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ABSTRACT. A vertex colored path is vertez-rainbow if its internal
vertices have distinct colors. For a connected graph G with connec-
tivity x(G) and an integer k& with 1 < k < k(G), the rainbow verter
k-connectivity of G is the minimum number of colors required to col-
or the vertices of G such that any two vertices of G are connected
by k internally vertex disjoint vertex-rainbow paths. In this paper,
we determine the rainbow vertex k-connectivities of all small cubic
graphs of order 8 or less.

KEYWORDS. Vertex-coloring, vertex-rainbow path, rainbow vertex
k-connectivity.

1. INTRODUCTION

All graphs considered in this paper are simple, finite and undirected.
We follow the notation and terminology of [1] for those not described here.
Recall that the connectivity of a connected graph G is k(G)=max{k :
G is k-connected}. Let G be a connected graph with connectivity x(G).
Throughout the paper, let &£ be an integer satisfying 1 < k¥ < k(G). For
convenience, a set of internally vertex disjoint paths will be called disjoint.

For a graph G, we denote by V(G) and E(G) the vertex set and edge
set of G, respectively. An edge-coloring of a graph G is a mapping from
E(G) to somne finite set of colors. A path in an edge colored graph is said
to be a rainbow path if no two edges on the path share the same color. The
rainbow k-connectivity of a connected graph G, denoted by reg(G), is the
minimum numnber of colors needed in an edge-coloring of G such that any
two distinct vertices of G are connected by k disjoint rainbow paths. The
function rex(G) was introduced by Chartrand et al.(see [2] for £ = 1, and
[3] for general k). Since then, a considerable amount of research has heen
carried out towards the study of r¢x(G), see [8] for a survey on this topic.
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Similar to the concept of rainbow k-connectivity, Krivelevich and Yuster|[6]
(2009), Liu et al.[9](2013) proposed the concept of rainbow vertex k-connect-
ivity. A verter-coloring of a graph G is a mapping from V(G) to some
finite set of colors. A vertex colored path is vertez-rainbow if its internal
vertices have distinct colors. A vertex-coloring of a connected graph G,
not necessarily proper, is rainbow vertexr k-connected if any two vertices
of G are connected by k disjoint vertex-rainbow paths. The rainbow ver-
tez k-connectivity of G, denoted by rvck(G), is the minimum integer t so
that there exists a rainbow vertex k-connected coloring of G, using ¢t colors.
For convenience, we write rvc(G) for rve;(G). By Menger's theorem(10],
rex(G) and ruck(G) are well defined if and only if G is a connected graph
satisfying 1 < k < &(G).

Let G be a connected graph. Note that rve(G) =0 if and only if G is a
complete graph. Let diam(G) denote the diameter of G. Then rve(G) >
diam(G) — 1 with equality if £ = 1 and diam(G) =1 or 2. For u,v €
V(G), let dg(u,v) be the minimum possible length of the longest path
in a set of k disjoint u — v paths. The k-diameter of G is diamy(G) =
maxy, ,ev(c)dk (%, v). Hence diam;(G) = diam(G). An easy observation is
that rvei(G) > diami(G) — 1. If k£ > 2, then rvei(G) > 1, and equality
holds if G is a complete graph with at least three vertices.

Krivelevich and Yuster [6] proved that if G is a connected graph with
n vertices and minimum degree §, then rve(G) < 11n/é. It was shown[4]
that the computation of rvc(G) is NP-hard. It was proved in (7] that
Tve(G) = n — 2 if and only if G is a path of order n. In [9], Liu et al.
determined the precise values of rvci(G) when G is a cycle, a wheel, and a
complete multipartite graph. The foregoing results motivate us to consider
the rainbow vertex connectivities of some special graph classes.

In (5], Fujie-Okamoto et al. investigated the rainbow connectivities of
all small cubic graphs of order 8 or less. In this paper, we determine
the rainbow vertex connectivities of all small cubic graphs of order 8 or
less. Suppose that G is a connected cubic graph of order n < 8. Since
3n= Euev(c) deg(v) = 2|E(G)| implies that n is even, we ha:/e n=4,6,8.
If n = 4, then G = K. If n = 6, then the complement graph G is 2-regular,
so that G = 2C3 or Cs. This gives G = K3 3 or K3(0K>, where O denotes
Cartesian product. If n = 8, then we obtain five connected cubic graphs by
[11], which are depicted in Figure 1.

