THE RAINBOW VERTEX CONNECTIVITIES OF SMALL CUBIC GRAPHS

ZAI PING LU AND YING BIN MA

ABSTRACT. A vertex colored path is vertex-rainbow if its internal vertices have distinct colors. For a connected graph G with connectivity $\kappa(G)$ and an integer k with $1 \le k \le \kappa(G)$, the rainbow vertex k-connectivity of G is the minimum number of colors required to color the vertices of G such that any two vertices of G are connected by k internally vertex disjoint vertex-rainbow paths. In this paper, we determine the rainbow vertex k-connectivities of all small cubic graphs of order 8 or less.

Keywords. Vertex-coloring, vertex-rainbow path, rainbow vertex k-connectivity.

1. INTRODUCTION

All graphs considered in this paper are simple, finite and undirected. We follow the notation and terminology of [1] for those not described here. Recall that the *connectivity* of a connected graph G is $\kappa(G)=\max\{k:G \text{ is }k\text{-connected}\}$. Let G be a connected graph with connectivity $\kappa(G)$. Throughout the paper, let k be an integer satisfying $1 \le k \le \kappa(G)$. For convenience, a set of internally vertex disjoint paths will be called *disjoint*.

For a graph G, we denote by V(G) and E(G) the vertex set and edge set of G, respectively. An edge-coloring of a graph G is a mapping from E(G) to some finite set of colors. A path in an edge colored graph is said to be a rainbow path if no two edges on the path share the same color. The rainbow k-connectivity of a connected graph G, denoted by $rc_k(G)$, is the minimum number of colors needed in an edge-coloring of G such that any two distinct vertices of G are connected by K disjoint rainbow paths. The function $rc_k(G)$ was introduced by Chartrand et al.(see [2] for K = 1, and [3] for general K. Since then, a considerable amount of research has been carried out towards the study of $rc_k(G)$, see [8] for a survey on this topic.

Mathematics Subject Classification 2010: 05C15, 05C38, 05C40. This work partially supported by the NSFC (No.11271267 and No.11371204.) Corresponding author: Y.B. Ma(E-mail: mayingbincw@gmail.com).

Similar to the concept of rainbow k-connectivity, Krivelevich and Yuster[6] (2009), Liu et al.[9](2013) proposed the concept of rainbow vertex k-connectivity. A vertex-coloring of a graph G is a mapping from V(G) to some finite set of colors. A vertex colored path is vertex-rainbow if its internal vertices have distinct colors. A vertex-coloring of a connected graph G, not necessarily proper, is rainbow vertex k-connected if any two vertices of G are connected by k disjoint vertex-rainbow paths. The rainbow vertex k-connectivity of G, denoted by $rvc_k(G)$, is the minimum integer t so that there exists a rainbow vertex k-connected coloring of G, using t colors. For convenience, we write rvc(G) for $rvc_1(G)$. By Menger's theorem[10], $rc_k(G)$ and $rvc_k(G)$ are well defined if and only if G is a connected graph satisfying $1 \le k \le \kappa(G)$.

Let G be a connected graph. Note that rvc(G) = 0 if and only if G is a complete graph. Let diam(G) denote the diameter of G. Then $rvc(G) \ge diam(G) - 1$ with equality if k = 1 and diam(G) = 1 or 2. For $u, v \in V(G)$, let $d_k(u, v)$ be the minimum possible length of the longest path in a set of k disjoint u - v paths. The k-diameter of G is $diam_k(G) = \max_{u,v \in V(G)} d_k(u,v)$. Hence $diam_1(G) = diam(G)$. An easy observation is that $rvc_k(G) \ge diam_k(G) - 1$. If $k \ge 2$, then $rvc_k(G) \ge 1$, and equality holds if G is a complete graph with at least three vertices.

Krivelevich and Yuster [6] proved that if G is a connected graph with n vertices and minimum degree δ , then $rvc(G) < 11n/\delta$. It was shown[4] that the computation of rvc(G) is NP-hard. It was proved in [7] that rvc(G) = n-2 if and only if G is a path of order n. In [9], Liu et al. determined the precise values of $rvc_k(G)$ when G is a cycle, a wheel, and a complete multipartite graph. The foregoing results motivate us to consider the rainbow vertex connectivities of some special graph classes.

