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Abstract

Let G be a graph with vertex set V(G). For any integer k > 1,
a signed k-dominating function is a function f : V(G) — {-1,1}
satisfying 3-.¢ (o) f(z) 2 k for every v € V(G), where N[v] is the
closed neighborhood of v. The minimum of the values 3 .\ (¢, f(v),
taken over all signed k-dominating functions f, is called the signed k-
domination number. In this note we present some new lower bounds
on the signed k-domination number of a graph. Some of our results
improve known bounds.
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1 Terminology and Introduction

Let G be a finite graph with vertex set V = V(G) and edge set E = E(G).
We use [4] for terminology and notations which are not defined here. The
order of G is given by n = n(G) = |V| and its size by m = m(G) = |E|. If
v € V(G), then N(v) = Ng(v) is the open neighborhood of v, and N[v] =
N(v) U {v} is the closed neighborhood of v. The degree d(v) = dg(v) of a
vertex v € V(G) is defined by d(v) = |N(v)|. The minimum and mazimum
degree of a graph G are denoted by § = §(G) and A = A(G), respectively.
If § C V(G), then G[S] is the subgraph of G induced by S. For disjoint
subsets S and T of vertices of a graph G, we let (S, T| denote the set of edges
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between S and T. Let S C V(G). For a real-valued function f : V(G) - R
we define f(S) =3 o5 f(v). The weight of f is f(V(G)).

Let £ > 1 be an integer, and let G be a graph with minmum degree
§ > k—1. A signed k-dominating function, abbreviated SkDF, of G is
defined by Changping Wang in [7] as a function f : V(G) — {-1,1}
such that f(N[v]) > k for every v € V(G). The minimum of the values
of f(V(G)), taken over all signed k-domination functions f, is called the
signed k-domination number, abbreviated SkDN, of G and is denoted by
Ysk(G). As the condition § > k — 1 is clearly necessary, we will always
assume that when we discuss vsx(G) all graphs involved satisfy § > k — 1.

If k = 1, then v,,(G) = 7,(G) is the classical signed domination num-
ber, introduced by Dunbar, Hedetniemi, Henning and Slater (3] and inves-
tigated, for example, in (2, 5, 8].

In this paper, we derive some new lower bounds on 4 (G) in terms
of several different graph parameters, as order, size, maximum degree and
minimum degree. We improve some results of Atapour, Sheikholeslami, Ha-
jypory and Volkmann (1} and Wang (7). In addition, many of our bounds
extend inequalities given by Chen and Song [2], Dunbar, Hedetniemi, Hen-
ning and Slater (3], Henning and Slater [5] as well as Zhang, Xu, Li and
Liu [8] for k = 1.

2 Lower bounds

First, we introduce some notations. Let k > 1 be an integer, and let G he a

graph of order n with minimum degree § > k—1. If f: V(G) — {-1,1}

is a minimum SkDF of G, then we define the sets P = {v € V|f(v) = 1}

and M = {v € V|f(v) = —1}. Therefore ys+(G) =|P|-| M| =2|P|-n =

n — 2|M|. Furthermore, let V, and V. be the sets of vertices v with the

property that d(v) — k = 0 (mod 2) and d(v) — k£ =1 (1mmod 2), respectively.
Our first lemma is important for our investigations.

Lemma 1. Using the notations above, the following inequalities are valid.

(a) [SEE1N|M| <| [P, M]| < | 8H=E (P,
() 2|E(G[P])| = 2|E(GIM))]| + (k — 1)n + 2|M]| + |V,
(¢) 2E(G[P)|+|[M,P)| > 4lE(GIM))] + (k= )n + (k + 3)| M| + |V,l.

Proof. (a) Let f be a minimum SkDF of G. Let v € M. Since f(N[v]) > k,
we have 2|N(v)NP| > d(v)+k+1 and therefore [N (v)NP| > [&b;—‘i‘-] >
[$+h£l]. This leads to |[M, P]| > [$+5+1]|M|. Now let v € P. Since
f(Nv]) > k, we see that 2|N(v)N M| < d(v)+1—k and therefore |[N(v) N
M| < [”(”’;“’CJ < | &t1=k| This yields |[P, M]] < | 2t}=%]|P|.
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(b) Let f be a minimum SkDF of G. First we derive a lower bound on
|[M,P)|. Let v € M. Since f(N[v]) > k, we observe that [N(v) N M| <
INw)NP|—k—-1and [Nv)NM| < |N(w)NP|—k—-2whenve MnNYV,.
We deduce that

