Every 1l-planar graph without 4-cycles
or adjacent 5-vertices is 5-colorable*
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Abstract A graph is 1-planar if it can be drawn on the plane
so that each edge is crossed by at most one other edge. In this
paper, we prove that every 1-planar graph without 4-cycles or
adjacent 5-vertices is 5-colorable.
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1. Introduction

All graphs considered in this paper are finite, simple and undirected.
Any undefined notation follows that of Bondy and Murty!l). Let G be a
1-planar graph. We use V(G), E(G), F(G) and §(G) to denote vertex set,
edge set, face set and the minimum degree of G, respectively. For an ele-
ment x € V(G)UE(G), d(z) denotes the degree of z in G.

A proper vertex coloring of G is an assignment ¢ of integers (or labels
) to the vertices of G in such a way that: p(u) # (v) if the vertex u and
v are adjacent in G. A k-coloring is a proper vertex coloring with k colors.
A coloring of graph G is called improperly (d,...,dx)-colorable or just
(dy,...,di)-colorable if the vertex set of G can be partitioned into subsets
Vi,..., Vi and the subgraph G[V;] induced by V; has maximum degree at
most d; for 1 < i < k. Whendy; = ... =d; =0, it is a proper vertex
coloring of G. When d; = ... =d, =d > 1, it is a d-improper coloring.

The proper and d-improper coloring of planar graphs have heen widely
investigated. In 1976-1977, the Four Color Problem was proved by Ap-
pel and Haken ([2-4]). In other words, every planar graph is (0,0,0,0)-

colorable. Later in 1984, Bordin!® showed that every 1-planar graph is 6-
colorable. For d-improper coloring, Wangl(!1] proved planar graphs without
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4-cycles or 6-cycles are (2,0,0)-colorable; Bul® proved that planar graphs

without cycles of length 4 or 6 are (1, 1,0)-colorable; Wang['9 proved that
planar graphs without cycles of length 4, 5 or 9 are (1,0, 0)-colorable. For
1-planar graphs, there are few research results. In 2011, Fabiric(® studied
structures of 1-planar graphs. Later, Zhang studied edge colorings of 1-
planar graphs in g12-13 . As far as we know, there is no result on improper
vertex coloring of 1-planar graph. In this paper, we consider 1-improper
coloring of 1-planar graphs without 4-cycles, and prove Theorem 2 that 1-
planar graphs without cycles of length 4 are (1,1,1,1,1)-colorable. We also
obtain the following Theorem.

Theorem 1. Let G be a 1-planar graph. If G contains no cycles of
length 4 and 5-vertex is not adjacent to 5-vertex in G, then G is 5-colorable.

2. Notations

A vertex of degree k (resp. at least k, at most k) is called a k-vertex
(resp. k*-vertex, k~-vertez). The notation will be used for cycles and
faces similarly. For f € F(G), we use f = [ujuz...u,] to denote the face
f if uy,us,...,u, are the boundary vertices of f in cyclic order. A 3-
face [uyugus) is called an (m;, ma, m3)-face if d(u;) = m;, for i = 1,2,3.
Specially, a 3-cycle is synonymous with a triangle.

For a 1-planar graph G, we assume that G is the best. That is to say,
we have drawn the graph G in the plane so that the number of the cross
vertices is minimized. So if z is a cross vertex formed by the intersection
of two edges 1y and Toys, the four vertices are different. We use C(G)
to denote the set of cross vertex in G. E¢(G) is the edge set in which the
edge is not crossed by the other edges. The associated plane graph G* of
1-planar graph G is the plane graph which is obtained from G by turning all
crossings into new 4-vertices. We call these new 4-vertices cross vertices.
If a vertex in G* is not a cross vertex, we call it ¢true. Similarly, we call a
face in G* cross face if there are some cross vertices on it. Otherwise it is
a normal face. Specially, a 4-face is called a bad 4-face if it has two cross
vertices which are not adjacent each other.

Here, we introduce some notations which will be used in this paper.
mgzf(v): the number of cross 3-faces adjacent to v.

ma(v): the number of 3-faces adjacent to v.
myp(v): the number of bad 4-faces adjacent to v.

ng+(v): the number of 5% -vertices adjacent to v.
These marks are also quite applicable to faces in G*.