In [5], Fujie-Okamoto et al. investigated the rainbow connectivities of all small cubic graphs of order 8 or less. In this paper, we determine the rainbow vertex connectivities of all small cubic graphs of order 8 or less. Suppose that G is a connected cubic graph of order $n \leq 8$. Since $3n = \sum_{v \in V(G)} \deg(v) = 2|E(G)|$ implies that n is even, we have n = 4, 6, 8. If n = 4, then $G = K_4$. If n = 6, then the complement graph \bar{G} is 2-regular, so that $\bar{G} = 2C_3$ or C_6 . This gives $G = K_{3,3}$ or $K_3 \square K_2$, where \square denotes Cartesian product. If n = 8, then we obtain five connected cubic graphs by [11], which are depicted in Figure 1.

It is easy to verify that $rvc(K_4) = 0$, and $rvc_2(K_4) = rvc_3(K_4) = 1$. It was also shown in [9] that $rvc(K_{3,3}) = 1$, and $rvc_2(K_{3,3}) = rvc_3(K_{3,3}) = 2$. Our main result is stated as follows.

Theorem 1.1. (a)
$$rvc(K_3 \square K_2) = 1$$
, $rvc_2(K_3 \square K_2) = 2$, $rvc_3(K_3 \square K_2) = 3$.

(b) (i)
$$rvc(Q_3) = rvc_2(Q_3) = 2, rvc_3(Q_3) = 4.$$

- (ii) $rvc(M_8) = 1, rvc_2(M_8) = 3, rvc_3(M_8) = 4.$
- (iii) $rvc(F_1) = 2, rvc_2(F_1) = 3, rvc_3(F_1) = 5.$
- (iv) $rvc(F_2) = 2, rvc_2(F_2) = 4.$
- (v) $rvc(F_3) = 1, rvc_2(F_3) = 3, rvc_3(F_3) = 4.$

Figure 1: Connected cubic graphs of order 8.

2. Proof of Theorem 1.1

By proving the following lemma, we determine the rainbow vertex connectivities of $K_3 \square K_2$.

Lemma 2.1. Let $G = K_3 \square K_2$. Then $rvc(G) = 1, rvc_2(G) = 2$ and $rvc_3(G) = 3$.

Proof. Let $V(G) = \{u_1, u_2, u_3\} \cup \{v_1, v_2, v_3\}$ such that $u_i u_j, v_i v_j, u_i v_i \in E(G)$, where $1 \leq i, j \leq 3$ with $i \neq j$. Since diam(G) = 2, we have rvc(G) = 1. It is not hard to see that $diam_2(G) = 3$. Thus $rvc_2(G) \geq 2$. By giving u_i color 1 and v_i color 2 for $1 \leq i \leq 3$, this is a vertex-coloring of G with $rvc_2(G) \leq 2$.

Suppose $rvc_3(G)=2$. Assign a rainbow vertex 3-connected coloring c with colors 1 and 2 to G. Since one of the three vertex-rainbow paths between v_1 and v_2 must be $v_1u_1u_2v_2$, this implies $c(u_1) \neq c(u_2)$. By the same argument, we obtain that $c(u_2) \neq c(u_3)$ and $c(u_1) \neq c(u_3)$, a contradiction. Thus $rvc_3(G) \geq 3$. The following coloring c' with colors 1, 2 and 3 induces a vertex-coloring of G with $rvc_3(G) \leq 3 : c'(u_1) = c'(v_3) = 1, c'(u_2) = c'(v_1) = 2$ and $c'(u_3) = c'(v_2) = 3$.

We now consider the rainbow vertex connectivities of the five connected cubic graphs as depicted in Figure 1.

Recall that the 3-dimensional cube Q_3 is a cubic graph of diameter 3 and connectivity 3. Hence $rvc_3(Q_3) \ge rvc_2(Q_3) \ge rvc(Q_3) \ge 2$. Assigning a vertex-coloring to Q_3 with colors 1 and 2 as Figure 2(a), we can easily check that any two distinct vertices of Q_3 are connected by two disjoint vertex-rainbow paths. Thus $rvc_2(Q_3) = rvc(Q_3) = 2$. Now we only need to determine $rvc_3(Q_3)$ (see Figure 2(b)).

Figure 2: The rainbow vertex 2-connectivity of Q_3 .

Lemma 2.2. $rvc_3(Q_3) = 4$.

Proof. Let c be a rainbow vertex 3-connected coloring of Q_3 .

