SOME PROPERTIES OF k-ORDER GAUSSIAN FIBONACCI AND LUCAS NUMBERS

ESREF GUREL AND MUSTAFA ASCI

ABSTRACT. In this paper we define and study the k-order Gaussian Fibonacci and Lucas Numbers with boundary conditions. We identify and prove the generating functions, the Binet formulas, the summation formulas, matrix representation of k-order Gausian Fibonacci numbers and some significant relationships between k-order Gaussian Fibonacci and k-order Lucas numbers connecting with usual k-order Fibonacci numbers.

1. Introduction

Fibonacci numbers theory depends on a very interesting recurrence relation that is $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$ such that $F_0 = 0$ and $F_1 = 1$. There are a lot of generalizations of Fibonacci numbers defined and studied by some authors. For more information one can see [11, 16].

One of the most interesting generalization is Gaussian Fibonacci numbers introduced by A. F. Horadam [6]. Horadam [7] defined and established some quite general identities about Gaussian Fibonacci numbers. J. R. Jordan [8] extended some relations which are known for the usual Fibonacci sequences to the Gaussian Fibonacci and Gaussian Lucas sequences.

The Gaussian Fibonacci sequence in [8] is $GF_0 = i$, $GF_1 = 1$ and $GF_n = GF_{n-1} + GF_{n-2}$ for n > 1. One can see that

$$GF_n = F_n + iF_{n-1} \tag{1.1}$$

where F_n is the usual nth Fibonacci number.

The Gaussian Lucas sequence in [8] is defined similarly to the Gaussian Fibonacci sequence as $GL_0 = 2 - i$, $GL_1 = 1 + 2i$ and $GL_n = GL_{n-1} + GL_{n-2}$ for n > 1. Also it can be seen that

$$GL_n = L_n + iL_{n-1} \tag{1.2}$$

where L_n is the usual nth Lucas number.

Asci and Gurel [1] defined and studied the bivariate Gaussian Fibonacci and bivariate Gaussian Lucas polynomials. Asci and Gurel [2] defined

Key words and phrases. Fibonacci numbers, Gaussian Fibonacci numbers, k-order Gaussian Fibonacci Numbers, k-order Gaussian Lucas Numbers.

Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Numbers and transferred significant identities from the usual Jacobsthal numbers to the Gaussian Jacobsthal numbers. Asci and Gurel [3] defined and established some interesting identities about Gaussian Fibonacci p-Numbers and Gaussian Lucas p-Numbers by matrix methods. Also authors in [4] defined and studied some interesting results about Gaussian Tribonacci numbers and Gaussian Tribonacci polynomials

Another interesting generalization of Fibonacci numbers is order-k Fibonacci Numbers that is defined by Er [5] by the following recurrence relation

$$g_n^i = \sum_{j=1}^k g_{n-j}^i$$
, for $n > 0$ and $1 \le i \le k$

with boundary conditions for $1 - k \le n \le 0$,

$$g_n^i = \left\{ \begin{array}{ll} 1 & \text{if } i = 1 - n \\ 0 & \text{otherwise} \end{array} \right..$$

Kilic and Tasci in [10] extended some relationships about order-k Fibonacci Numbers that were Binet formulas combinatorial representations of order-k Fibonacci numbers. Although the definitions of order-k Fibonacci Numbers by Lee et al. in [12, 13, 14] are different from above, the authors derived a generalized Binet formula for k-generalized Fibonacci sequence by using determinants and gave relationships between the Fibonacci numbers and their associated matrices of k-generalized Fibonacci numbers.

Generalized order-k Lucas Numbers are defined by many authors different from each other. Kaygisiz and Sahin [9] defined generalized order-k Lucas numbers by the following recurrence relation

$$l_{k,n} = \sum_{j=1}^{k} l_{k,n-j}$$

with boundary conditions

$$l_{k,1-k} = l_{k,2-k} = \dots = l_{k,-1} = -1$$
 and $l_{k,0} = k$.