3.Structural Properties

Next, let C = {1,2,3,4,5} denote the color set with five colors. The
proof of Theorem 1 is given by contraction. Let G be a counterexample
with the least number of vertices and edges embedded in the 1-plane. Obvi-

ously, G is connected. Moreover, every subgraph G’ of G with fewer vertices

is 5-colorable. In other words, V(G') can be partitioned into five subsets
Vi, Va, ..., Vs such that A(G[V1])=A(G[V3])= ...=A(G[Vs])=0. Now,
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suppose that the vertices of G[V;] are colored with color ¢, i =1,2,...,5.

Claim 1. §(G)> 5.

proof: Suppose to the contrary that G contains a 4~ -vertex v and
v1,...,U; and the neighbors of v in cyclic order Note that 1 < k < 4.
Let G =G - {v}. By the minimality of G, G' is 5-colorable with the color
set C. We call the coloring above . Since the color set C has 5 colors
and v is a 4™ -vertex, there is one color left. We may easily extend ¢ to G
by properly coloring v with the color which is different from the color of
vertices vy,%g,...,v. So G is 5-colorable. This contradicts the choice of
G. S0 8(G)= 5.

Claim 2'2, Let G be a 1-planar graph and G* be the associated plane
graph of G. Then for any two cross vertices u and v in G*, uv ¢ E(G*).

4. Completing the proof of Theorem 1

By contradiction, we assume that G is not 5-colorable. Define a weight
function w on the vertices and faces of G*. Let w(z) = d(z) —4if z €
V(G*)UF(G*). 1t follows from Euler formula |V(G*)|—|E(G*)|+|F(G*)| =
2 and the relation Y. d(v) = Y d(f) = 2|E(G*)|. So the total

veV(G*) fEF(G*)
sum of weights of the vertices and faces i m G* is equal to

S d) -4+ X (@) —-4)=-8.
fEF(G*)

veV(G*)

We shall design appropriate discharging rules and redistribute weights ac-
cordingly. Once the discharging is finished, a new function w* will be pro-
duced. The total sum of weight remains unchanged during the process of
discharging. Nevertheless, the new weight function satisfies that w*(z) > 0
for all z € V(G*)U F(G*) when the discharging is completed. This leads
to the obvious contradiction.

-8 = > w(z) = > w*(z) = 0.
z€V(G")UF(G*) zEV(GUF(G*)

So no such counterexample exists.
For z,y € V(G*)U F(I(‘} ), let 7(x — y) denote the amount of weights
transferred from z to y. The discharge rules are defined as follows:

(R1)Every bad 4-face sends -:l,; to each adjacent cross 3-face;

(R2)Every 5%.vertex sends 3 to each adjacent 3-face;
(R3)Every 5*-vertex sends 3 to each adjacent bad 4-face;

(R4)Every cross 5*-face sends 3 to each cross 3-face which has a com-
mon cross vertex;

(R5)Every 6%-face sends 3 to a 5-vertex embedded in it;
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(R6)Every cross 5-face sends 3 to each 5-vertex embedded in it.

In the following part, we will prove that w*(z) > 0 for all z € V(G*)u
F(G*). Let v1,v2,...,v4(v) denote the neighbors of v in G* in cyclic order

for any v € V(G*).
Vertices.

Case 1. d(v) = 4.
In this case, v must be a cross vertex. Otherwise §(G)> 5 by claim 1. So
w(v) =4—4=0. It is trivial that w*(v) = w(v) = 0 since v does not send
any charge out according to discharge rules (R1)-(R6).

Case 2. d(v) =5.
We can know that v must be true as the degree of cross vertex is 4. Now
we consider if there are any cross vertices in the neighbors of v. If there
are, we want to know how many they are and how they are generated. So
we have the following two subcases.

Case2.1. If there is no cross vertex in the neighbors of v, then d(v;) >
5,4 =1,2,---,5. According to Claim 1 and the condition that G has no

4-cycles, ma(v) < [ﬂzﬂj = 2. Since both v and its adjacent vertices are
true, we have myy(v) = 0. By discharge rules (R2) and (R3),

>0.