- (i) Without loss of generality, consider u_1 and u_2 . Since in any set of three disjoint $u_1 u_2$ paths, one path contains v_1 and v_2 , we must have $c(v_1) \neq c(v_2)$. By symmetry, any two adjacent vertices of Q_3 must be colored by distinct colors.
- (ii) Since one of the three vertex-rainbow u_1-v_2 paths must be $u_1u_4v_4v_3v_2$ or $u_1u_4u_3v_3v_2$, this implies $c(u_4) \neq c(v_3)$. By symmetry, for any distinct vertices u, v of Q_3 satisfying d(u, v) = 2, we obtain $c(u) \neq c(v)$.

Combining (i) and (ii), we conclude that $c(u_1), c(u_2), c(u_3), c(u_4)$ are distinct, so that $rvc_3(Q_3) \geq 4$. Now, define the vertex-coloring c' on Q_3 as follows: $c'(v_1) = c'(u_3) = 1, c'(v_3) = c'(u_1) = 2, c'(v_2) = c'(u_4) = 3$, and $c'(v_4) = c'(u_2) = 4$. It is easy to verify that the vertex-coloring c' is rainbow vertex 3-connected. Therefore, $rvc_3(Q_3) \leq 4$.

Recall that M_8 is the Möbius ladder of order 8, or the Wagner graph. Since $diam(M_8) = 2$, it follows that $rvc(M_8) = 1$. Observe that $\kappa(M_8) = 3$. This implies that we need to consider $rvc_2(M_8)$ and $rvc_3(M_8)$ (see Figure 3(a)).

Lemma 2.3. $rvc_2(M_8) = 3$ and $rvc_3(M_8) = 4$.

Proof. First, it is easy to see that $diam_2(M_8) = 3$, so that $rvc_2(M_8) \ge 2$. Suppose $rvc_2(M_8) = 2$. Let c be a rainbow vertex 2-connected coloring with colors 1 and 2. One of the following must occur.

- (i) $c(u_{2i-1})=1$ and $c(u_{2i})=2$, where $1 \le i \le 4$. However, there is no set of two disjoint vertex-rainbow u_1-u_5 paths, a contradiction.
- (ii) There exist two adjacent vertices, without loss of generality, u_1 and u_2 satisfying $c(u_1) = c(u_2)$. However, there is no set of two disjoint vertex-rainbow $u_5 u_6$ paths, another contradiction.
- By (i) and (ii), we have $rvc_2(M_8) \ge 3$. Since there exists a rainbow vertex 2-connected coloring with three colors shown in Figure 3(b), this implies that $rvc_2(M_8) = 3$.

Next, we show that $rvc_3(M_8) = 4$. Since there exists a rainbow vertex 3-connected coloring with four colors(see Figure 3(c)), we have $3 \le rvc_3(M_8) \le 4$. Now we only need to prove that $rvc_3(M_8) \ne 3$. To the contrary, suppose there exists a rainbow vertex 3-connected coloring c of M_8 , using colors 1, 2 and 3.

Let $C=u_1u_2\cdots u_8u_1$ be a Hamiltonian cycle in M_8 and consider two adjacent vertices u and v of C. By symmetry, assume that $u=u_1$ and $v=u_2$. If $c(u_1)=c(u_2)$, then there is no set of three disjoint vertex-rainbow paths between u_3 and u_8 , a contradiction. Hence any two adjacent vertices of C must be colored differently. Therefore, there must exist three vertices u,v,w of C such that $c(u)\neq c(v),c(v)\neq c(w)$ and c(u)=c(w), where $uv,vw\in E(C)$. Without loss of generality, assume that $c(u_1)=1,c(u_2)=2$ and $c(u_3)=1$. We have $c(u_4),c(u_8)\in\{2,3\},c(u_5),c(u_6),c(u_7)\in\{1,2,3\}$ and $c(u_i)\neq c(u_{i+1})$ for $4\leq i\leq 7$.

Since the coloring c is rainbow vertex 3-connected, we have, for all $1 \le i \le 8$, the three disjoint vertex-rainbow $u_i - u_{i+4}$ paths are either $\{u_iu_{i+4}, u_iu_{i+1} \cdots u_{i+4}, u_iu_{i-1} \cdots u_{i-4}\}$ or $\{u_iu_{i+4}, u_iu_{i+1}u_{i+5}u_{i+4}, u_iu_{i-1}u_{i+3}u_{i+4}\}$, with all indices taken modulo 8. By considering the pair $\{u_4, u_8\}$, we have $c(u_5), c(u_7) \in \{2, 3\}$. By considering the pair $\{u_1, u_5\}$, we have $c(u_4), c(u_8) \ne (2, 2)$, and we may assume that $c(u_4) = 3$, which implies $c(u_5) = 2$. If $c(u_6) = 3$, then by considering the pair $\{u_3, u_7\}$, we have $c(u_8) = 2$, but then, $c(u_7) = 1$, a contradiction. Hence $c(u_6) = 1$, and $(c(u_4), c(u_5), c(u_6), c(u_7), c(u_8)) \in \{(3, 2, 1, 2, 3), (3, 2, 1, 3, 2)\}$. But then, there is no set of three disjoint vertex-rainbow $u_3 - u_4$ paths, a final contradiction.