But Tasci et al. in [10, 15] defined Generalized order-k Lucas Numbers different from these authors and gave new generalizations of order-k Lucas number by matrix methods. Also Lee et al. in [13] generalized between k-Fibonacci numbers and Lucas numbers by using different definitions of these numbers

In this article, we define and study the k-order Gaussian Fibonacci and Gaussian Lucas Numbers with boundary conditions. We identify and prove the generating functions, the Binet formulas, the summation formulas, the

matrix representation of k-order Gaussian Fibonacci numbers and some significant relationships between k-order Gaussian Fibonacci and k-order Lucas numbers connecting with usual k-order Fibonacci numbers.

2. THE k-ORDER GAUSSIAN FIBONACCI AND k-ORDER GAUSSIAN LUCAS NUMBERS

Definition 1. Let k be an integer. The k-order Gaussian Fibonacci numbers $\left\{GF_n^{(k)}\right\}_{n=0}^{\infty}$ are defined by the following recurrence relation

$$GF_n^{(k)} = \sum_{j=1}^k GF_{n-j}^{(k)}, \text{ for } n > 0 \text{ and } k \ge 2$$
 (2.1)

with boundary conditions for $1-k \leq n \leq 0$,

$$GF_n^{(k)} = \begin{cases} 1-i, & \text{if } k = 1-n \\ i, & \text{if } k = 2-n \\ 0, & \text{otherwise.} \end{cases}$$

It can be easily seen that

$$GF_n^{(k)} = F_n^{(k)} + iF_{n-1}^{(k)}$$

where $F_n^{(k)}$ is the nth k-order Fibonacci number. For later use the first few terms of the sequence $GF_n^{(k)}$ can be seen in the following table

n	k=2	k = 3	k=4	k = 5	k=6	
-5					1-i	
-4				1-i	i	
$\overline{-3}$			1-i	i	0	
-2		1-i	i	0	0	
-1	1-i	i	0	0	0	
0	i	0	0	0	0	
1	1	1	1	1	1	
2	1+i	1+i	1+i	1+i	1+i	
3	2+i	2+i	2+i	2+i	2+i	
4	3+2i	4+2i	4+2i	4+2i	4+2i	
	:	:	:	:	:	

Definition 2. Let k be an integer. The k-order Gaussian Lucas numbers $\left\{GL_n^{(k)}\right\}_{n=0}^{\infty}$ are defined by the following recurrence relation

$$GL_n^{(k)} = \sum_{j=1}^k GL_{n-j}^{(k)}, \text{ for } n > 0 \text{ and } k \ge 2$$

with boundary conditions for $1-k \le n \le 0$,

$$GL_n^{(k)} = \begin{cases} -1 + (2k-1)i & \text{if } k = 1-n \\ -1-i & \text{otherwise} \\ k-i & \text{if } n = 0. \end{cases}$$

It can be easily seen that

$$GL_n^{(k)} = L_n^{(k)} + iL_{n-1}^{(k)}$$

where $L_n^{(k)}$ is the nth k-order Lucas number. For later use the first few terms of the sequence $GL_n^{(k)}$ can be seen in the following table

n	k = 2	k = 3	k = 4	k = 5	k = 6	
-5					-1 + 11i	
-4				-1 + 9i	-1-i	
-3			-1 + 7i	$\overline{-1-i}$	-1-i	
-2		-1 + 5i	-1-i	-1-i	-1-i	
-1	-1 + 3i	-1-i	-1-i	-1-i	-1-i	
0	2-i	3-i	4-i	5-i	6-i	
1	1+2i	1 + 3i	1+4i	1+5i	1+6i	
2	3+i	3+i	3+i	3+i	3+i	
3	4+3i	7 + 3i	7+3i	7+3i	7+3i	
4	7+4i	11 + 7i	15 + 7i	15 + 7i	15 + 7i	
	:	:		•••		:

3. Some Properties of k-order Gaussian Fibonacci and Lucas Numbers

Theorem 1. The generating function for the k-order Gaussian Fibonacci numbers is

$$g(t) = \sum_{n=0}^{\infty} GF_n^{(k)} t^n = \frac{GF_0^{(k)} + \left(GF_1^{(k)} - GF_0^{(k)}\right)t + \left(GF_2^{(k)} - GF_1^{(k)} - GF_0^{(k)}\right)t^2}{1 - \sum_{j=1}^k t^j}$$

and for the k-order Gaussian Lucas numbers is

$$h(t) = \sum_{n=0}^{\infty} GL_n^{(k)} t^n = \frac{GL_0^{(k)} + \sum_{m=1}^{k-1} \left(GL_m^{(k)} - \sum_{j=1}^m GL_{j-1}^{(k)} \right) t^m}{1 - \sum_{j=1}^k t^j}.$$

Proof. Let g(t) be the generating function of the k-order Gaussian Fibonacci numbers $GF_n^{(k)}$ then

$$\begin{split} g(t) - tg(t) - \dots - t^k g(t) &= GF_0^{(k)} + t \left(GF_1^{(k)} - GF_0^{(k)} \right) \\ &+ t^2 \left(GF_2^{(k)} - GF_1^{(k)} - GF_0^{(k)} \right) \\ &+ t^3 \left(GF_3^{(k)} - GF_2^{(k)} - GF_1^{(k)} - GF_0^{(k)} \right) \\ &+ \sum_{n=4}^{\infty} t^n \left(GF_n^{(k)} - \sum_{j=0}^{n-1} GF_j^{(k)} \right) \\ &= GF_0^{(k)} + \left(GF_1^{(k)} - GF_0^{(k)} \right) t \\ &+ (GF_2^{(k)} - GF_1^{(k)} - GF_0^{(k)}) t^2. \end{split}$$

By taking q(t) parenthesis we get

$$g(t) = \frac{GF_0^{(k)} + \left(GF_1^{(k)} - GF_0^{(k)}\right)t + \left(GF_2^{(k)} - GF_1^{(k)} - GF_0^{(k)}\right)t^2}{1 - \sum_{i=1}^{k} t^j}.$$

The proof for h(t) is similar.

Corollary 1. Let k = 2. Then the generating function of the usual Gaussian Fibonacci numbers

$$g(t) = \sum_{n=0}^{\infty} GF_n t^n = \frac{i + (1-i)t}{1 - t - t^2}$$

and Lucas numbers

$$h(t) = \sum_{n=0}^{\infty} GL_n t^n = \frac{2-i+(i-1)t}{1-t-t^2}.$$

Corollary 2. [4] Let k = 3. Then the generating functions of the Gaussian Tribonacci numbers

$$g(t) = \sum_{n=0}^{\infty} GT_n t^n = \frac{t + it^2}{1 - t - t^2 - t^3}.$$

Binet's formulas are well known and studied in the theory of Fibonacci numbers.

Let $f(\lambda)$ be the characteristic polynomial of the k-order Fibonacci numbers and $x_1, x_2, x_3, ..., x_{k-1}, x_k$ be the different roots of the characteristic equation of the recurrence relation (2.1). Then the Binet formula of the k-order Fibonacci numbers are given in [12].

Now we can give the Binet formula for the k-order Gaussian Fibonacci and the k-order Gaussian Lucas numbers.

Theorem 2. For $n \geq 0$

$$GF_n^{(k)} = c_1 x_1^n + c_2 x_2^n + \dots + c_k x_k^n + i \left(c_1 x_1^{n-1} + c_2 x_2^{n-1} + \dots + c_k x_k^{n-1} \right)$$
and

$$GL_n^{(k)} = t_1 x_1^n + t_2 x_2^n + \dots + t_k x_k^n + i \left(t_1 x_1^{n-1} + t_2 x_2^{n-1} + \dots + t_k x_k^{n-1} \right).$$

Proof. We have the relation

$$GF_n^{(k)} = F_n^{(k)} + iF_{n-1}^{(k)}$$

where $F_n^{(k)}$ is the *n*th *k*-order Fibonacci number. Since the Binet formula of the *k*-order Fibonacci numbers is proved in [12]. Then from above relation it can be seen. The proof for $GL_n^{(k)}$ is similar

Theorem 3. For any positive integers m and n

$$GF_{n+m}^{(k)} = F_{n+1}^{(k)}GF_m^{(k)} + \sum_{j=0}^{k-1} \left(GF_{m-(k-j-1)}^{(k)} \sum_{p=0}^{j} F_{n-p}^{(k)} \right).$$

Proof. Theorem can be proved by mathematical induction on n.

