=1)kgk~ ()[n-{-:-—IJ’

we have
2m
- —_ _ m~k 3(m=k 2 pm—k 2m __p —P—l
Hy(-p) = 31" k”k+erm+r_k]
_f m— 2"‘ ")+U 2m k+T+p—1 2m+r+p k
k p—1 P
Z( pymektpg( ey [2m| [k +p = 1] [k —2m -7 1
- k —1 P )
(4.3)
where
2

U = mk + (m — 5m?)/2 ~ 2p(m + r) — 2mr — 72,

V=U+p@m+r+p—k)— (;’)

Since ¢¥ [k"';f’l"l] [""2";"‘1] is a polynomial in ¢* of degree
m—p+2p—1=m+p—-1<2m-1,

and by (2.1) we have
2m 2m—k\ [2m] .
Z(—l)kq( 2 )[ f ]q"‘ =0, for 0i<2m—1.

Namely, the right-hand side of (4.3) vanishes for z = —p (1 —7 < p < m).
This proves the r < 0 case.

For the 7 > 0 case, let H,(z) = Hy(z)[*] ]_l[ ]_1 Then H,(z) is a
polynomial in ¢ of degree no more than 2m . Similarly to the r < 0 case,
we can show that all the zeros of Hy(z) are {i,r —i: 17 +1 < i< m+r},
and for z = m + r + 1, the identity (4 2) holds. m]

We now give a g-analogue of [3, Vom(3,1|z)].
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Theorem 4.2 For m € N, there holds

2Zm(__1)m_k 3on—k)2+m=3k |2m T x—3
4 klk+1][2m—k+1

k=0
_ Q- (A +g g™t —g" — "l + 7Y
- (1 = gmt1)(1 — g2m+1)

x[’”:;"'l” ;3] (4.4)

Sketch of Proof. Both sides of (4.4) are polynomials in g* of degree less than
or equal to 2m + 2, and have zeros {7,3—: 3 < i < m+2}U{2m+3}. For
z = 1, both sides of (4.4) are equal to (—1)™~1g=(m*+9m+4)/2(] _ g2m+2)/
(1—gq), and for = = 2, hoth sides of (4.4) are equal to (—1)™~1g=(m*+7m)/2
(1+¢™ 1) (1 - ™)/ —q).

Similarly, applying another special case of the binomial theorem

2m+1
Z (_l)kq(2vn+21—k) [2mk+ 1] q‘lk = 0’ for 0 g 'l s 2m’
k=0

we can prove the following result, which is a g-analogue of [3, Vop,41 (7, 7|z)).

Theorem 4.3 For m € N and r € Z, there holds

2§1( l)m’-k—]_ 3m-k)24m=sk |2m + 1 T z-1
k=0 ! * Errimar i
[2n;++ril-l m+r||m+r| .

Sketch of Proof. When r < 0, both sides of (4.5) are polynomials in
g® of degree less than or equal to 2m + 2r + 1 and have zeros {i,r —
i:1 i< m+r} Forz = m+r+1, both sides of (4.5) are equal
to ¢~2m~1[>*"+1] For # = m + r + 2, both sides of (4.5) are equal to

-2m—~1 [2m+1] (l—q'" +vd l)(l_qz,,.+,,+ﬁ
q m (1=g)(1—g"F7%) .

When r > 0, divide both sides of (4.5) by [*7!][?] and then we can
show that both sides are polynomials in ¢* of degree no more than 2m and
have zeros {i,r —i:r+1 < i < m+7}. For x = m+7 + 1, the identity
holds. a

Replacing ¢ by ¢~ ! in (4.4) and noticing that [2],,-1 = gkk=m) ] e
have




Corollary 4.4 For m € N and r € Z, there holds

2%El(—l)m—k-l ok imose (2m 1) @ *!
q k 2

= k +rj2m+r—-k+1
B q:t—2m—r—l [2r:n+l] [x+m] [z_ 1]
- 2 1 ‘
[’:‘n":l"'] m+r||lm+r

Similarly, we can prove the following g-analogue of (3, Vo 41 (r, 7 —1]z))-

Theorem 4.5 For m € N and r € Z, there holds

2§1(—1)’"—k—1 3(m- "“‘"L:+rn—5k 2m +1 z T -2
2 q k k+r—1]12m+7r—k
(qz—3m—r—l + q—2m—l) [2":’;"1] r+m x—2
- [2m+r 1 1) (46
P ] m+r—1]|m+r—

Letting r = 2 in (4.6), we obtain the following result.
Corollary 4.6 For m € N, there holds

2§1(_1)m—k_1 3m-3k+2)(m-k+1) [2m + 1 z z—2
2 q k E+1]|2m—k+2

_14+¢ ™2 x4+ m][z—2 (a7)
T 14gmtl m+ 1 |m+ 1) '

5 Concluding Remarks

wini =350 () (1) (02

et =330+ (2) (122) (12 2)

Chu (3] gave more theorems on Uy,(r,e|z) and V,(r.e|z) than those g-
analogues we give in the previous sections. Here we want to point out that
the following four couples of the identities on U, (r, €|z) in [3] are equivalent
to each other:

Theorems 2 and 3; Theorems 4 and 5; Theorems 7 and 11;
Theorems 8 and 10.

Let
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For example, Theorems 4 and 5 in [3] can be respectively written as

S0 () (i) ()

e -
§;;<—1>k CoY o) i)
Lmmzen (e

Replacing &k by 2m — k and z by = + 3 in (5.1), we have
%":(_l)k om\ (z+2m—k+3\/2m—k—=z
= k 2m +1 2m+1

_ (2m—x)(2m+x+3)(m)(—x—3>7

(m+1)(2m+1) m m
Whiih is equivalent to (5.2) since (I+§$;‘f+3) = —("2;::13) and (2';‘;’:“”) =
+
- 2m:1)'

Similarly, substituting A = A+ 2,y > y+1, and ¥k — 2m — k in [3,
Theorem 2|, we obtain [3, Thoerem 3]; substituting A > A+ 4, y - y + 2,
and k = 2m+1—k in (3, Theorem 7], we get {3, Thoerem 11]; substituting
A= A+2,y—y+1, and k = 2m — k in (3, Theorem 8], we are led
to (3, Thoerewn 10]. Finally, by (4.1), the corresponding four couples of the
identities on V,(r,&|z) are equivalent to one another.
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