Hence
$$rvc_3(M_8) \neq 3$$
, implying that $rvc_3(M_8) = 4$.

We now determine the rainbow vertex connectivities of the graph F_1 depicted in Figure 4(a). Notice that $\kappa(F_1) = 3$.

Lemma 2.4.
$$rvc(F_1) = 2$$
, $rvc_2(F_1) = 3$ and $rvc_3(F_1) = 5$.

Proof. Evidently, there exists a rainbow vertex connected coloring depicted in Figure 4(b), which follows that $rvc(F_1) \leq 2$. Since $diam(F_1) = 3$, this implies $rvc(F_1) \geq 2$, and so $rvc(F_1) = 2$.

Figure 3: The rainbow vertex 2 and 3-connectivity of M_8 .

Next, we prove that $rvc_2(F_1) = 3$. Considering the two vertices w_1 and w_2 , any set of two disjoint $w_1 - w_2$ paths contains a path of length at least 4. Thus $rvc_2(F_1) \geq 3$. On the other hand, Figure 4(c) provides a rainbow vertex 2-connected coloring with three colors. Hence $rvc_2(F_1) = 3$.

Finally, we show that $rvc_3(F_1) = 5$. Let c be a rainbow vertex 3-connected coloring with k colors. The following statements must occur.

- (i) $c(v_1), c(v_2), c(v_3)$ are distinct. (Consider vertex-rainbow w_1-w_2 paths.)
 - (ii) $c(w_2) \neq c(v_2)$. (Consider vertex-rainbow $w_1 v_1$ paths.)
 - (iii) $c(w_1) \neq c(v_2)$. (Consider vertex-rainbow $w_2 v_3$ paths.)
- (iv) $c(w_1), c(w_2), c(v_3)$ are distinct, and $c(w_1), c(w_2), c(v_1)$ are distinct. (Consider vertex-rainbow $v_1 v_2$ paths and $v_2 v_3$ paths, respectively.)

Combining (i), (ii), (iii) and (iv), we obtain that $c(v_1), c(v_2), c(v_3), c(w_1), c(w_2)$ are distinct. Thus $k \geq 5$, implying that $rvc_3(F_1) \geq 5$. On the other hand, there exists a rainbow vertex 3-connected coloring with five colors shown in Figure 4(d). It follows that $rvc_3(F_1) = 5$.

Figure 4: The rainbow vertex connectivities of F_1 .

Now, we are in a position to determine the rainbow vertex connectivities of the graph F_2 in Figure 5(a). Since F_2 has connectivity 2, we only consider $rvc(F_2)$ and $rvc_2(F_2)$.

Lemma 2.5. $rvc(F_2) = 2$ and $rvc_2(F_2) = 4$.

Proof. Since $diam(F_2) = 3$, this implies $rvc(F_2) \ge diam(F_2) - 1 = 2$. Observe that Figure 5(b) shows a rainbow vertex connected coloring. Thus $rvc(F_2) = 2$.

For u_1 and v_1 , any set of two disjoint $u_1 - v_1$ paths consists of a path of length 1 and a path of length at least 5. It follows that $rvc_2(F_2) \ge diam_2(F_2) - 1 = 4$. Since there exists a rainbow vertex 2-connected coloring depicted in Figure 5(c), we have $rvc_2(F_2) = 4$.

Figure 5: The rainbow vertex 1 and 2-connectivity of F_2 .

Finally, we determine the rainbow vertex connectivities of the graph F_3 as shown in Figure 6(a). Since $diam(F_3) = 2$, it follows that $rvc(F_3) = 1$. Note that $\kappa(F_3) = 3$, we need to consider $rvc_2(F_3)$ and $rvc_3(F_3)$.

Lemma 2.6. $rvc_2(F_3) = 3$ and $rvc_3(F_3) = 4$.