Corollary 3. Let k = 2. Then

$$GF_{n+m} = F_{n-1}GF_m + F_nGF_{m+1}.$$

Corollary 4. [4] Let k = 3. Then

$$GT_{n+m} = T_nGT_{m-2} + (T_n + T_{n-1})GT_{m-1} + T_{n+1}GT_m$$

where T_n and GT_n are the usual Tribonacci and Gaussian Tribonacci numbers.

Theorem 4. For any positive integers m and n

$$GL_{n+m}^{(k)} = F_{n+1}^{(k)}GL_m^{(k)} + \sum_{j=0}^{k-1} \left(GL_{m-(k-j-1)}^{(k)} \sum_{p=0}^{j} F_{n-p}^{(k)}\right).$$

Proof. Theorem can be proved by mathematical induction on n.

Corollary 5. Let k = 2. Then

$$GL_{n+m} = F_{n+1}GL_m + F_nGL_{m-1}.$$

Theorem 5. The sums of the k-order Gaussian Fibonacci and k-order Gaussian Lucas numbers are given as:

$$\sum_{j=1}^{n} GF_{j}^{(k)} = \frac{1}{k-1} \left(GF_{n+k}^{(k)} - GF_{k}^{(k)} + \sum_{j=1}^{k-2} (k-j-1) \left(GF_{j}^{(k)} - GF_{n+j}^{(k)} \right) \right)$$

and

$$\sum_{j=1}^{n} GL_{j}^{(k)} = \frac{1}{k-1} \left(GL_{n+k}^{(k)} - GL_{k}^{(k)} + \sum_{j=1}^{k-2} (k-j-1) \left(GL_{j}^{(k)} - GL_{n+j}^{(k)} \right) \right).$$

Proof. By the recurrence relation of k-order Gaussian Fibonacci numbers (2.1) we have

$$GF_{n-k}^{(k)} = GF_n^{(k)} - \sum_{j=1}^{k-1} GF_{n-j}.$$

From this equality

$$\begin{array}{rcl} GF_1^{(k)} & = & GF_{k+1}^{(k)} - GF_k^{(k)} - \ldots - GF_3^{(k)} - GF_2^{(k)} \\ GF_2^{(k)} & = & GF_{k+2}^{(k)} - GF_{k+1}^{(k)} - \ldots - GF_4^{(k)} - GF_3^{(k)} \\ GF_3^{(k)} & = & GF_{k+3}^{(k)} - GF_{k+2}^{(k)} - \ldots - GF_5^{(k)} - GF_4^{(k)} \\ & & \vdots \\ GF_{m-1}^{(k)} & = & GF_{k+m-1}^{(k)} - GF_{k+m-2}^{(k)} - \ldots - GF_{m+1}^{(k)} - GF_m^{(k)} \\ GF_m^{(k)} & = & GF_{k+m}^{(k)} - GF_{k+m-1}^{(k)} - \ldots - GF_{m+2}^{(k)} - GF_{m+1}^{(k)}. \end{array}$$

So we get

$$\begin{split} \sum_{j=1}^m GF_j^{(k)} &= GF_{k+m}^{(k)} - GF_2^{(k)} - 2GF_3^{(k)} - 3GF_4^{(k)} \\ &- \dots - (k-2) \, GF_{k-1}^{(k)} - (k-1) \, GF_k^{(k)} \\ &- (k-2) \sum_{j=k+1}^{m+1} GF_j^{(k)} - (k-3) \, GF_{m+2}^{(k)} \\ &- (k-4) \, GF_{m+3}^{(k)} - \dots - 3GF_{k+m-4}^{(k)} - 2GF_{k+m-3}^{(k)} \\ &- GF_{k+m-2}^{(k)}. \end{split}$$