It is easy to verify that rve(K,4) = 0, and rvea(Ky) = rvea(Ky) = 1. It
was also shown in [9] that rvc(K33) = 1, and rvea(K33) = rvea(K33) = 2.

Our main result is stated as follows.

Theorem 1.1. (a) Tve(K30K?2) = 1, rvey(K30K2) = 2, rves(K30K?3)
= 3.
(b) (i) rve(Q3) = rvea(Q3) = 2,7vc3(Q3) = 4.
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(ii) rve(Ms) = 1,7vee(Mg) = 3,rves(Ms) = 4.
(i) rve(F)) = 2,1vea(F1) = 3,rvea(F,) = 5.
(iv) rve(Fy) = 2,rvee(Fa) = 4.

(v) rve(F3) = 1,rvea(Fs) = 3,rves(F3) = 4.

Q3 H Als .

Fy: F: Fy:

Figure 1: Connected cubic graphs of order 8.

2. ProoF OF THEOREM 1.1

By proving the following lemnma, we determine the rainbow vertex con-
nectivities of K3OK>.

Lemma 2.1. Let G = K3[OK,;. Then rve(G) = 1,7vce(G) = 2 and
rves(G) = 3.

Proof. Let V(G) = {u1,u2,u3z} U {v1,v2,v3} such that uu;,vivj, uiv; €
E(G), where 1 < ¢,7 < 3 with ¢ # j. Since diam(G) = 2, we have rvc(G) =
1. It is not hard to see that diama(G) = 3. Thus rvey(G) > 2. By giving
u; color 1 and v; color 2 for 1 < ¢ < 3, this is a vertex-coloring of G with
rves(G) < 2.

Suppose rvcg(G) = 2. Assign a rainbow vertex 3-connected coloring ¢
with colors 1 and 2 to G. Since one of the three vertex-rainbow paths be-
tween v; and v2 must be vyujugvg, this implies ¢(u1) # c(uz). By the same
argument, we obtain that ¢(uz) # c(uz) and c(u;) # c(u3), a contradiction.
Thus rvez(G) > 3. The following coloring ¢’ with colors 1,2 and 3 induces
a vertex-coloring of G with rve3(G) < 3 : ¢'(uy1) = /(v3) = 1, (u2) =
¢'(v1) =2 and /(u3z) = ¢'(v2) = 3.

We now consider the rainbow vertex connectivities of the five connected
cubic graphs as depicted in Figure 1.
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Recall that the 3-dimensional cube @3 is a cubic graph of diameter 3
and connectivity 3. Hence rves(Q3) > rvea(Qs) 2 rve(Qs) > 2. Assigning
a vertex-coloring to @3 with colors 1 and 2 as Figure 2(a), we can easily
check that any two distinct vertices of Q3 are connected by two disjoint
vertex-rainbow paths. Thus rvea(Q3) = rve(Q3) = 2. Now we only need to
determine rvcz(Q3)(see Figure 2(b)).

(a) (0)

Figure 2: The rainbow vertex 2-connectivity of Q3.

Lemma 2.2. rvcz(@3) = 4.

Proof. Let ¢ be a rainbow vertex 3-connected coloring of Q3.

(i) Without loss of generality, consider u; and ug. Since in any set of
three disjoint u; — us paths, one path contains v; and vs, we must have
c(v1) # c(vg). By symmetry, any two adjacent vertices of Q3 must be
colored by distinct colors.

(ii) Since one of the three vertex-rainhow uy—v, paths must be ujuqv4v3v2
or ujuquzvsve, this implies c(ug) # c(v3). By symmetry, for any distinct
vertices u,v of Q3 satisfying d(u,v) = 2, we obtain c(u) # c(v).

Combining (i) and (ii), we conclude that c(u;), c(usz), c(us), c(ug) are
distinct, so that rvcs(@3) > 4. Now, define the vertex-coloring ¢’ on Q3 as
follows: ¢'(v1) = ¢'(us) = 1,¢'(v3) = /(w1) = 2,¢'(v2) = ¢'(uq) = 3, and
c'(vq) = ¢'(uz) = 4. It is easy to verify that the vertex-coloring ¢’ is rainhow
vertex 3-connected. Therefore, 7ve3(Q3) < 4. a

Recall that Mg is the Mobius ladder of order 8, or the Wagner graph.
Since diam(Ms) = 2, it follows that rve(Mg) = 1. Observe that x(Ms) = 3.
This implies that we need to consider rvcy(Msg) and rvez(Msz)(see Figure
3(a)).