(M

w*(v) = w(v) — Ima(v) — map(v) 25 -4- 1 x2—gx0=

Fig 1

Case2.2. There are some cross vertices in the neighbors of v.

P 1t kg2 Fig13 Fig14
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(a) See the graph in Fig.1. v is a 5-vertex, vy, vs, ..., vs are its neighbors
in cyclic order and vy is a cross vertex generated by the crossing of edge
v1v3 and vw. According to observations and the hypothesis that G contains
no cycles of length 4, we can find that the graphs in Fig.1.1-Fig.1.4 do not
exist. The difficult cases are illustrated in Fig.1.5 and Fig.1.6. In the
Fig.1.5, we have m3(v) = 4, mgp(v) = 0 and v will be adjacent to a 6%-face
f = [busvuge. .. b]. So by (R2), (R3) and (R5), we can obtain that

w*(v) = w(v) + 3me+(v) — yma(v) — gmap(v) >
5-4+4ix1-3x4-1x0=0.

Fig15

Also, the graph in Fig.1.6 may occur. In this situation, m3(v) = 3,
mgp(v) = 1 and v may be adjacent to a cross 5-face f = [vvsdzvsv]. By
(R2), (R3)and (R6), we can get

w*(v) = w(v) + §me+ £(v) = 3ma(v) — gmap(v) >
5—-4+3x1-3%x3-3x1=0.

If v is not adjacent to a cross 5+-face, v will be adjacent to a 6*-face, then
v will get %

(b) See the graph in Fig.2. v, is a cross vertex produced by the crossing
of uvz and vw. Then d(ve) = 4. There is no edges between vy and the
other neighbors of v. According to (R2) and (R3), the more 3-faces and
bad 4-faces appear, the worse the case is. Similarly, the cases in Fig.2.1
and Fig.1.4 will not happen. But the case showed in the graph Fig.2.2 is
more complicated where ma(v) = 4, mqs(v) = 0, mg+s(v) = 1. So we can
obtain

w*(v) = wv) + tme+(v) — 3ma(v) — tmyd(v) >
5—4+3x1-3x4-3x0=0.

Also, the graph in Fig.1.6 may occur. This is similar to Case 2.2(a).
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(c) See the graph in Fig.3. v, is a cross vertex produced by the crossing
of uyus and vw. Then d(v2) = 4. There is no edge between v, and the
other neighbors of v. The difficult cases are shown in Fig.3.1 and Fig.3.2.

In Fig.3.1, we have m3(v) = 2, ma(v) = 2, ms+5(v) > 0. By (R2),
(R3) and (R5), we can obtain

w*(v) = w(v) + tmg+(v) — Fma(v) — gmap(v) >
5-4+ix0-3x2-1tx2=0.

In Fig.3.2, we have m3(v) = 3, myp(v) = 1. There is no edge between
viu;. Otherwise [vyuiugvsvy] is a cycle of length 4 which contradicts to

the choice of G. So v must be adjacent to a cross 5*-face. By (R2), (R3)
and (R6), we have

w*(v) = w(v) + mg+ f(v) — 3ma(v) — tmap(v) >
5-4+ix1-3x3-}tx1=0.

Case3. d(v) = k(k > 6).
According to the discharge rules (R2) and (R3), v will send % to the
adjacent 3-faces and v will send -é to the adjacent bad 4-faces. So

w*(v) =w(v) — ima(v) — tmap(v) 2 k-4-ixk=% —4>0.
We have proved that w*(v) 2> 0 for any vertex in G* by now.

Faces.

LT [ RX3
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Casel. d(f) = 3. We assume that f = [vyvous], f €F(G*). If there is
no cross vertex on f, then d(v;) 2 5 (i = 1,2,3), ng+(v) = 3. By (R2), we
can get

w(f)=w(f)+ 1 xnge(v) =3-4+1x3=0.