Adding and subtracting the following terms in the equation above

$$(k-2) GF_1^{(k)} - (k-2) GF_1^{(k)} + (k-2) GF_2^{(k)} - (k-2) GF_2^{(k)} + (k-2) GF_3^{(k)} - (k-2) GF_3^{(k)} + \dots + (k-2) GF_k^{(k)} - (k-2) GF_k^{(k)}$$

we get

$$\begin{split} \sum_{k=1}^m GF_j^{(k)} &= GF_{k+m}^{(k)} + (k-2)\,GF_1^{(k)} + (k-3)\,GF_2^{(k)} + \dots \\ &+ 2GF_{k-3}^{(k)} + GF_{k-2}^{(k)} - GF_k^{(k)} - (k-2)\sum_{j=1}^m GF_j^{(k)} \\ &- (k-2)\,GF_{m+1}^{(k)} - (k-3)\,GF_{m+2}^{(k)} - \dots \\ &- 3GF_{k+m-4}^{(k)} - 2GF_{k+m-3}^{(k)} - GF_{k+m-2}^{(k)}. \end{split}$$

Finally we have

$$(k-1)\sum_{j=1}^{m} GF_{j}^{(k)} = GF_{k+m}^{(k)} - GF_{k}^{(k)} + \sum_{j=1}^{k-2} (k-j-1)GF_{j}^{(k)}$$
$$-\sum_{j=1}^{k-2} (k-j-1)GF_{m+j}^{(k)}$$

and

$$\sum_{j=1}^{m} GF_{j}^{(k)} = \frac{1}{k-1} \left(GF_{k+m}^{(k)} - GF_{k}^{(k)} - \sum_{j=1}^{k-2} (k-j-1) \left(GF_{j}^{(k)} - GF_{m+j}^{(k)} \right) \right).$$

This completes the proof.

Corollary 6. [8] For k=2

$$\sum_{j=1}^{n} GF_j = GF_{n+2} - (1+i)$$

and

$$\sum_{j=1}^{n} GL_{j} = GL_{n+2} - (3+i).$$

Corollary 7. [4] For k=3

$$\sum_{j=1}^{n} GT_{j} = \frac{1}{2} \left[GT_{n+3} - GT_{n+1} - (1+i) \right].$$

Theorem 6. For $n \geq 0$

$$GL_n^{(k)} = kGF_{n+1}^{(k)} - \sum_{j=1}^{k-1} (k-j) GF_{n+1-j}^{(k)}.$$

Proof. Theorem can be proved by mathematical induction on n.

If n = 0 and k = 2, then $GL_0^{(2)} = 2 - i$, $GF_0^{(2)} = i$ and $GF_1^{(2)} = 1$ and then

$$GL_0^{(2)} = 2GF_1^{(2)} - GF_0^{(2)}.$$

Also if n=0 and k>2, then $GL_0^{(k)}=k-i$. By the definition of the k-order Gaussian Fibonacci numbers for all $n\in Z^+$, it can be easily seen that

$$kGF_1^{(k)} - \sum_{j=1}^{k-1} (k-j) GF_{1-j}^{(k)} = kGF_1^{(k)} - (k-1) GF_0^{(k)} - \dots - GF_{2-k}^{(k)}$$
$$= k - 0 - 0 - \dots - 0 - i$$
$$= k - i$$
$$= GL_0^{(k)}.$$

Suppose that the equation holds for n, that is

$$GL_n^{(k)} = kGF_{n+1}^{(k)} - \sum_{j=1}^{k-1} (k-j) GF_{n+1-j}^{(k)}.$$

Then for n + 1, by the definition of the k-order Gaussian Lucas numbers

$$GL_{n+1}^{(k)} = GL_{n}^{(k)} + GL_{n-1}^{(k)} + GL_{n-2}^{(k)} \dots + GL_{n+1-k}^{(k)}$$

$$= \left(kGF_{n+1}^{(k)} - \sum_{j=1}^{k-1} (k-j)GF_{n+1-j}^{(k)}\right)$$

$$+ \left(kGF_{n}^{(k)} - \sum_{j=1}^{k-1} (k-j)GF_{n-j}^{(k)}\right)$$

$$+ \left(kGF_{n-1}^{(k)} - \sum_{j=1}^{k-1} (k-j)GF_{n-1-j}^{(k)}\right) + \dots$$