Lemma 2.3. rvcs(Ms) = 3 and rvez(Ms) = 4.

Proof. First, it is easy to see that diamo(Ms) = 3, so that rvce(Msg) = 2.
Suppose rvcy(Msg) = 2. Let ¢ be a rainbow vertex 2-connected coloring with
colors 1 and 2. One of the following must occur.
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(i) e(ugi—1) = 1 and c{ug;) = 2, where 1 < i < 4. However, there is no
set of two disjoint vertex-rainbow u; — ug paths, a contradiction.

(ii) There exist two adjacent vertices, without loss of generality, u; and
ug satisfying c{u;) = c(us). However, there is no set of two disjoint vertex-
rainbow us — ug paths, another contradiction.

By (i) and (ii), we have rvca(Msg) > 3. Since there exists a rainbow
vertex 2-connected coloring with three colors shown in Figure 3(b), this
implies that rveo(Ms) = 3.

Next, we show that rvcz(Mg) = 4. Since there exists a rainbow ver-
tex 3-connected coloring with four colors(see Figure 3(¢)), we have 3 <
rves(Ms) < 4. Now we only need to prove that rvcs(Mz) # 3. To the con-
trary, suppose there exists a rainbow vertex 3-connected coloring ¢ of Mg,
using colors 1,2 and 3.

Let C = ujuy - --ugu; be a Hamiltonian cycle in Mg and consider two
adjacent vertices © and v of C. By syminetry, assume that u = u; and
v = ug. If ¢(u;) = ¢(u2), then there is no set of three disjoint vertex-rainbow
paths between u3 and ug, a contradiction. Hence any two adjacent vertices
of C must he colored differently. Therefore, there must exist three vertices
u,v,w of C such that c(u) # c(v),c(v) # c(w) and c(u) = c(w), where
uv, vw € E(C). Without loss of generality, assume that c(u;) = 1, ¢(ug) = 2
and c(u3) = 1. We have c(uy), c(us) € {2,3}, c(us), c(ug), c(us) € {1,2,3}
and c(u;) # c(uip1) for4 <i < 7.

Since the coloring ¢ is rainbow vertex 3-connected, we have, for all
1 € i £ 8, the three disjoint vertex-rainbow u; — u,;+4 paths are either
{withip g, Wilkig1 - Ui, Uili—1 - - Uima} O {Uilhiga, Uilli4 1Ui45Uitd, Uilli]
U;4+3U;i+4}, With all indices taken modulo 8. By considering the pair {ug, us},
we have c(us),c(ur) € {2,3}. By considering the pair {u;,us}, we have
(c(uaq),c(ug)) # (2,2), and we may assume that c(usg) = 3, which implies
c(us) = 2. If c(ug) = 3, then by considering the pair {us,uz}, we have
c(ug) = 2, but then, ¢(us) = 1, a contradiction. Hence c{ug) = 1, and
(e(uq),c(us), c(ue), c(ur), c(ug)) € {(3,2,1,2,3),(3,2,1,3,2)}. But then,
there is no set of three disjoint vertex-rainbow us — u4 paths, a final con-
tradiction.

Hence rves(Ms) # 3, implying that rvez(Ms) = 4. a

We now determine the rainbow vertex connectivities of the graph F,
depicted in Figure 4(a). Notice that x(F}) = 3.

Lemma 2.4. rvc(F)) = 2,rvee(F1) = 3 and rveg(F1) = 5.
Proof. Evidently, there exists a rainbow vertex connected coloring depicted

in Figure 4(b), which follows that rve(F1) < 2. Since diam(F;) = 3, this
implies rvc(F}) > 2, and so rve(Fy) = 2.
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Figure 3: The rainbow vertex 2 and 3-connectivity of Ms.

Next, we prove that rveca(F1) = 3. Considering the two vertices w; and
wq, any set of two disjoint w; — wy paths contains a path of length at least
4. Thus rvce(Fy) = 3. On the other hand, Figure 4(c) provides a rainbow
vertex 2-connected coloring with three colors. Hence rvce(Fy) = 3.

Finally, we show that rvcz(Fi) = 5. Let ¢ be a rainbow vertex 3-
connected coloring with & colors. The following statements must occur.

(i) e(v1), e(v2), c(v3) are distinct. (Consider vertex-rainbow w; —w, path-
s.)

(ii) c(wa) # c(va). (Consider vertex-rainbow w; — v; paths.)