Otherwise, there is just one false vertex on f by Claim2. Without loss
of generality, assume v, is a cross vertex, then ng+ (f) > 2. We can easily
conclude that the graphs showed in Fig.4.1 and Fig.4.2 don’t exist as G
contains no cycles of length 4. So f must be adjacent to a bad 4-face or a
cross 5*-face as shown in Fig.4.3 and Fig.4.4. By discharge rules (R1) and

(R2), v can get 1. So we can get
Ww(f)=w(f)+3xng+(f)+3x1=83-4+3x2+4=0
Case2. d(f) =4.

b

Vi

Fig 5

Case2.1. If f is not a bad 4-face, it does not send any charge out
according to (R1)-(R6). So

w(f)=w(f)=4-4=0.

Case2.2. fis a bad 4-face, as shown in Fig.5 f = [vjvov3v4] and d(vy) =
d(v3) = 4. Suppose that f = [av1v4] is a cross 3-face, then bvp, ¢ E(G
dvg ¢ E(G), cvp € E(G). Otherwise, it will form 4-cycles. So maf(f) <1,
ng+(f) = 2. By (R1) and (R3)

w(f)=w(f)+ i xns+(f) =3 xmap(f) 24-d+Lix2-ix1=0.

Case3. d(f) = 5.

-

Case3.1. If f is a normal 5-face, there is no cross vertex on the bound-
ary of f. We have w*(f) = w(f) =5 —4 =1 > 0 by discharge rules.

Case3.2. If f is a cross 5-face, the number of cross vertices is at most 2
by Claim 2. By the graph in Fig.6, f = [vyvouzvgus] where ve and vy are
cross vertices. Then vy, vs,vq must be true vertices. If bvy € E(G), then
av; ¢ E(G). The number of 3-faces which have a common cross vertex with
f, mas(f) satisfies that maz(f) < 2. By the hypotheses, 5-vertex is not
adjacent to 5-vertex, we can obtain ns(f) < 2. By discharge rules (R4)
and (R6), we have
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w(f) =w(f)— 3 xmas(f) — g xns(f) 25-4-3x2—§x2>0.
Cased. d(f) = k (k > 6).

Cased.l If f is a normal k-face (k > 6), ns(f) < k. By (R5), we can
get

W(f)=w(f)—ixns(f)2k—4-ixk=%—-420k26).

Cased.2 f is a cross k-face. The worst case is that all the vertices on
the boundary are cross vertices or 5-vertices. When k=7, see the graphs
shown in Fig.7. However, every cross vertex produces at most one Cross
3-face. So maz(f) +n5(f) < k. Then

w(f)=w(f) — g xmag(f)—gxns(f) =k—4-3xk=2-420

Fig?7 k=7

By now, we have proved that w*(f) > 0 for any face in G*.

Through the discussion above, we have proved > w*(z) =2 0.
z€V(G*)UF(G*)
This leads to the obvious contradiction.
-8 = > w(z) = > w*(z) 2 0.
eV (G*)UF(G") €V (G*)UF(G*)

The proof is completed .

Theorem 2. 1-planar graphs without cycles of length 4 are (1,1,1,1,1)-
colorable.

Assume that G is a minimum counterexample. Then 5-vertex is not
adjacent to 5-vertex in G.

Proof. Suppose to the contrary that a 5-vertex v is adjacent to a 5-
vertex . Let vy V2,U3,V4 denote the other neighbors of v. Let G =G -

3 z}. C]early, G is (1,1,1,1,1)-colorable by the minimality of G. let ¢
enote the (1,1,1,1,1)- colormg with the colors in C. First, we can prop-

erly color z. If {cp(:c) w(v1), (v2), p(vs), p(vs)}# C, we may color v with
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a color in C \ {(z), ¢(v1), p(v2), P(vs), p(v4)}. Otherwise, {w(xl), e(v1),
e(v2), p(va), ¢(v4)}=C. We can color v with the color of z. It is not
difficult to check that the resulting coloring of G is a (1,1,1,1,1)-colorable
which is a contraction. So 5-vertex is not adjacent to 5-vertex in G.

In the following part, the proof is similar to the one in Theorem 1. So
1-planar graph without cycles of length 4 is (1,1,1,1,1)-colorable.
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