$$+ \left(kGF_{n+2-k}^{(k)} - \sum_{j=1}^{k-1} (k-j)GF_{n+1-k-j}^{(k)}\right)$$

$$= k\left(GF_{n+1}^{(k)} + GF_{n}^{(k)} + \dots + GF_{n+2-k}^{(k)}\right)$$

$$- \sum_{j=1}^{k-1} (k-j)\left(GF_{n+1-j}^{(k)} + GF_{n-j}^{(k)} + GF_{n-1-j}^{(k)} + \dots GF_{n+1-k-j}^{(k)}\right)$$

$$= kGF_{n+2}^{(k)} - \sum_{j=1}^{k-1} (k-j)GF_{n+2-j}^{(k)}.$$

This completes the proof.

Corollary 8. [8] For $n \geq 0$

$$GL_{n+1} = 2GF_{n+2} - GF_{n+1}$$
.

Theorem 7. For $n \geq 0$

$$GL_n^{(k)} = \sum_{j=1}^k jGF_{n+1-j}^{(k)}.$$

Proof. Theorem can be proved by mathematical induction on n in a similar way to Theorem 6.

Corollary 9. [8] For $n \ge 0$

$$GL_n = GF_n + 2GF_{n-1}.$$

Now we introduce the matrices Q_k , R_k and $E_n^{(k)}$ that plays the role of the Q-matrix. Let Q_k , R_k and $E_n^{(k)}$ denote the $k \times k$ matrices defined as

$$Q_{k} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix}_{k \times k},$$

$$R_{k} = \begin{bmatrix} GF_{k-1}^{(k)} & GF_{k-2}^{(k)} & GF_{k-3}^{(k)} & \cdots & GF_{2}^{(k)} & GF_{1}^{(k)} & 0 \\ GF_{k-2}^{(k)} & GF_{k-3}^{(k)} & GF_{k-4}^{(k)} & \cdots & GF_{1}^{(k)} & 0 & 0 \\ GF_{k-3}^{(k)} & GF_{k-4}^{(k)} & GF_{k-5}^{(k)} & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ GF_{2}^{(k)} & GF_{1}^{(k)} & 0 & \cdots & \vdots & 0 & 0 \\ GF_{1}^{(k)} & 0 & 0 & \cdots & 0 & 0 & i \\ 0 & 0 & 0 & \cdots & 0 & i & 1-i \end{bmatrix}_{k \times k}$$

and

$$E_n^{(k)} = \begin{bmatrix} GF_{n+k-1}^{(k)} & GF_{n+k-2}^{(k)} & \cdots & GF_{n+1}^{(k)} & GF_n^{(k)} \\ GF_{n+k-2}^{(k)} & GF_{n+k-3}^{(k)} & \cdots & GF_n^{(k)} & GF_{k-3}^{(k)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ GF_{n+1}^{(k)} & GF_n^{(k)} & \cdots & GF_{n-k+3}^{(k)} & GF_{n-k+2}^{(k)} \\ GF_n^{(k)} & GF_{n-1}^{(k)} & \cdots & GF_{n-k+2}^{(k)} & GF_{n-k+1}^{(k)} \end{bmatrix}_{k \times k}$$

Then we can give the following Lemma without proof and theorem:

Lemma 1. Let $n \geq 1$. Then

$$E_{n+1}^{(k)} = Q_k E_n^{(k)}.$$

Theorem 8. Let $n \geq 1$. Then

$$Q_k^n R_k = E_n^{(k)}$$
.

Proof. By induction method. If n = 1, then from the definition of the matrix E_n and k-order Gaussian Fibonacci numbers,

$$Q_k R_k = E_1^{(k)}.$$

Assume that the theorem holds for n

$$Q_k^n R_k = E_n^{(k)}.$$

Then for n+1 we have

$$Q_k^{n+1}R_k = Q_kQ_k^nR_k$$
$$= Q_kE_n^{(k)}$$
$$= E_{n+1}^{(k)}.$$

Corollary 10. Let k = 2. Then

$$Q^nR = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array}\right]^n \left[\begin{array}{cc} 1 & i \\ i & 1-i \end{array}\right] = \left[\begin{array}{cc} GF_{n+1} & GF_n \\ GF_n & GF_{n-1} \end{array}\right].$$