Proof. First, we prove that $rvc_2(F_3) = 3$. Considering u_2 and v_2 , any set of two disjoint $u_2 - v_2$ paths contains a path of length at least 4. Thus $rvc_2(F_3) \geq 3$. On the other hand, it is easy to check that the vertex-coloring depicted in Figure 6(b) is rainbow vertex 2-connected, which follows that $rvc_2(F_3) = 3$.

Next, we show that $rvc_3(F_3)=4$. Since there exists a rainbow vertex 3-connected coloring, using four colors(see Figure 6(c)), we have $3 \le rvc_3(F_3) \le 4$. Now we only need to prove that $rvc_3(F_3) \ne 3$. To the contrary, suppose there exists a rainbow vertex 3-connected coloring c with colors 1, 2 and 3. For every pair $\{v_i, v_j\}$, where $i \ne j$ and $1 \le i, j \le 3$, we have that $v_iu_iwu_jv_j$ is a vertex-rainbow path for some $w \in \{w_1, w_2\}$. Hence $c(u_i) \ne c(u_j)$. Without loss of generality, assume that $c(u_1) = 1, c(u_2) = 2$ and $c(u_3) = 3$. Considering the pairs $\{u_i, u_j\}$, where $i \ne j$ and $1 \le i, j \le 3$, gives that $c(v_1), c(v_2), c(v_3)$ are distinct. By considering the pair $\{u_2, v_2\}$, $u_2w'u_1v_1v_2$ and $u_2w''u_3v_3v_2$ must be two vertex-rainbow paths, where

 $\{w', w''\} = \{w_1, w_2\}$. Hence $c(u_1) \neq c(v_1)$ and $c(u_3) \neq c(v_3)$. Furthermore, we obtain $c(u_2) \neq c(v_2)$ by considering the three disjoint vertex-rainbow paths between u_1 and v_1 .

Figure 6: The rainbow vertex 2 and 3-connectivity of F_3 .

With the above arguments, we have that $(c(v_1), c(v_2), c(v_3)) = (2, 3, 1)$ or (3, 1, 2). By the obvious symmetry of F_3 , it suffices to consider $(c(v_1), c(v_2), c(v_3)) = (2, 3, 1)$. Consider the two pairs vertices $\{u_2, w_i\}$ with $1 \le i \le 2$. Since there exist three disjoint vertex-rainbow $u_2 - w_i$ paths, we obtain $c(u_3) \ne c(w_i)$. Hence $c(w_1), c(w_2) \in \{1, 2\}$. However, there is no set of three disjoint vertex-rainbow $u_2 - v_2$ paths, a contradiction.

Therefore,
$$rvc_3(F_3) \neq 3$$
, and so $rvc_3(F_3) = 4$.

By Lemmas 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, Theorem 1.1 is immediate.

Acknowledgement. The authors are very grateful to the referee for helpful comments and suggestions.

REFERENCES

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory, Springer, Berlin, 2008.
- [2] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
- [3] G. Chartrand, G.L. Johns, K.A. McKeon and P. Zhang, The rainbow connectivity of a graph, Networks 54(2009), 75C81.
- [4] L.L. Chen, X.L. Li and Y.T. Shi, The complexity of determining the rainbow vertexconnection of graphs, Theoret Comput Sci. 412(2011), 4531-4535.
- [5] F. Fujie-Okamoto, G.L. Johns and P. Zhang, The rainbow connectivities of small cubic graphs, Ars Combin. 105(2012), 129-147.
- [6] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory 63(2009), 185-191.
- [7] X.L. Li, Y.P. Mao and Y.T. Shi, The strong rainbow vertex-connection of graphs, Util Math., to appear.
- [8] X.L. Li, Y.F. Sun, Rainbow Connections of Graphs, Springer, New York, 2012.

- [9] H. Liu, A. Mestre and T. Sousa, Rainbow vertex k-connection in graphs, Discrete Appl. Math. 161(2013), 2549-2555.
- [10] K. Menger, Zur allgemeinen Kurventheorie, Fund. Math. 10(1927), 96-115.
- [11] R. Read, R. Wilson, An Atlas of Graphs, Oxford University Press, New York, 1998.
- Z. P. Lu, Center for Combinatorics, LPMC-TJKLC, Nankai University, Tian-jin 300071, P. R. China

E-mail address: lu@nankai.edu.cn

Y. B. MA, CENTER FOR COMBINATORICS, LPMC-TJKLC, NANKAI UNIVERSITY, TIANJIN 300071, P. R. CHINA

E-mail address: mayingbincw@gmail.com