(iii) ¢(w1) # c(vz). (Consider vertex-rainbow ws — v3 paths.)

(iv) c(w1), e(ws), c(v3) are distinct, and c(w;), c(wa), c(vy) are distinct.
(Consider vertex-rainhow v; — vo paths and v, — v paths, respectively.)

Combining (i), (ii), (iii) and (iv), we obtain that c(v1), ¢(v2), c(v3), c(w,),
c(wz) are distinct. Thus k > 5, implying that rvc3(Fy) > 5. On the other
hand, there exists a rainbow vertex 3-connected coloring with five colors

shown in Figure 4(d). It follows that rvcs(F;) = 5. O
1
2 2 1
1 1 :
2 1
1 5
(b) (¢) (d)

Figure 4: The rainbow vertex connectivities of Fj.

Now, we are in a position to determine the rainbow vertex connectivities
of the graph F3 in Figure 5(a). Since F; has connectivity 2, we only consider
rve(F) and rvcy(F7).



Lemma 2.5. rve(F2) = 2 and rvea(F3) = 4.

Proof. Since diam(F;) = 3, this implies rvc(Fy) > diam(F2) — 1 = 2.
Observe that Figure 5(b) shows a rainbow vertex connected coloring. Thus
rvc(Fy) = 2.

For u; and v, any set of two disjoint u; — v, paths consists of a path
of length 1 and a path of length at least 5. It follows that rveo(F) >
diamg(F5)—1 = 4. Since there exists a rainbow vertex 2-connected coloring
depicted in Figure 5(c), we have rvea(F2) = 4. O

1o !

v3 U) 2 2 4 2

'lt:; 1 1 1 3 1

(V] 3
(a) (6) (¢)

Figure 5: The rainbow vertex 1 and 2-connectivity of F».

Finally, we determine the rainbow vertex connectivities of the graph Fj
as shown in Figure 6(a). Since diam(F3) = 2, it follows that rve(F3) = 1.
Note that «(F3) = 3, we need to consider rvecy(F3) and rves(F3).

Lemma 2.6. rvex{F3) = 3 and rvea(F3) = 4.

Proof. First, we prove that rvca(F3) = 3. Considering us and vq, any
set of two disjoint us — vy paths contains a path of length at least 4. Thus
rvce(F3) 2 3. On the other hand, it is easy to check that the vertex-coloring
depicted in Figure 6(b) is rainbow vertex 2-connected, which follows that
T"UCQ(F:;) =3.

Next, we show that rvez(F3) = 4. Since there exists a rainbow ver-
tex 3-connected coloring, using four colors(see Figure 6(c)), we have 3 <
rvcz(F3) < 4. Now we only need to prove that rves(F3) # 3. To the con-
trary, suppose there exists a rainbow vertex 3-connected coloring ¢ with
colors 1,2 and 3. For every pair {v;,v;}, where i # jand 1 <i,5 < 3, we
have that v;u;wu;v; is a vertex-rainbow path for some w € {w;, wz}. Hence
c(u;) # c(u;). Without loss of generality, assume that c(u;) = 1,c(u2) = 2
and c(u3) = 3. Considering the pairs {u;,u;}, wherei # jand 1 <4,j <3,
gives that c¢(v;), c(vz), c(v3) are distinct. By considering the pair {ug, vz},
upw'ugvive and upw’’uszvzve must be two vertex-rainbow paths, where
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{w',w"} = {wy,w2}. Hence c(u1) # c(v;) and c(ugz) # c(v3). Furthermore,
we obtain c(ug) # c(vz) by considering the three disjoint vertex-rainhow
paths between u; and v;.

Uz
wy "2
Uy (15

Uy U

(a) (b) (0)

Figure 6: The rainbow vertex 2 and 3-connectivity of Fj.

With the above arguments, we have that (c(v;), ¢(v2), ¢(v3)) = (2,3,1) or
(3,1,2). By the obvious symmetry of F3, it suffices to consider (c(v1), c(v2),
c(v3)) = (2,3,1). Consider the two pairs vertices {u;,w;} with 1 <7 < 2.
Since there exist three disjoint vertex-rainbow us; — w; paths, we obtain
c(ug) # c(w;). Hence c(w;),c(wz) € {1,2}. However, there is no set of
three disjoint vertex-rainbow us — vo paths, a contradiction.

Therefore, rvez(F3) # 3, and so rves(F3) = 4. O

By Lemmas 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, Theorem 1.1 is immediate.
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