Corollary 11. [4] Let k = 3. Then

$$Q_3^n R_3 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}^n \begin{bmatrix} 1+i & 1 & 0 \\ 1 & 0 & i \\ 0 & i & 1-i \end{bmatrix}$$
$$= \begin{bmatrix} GT_{n+2} & GT_{n+1} & GT_n \\ GT_{n+1} & GT_n & GT_{n-1} \\ GT_n & GT_{n-1} & GT_{n-2} \end{bmatrix}.$$

4. Conclusion

In this paper we defined and studied the k-order Gaussian Fibonacci and Gaussian Lucas Numbers with boundary conditions. We identified and proved the generating functions, the Binet formulas, the summation formulas, the matrix representation of k-order Gaussian Fibonacci numbers and some significant relationships between k-order Gaussian Fibonacci and k-order Lucas numbers connecting with usual k-order Fibonacci numbers.

Acknowledgements: The authors thank to the anonymous referees for his/her comments and valuable suggestions that improved the presentation of the manuscript.

REFERENCES

- Asci M., Gurel E., "Bivariate Gaussian Fibonacci and Lucas Polynomials". Ars Comb. 109 (2013): 461-472.
- [2] Asci M., Gurel E.. "Gaussian Jacobsthal and Gaussian Jacobsthal Lucas Numbers." Ars Comb. 111 (2013): 53-63.
- [3] Asci M., Gurel E. "Gaussian Fibonacci p-Numbers and Gaussian Lucas p-Numbers". To appear in Ars. Comb.
- [4] Asci M., Gurel E. "Some Properties of Gaussian Tribonacci numbers and Gaussian Tribonacci polynomials" Submitted to Journal
- [5] Er, M. C. "Sums of Fibonacci numbers by matrix methods." Fibonacci Quart 22.3 (1984): 204-207.
- [6] Horadam, A. F. "A Generalized Fibonacci Sequence". American Math. Monthly 68 (1961): 455-459.
- [7] Horadam, A. F. "Complex Fibonacci Numbers and Fibonacci Quaternions". American Math. Monthly 70 (1963): 289-291.
- [8] Jordan, J. H. "Gaussian Fibonacci and Lucas numbers". Fibonacci Quart. 3 (1965) 315-318.
- [9] Kaygisiz, K., Sahin, A. Generalized Lucas Numbers and Relations with Generalized Fibonacci Numbers. arXiv preprint arXiv:1111.2567.(2011).
- [10] Kilic, E., Dursun T.,. "On the generalized order-k Fibonacci and Lucas numbers." Rocky Mountain J. Math., 36, no:6 (2006): 1915-1926.
- [11] Koshy T. "Fibonacci and Lucas Numbers with Applications," A Wiley-Interscience Publication, (2001).
- [12] Lee G-Y., Lee S-G., Kim J-S., Shin H-K., "The Binet Formula and Representations of k-Generalized Fibonacci Numbers". The Fibonacci Quart. (2001) 158-164.
- [13] Lee G-Y. "k-Lucas numbers and associated bipartite graphs." Linear Algebra and Appl. 320.1 (2000): 51-61.
- [14] Lee G-Y, Lee S-G. "A note on generalized Fibonacci numbers". Fibonacci Quart 33 (1995) 273-8.
- [15] Tasci, D., Kilic, E. "On the order-k generalized Lucas numbers." Appl. Math. Comput. 155.3 (2004): 637-641.
- [16] Vajda, S., "Fibonacci and Lucas Numbers, and the Golden Section Theory and Applications", Ellis Harwood Limitted, (1989).

PAMUKKALE UNIVERSITY SCIENCE AND ARTS FACULTY DEPARTMENT OF MATHEMATICS KINIKLI DENIZLI TURKEY

E-mail address: esrefgurel@hotmail.com

PAMUKKALE UNIVERSITY SCIENCE AND ARTS FACULTY DEPARTMENT OF MATHEMATICS KINIKLI DENIZLI TURKEY

E-mail address: mustafa.asci@yahoo.com