AE@M]) = > IN@NM]|

veEM

= Y INw)nM[+ Y |N(v)nM]
veMnV, veEMNV,

< Y (N@NP-k-1)
veEMNV,

+ > (N@)NP| -k-2)
veEMNYV,

= |[M,P]| - (k+1)|M| - MV,
This implies
|[M,P]| > (k+1)|M| +2|E(G[M])| + IM NV,|. (1)

Now let v € P. Since f(N[v]) > 1, we have IN(v)NP| > [N(v)NM|+k-1
and [N(v) N P| > |[N(v) N M|+ k when v € PNV,. It follows that

AE(GIP))| = Y_IN@)NP/= > IN@NP+ ) [N@w)nP|
veEP weEPNV, ve PNV,
> Y (INwNM|+k-1)+ Y (IN(®)nM|+k)
vEPNYV, w€EPNV,,

= |[M,P]|+k|P| - |PNV,|
= |[M,P]|+(k-1)|P|+|PnV,|

Combining this inequality chain with (1), we obtain (b) as follows

2E(GIP))| > |[M,P)+(k—1)|P|+|PNV,
2|E(GIM))| + (k+1)|M| + |M N V,|
(k= 1)IP|+ PNV,

2|E(G[M])| + (k — 1)n + 2|M| + |V, .

(¢) Using (b) and (1), we deduce that
2E(GIPDI +|[M, P]l = 2|E(GM)]+ (k- 1)n+2|M| + |V,

+ 2|E(G[M])| + (k + 1)|M]
4| E(GMD]| + (k= D)n + (k + 3)|M| + |V,],

2
+

and (c) is proved. a
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Theorem 2. Let k > 1 be and integer, and let G be a graph of order n,
size m, mazrimum degree A and minimum degree § > k — 1. Then

(5] - 125=2)n

Ysk(G) 2 [BEI=E] 4 [BtEEL) (2)
(2k + 6 — A)n + 2|V,
>
7.9/:(0) = A+6+2 ’ (3)
2m + (k+ 1)n + |V,|
N > —_
’Ysk(G) = A+1 n, (4)
2m — (k- 1)n — |V,
Ysk(G) =2 n - ) ' (5)
3k +1—3A — 2| 8tl=k ) + 2|V, | + 8m
3A 4k +3 42| 8=
3k +1+36 - 2|Atl=k 2|V,| — 4
(@) > | GEELE I =25 It Aol dm )
30+ k+3+2| 8=

Proof. (i) Lemma 1 (a) implies that [$£5+L]|M| < |AH1=X[|P|. Using
this inequality and |P| = %ﬁl and |M| = %ﬂ, the bound (2) is
easy to verify.

(#¢) We note that

2EG[P])] = Y IN(@w)NP| = (d(v) - IN(v) N M]|) < A|P| - |[P, M]|

veEP vEP
(8)
and
2E(G[M])| = Y IN@w)NM| = (d(v) - |N(v)n P|) > §|M|-|[P, M]|.
vEM veEM
(9)

By (8), (9) and Lemma 1 (b), we conclude that

APl = 2E(G[P])| + I[P, M]|
> 2|E(GIM))| + (k- D)n +2|M| +|V,| + 6| M| - 2|E(G[M))|
= (k—1)n+ (6 +2)|M|+ |V,

Using this inequality chain and again |P| = ""'—":‘,"(9 and |M| = 2=
we obtain the lower bound (3).
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(#4i) According to (8), (9) and Lemma 1 (b), we conclude that,

STdw) = Y d(v)+2E(G[P)) - 2|E(G|M)])]
veP veM
> Y d@)+ (k= 1n+2M| +|Vo|. (10)
veM

It follows that

2AIP| > 2 d(v) 2 ) d(v) + (k- 1)n+2[M|+|V,|
vEP veV
2m + (k- 1)n+2(n - |P|) + |V,l,

i

and thus
2m+ (k+ 1)n + |V,]

A+1
Using this inequality, we obtain (4) as follows

2|P| 2

2m + (k+ )n + |V,| o
A+1

Ysk(G) =2|P| —n >
(iv) Applying (10), we observe that

2m = Y d(v)+ Y dv) =22 ) dv)+ (k- 1)n+2|M|+|V,|
veEP vEM veM
> 28|M|+ (k—1)n+2|M| + |V,
and therefore
m—(k—1)n— |V,

)
2IM| < 5+1

Consequently,

2m—(k—1)n— |V,

Ysk(G)=n-2|M|>2n— T ,

and (5) is proved.
(v) Because of 4m = 4|E(G[M])| + 4|{P, M]| + 4|E(G[P])| and Lemma
1 (c), we deduce that
(k — Dn+ (k+ 3)|M| + |Vo| + 4m < 6|E(G[P])| + 5| P, M]|.
Applying (8), we obtain

(k — 1)n + (k + 3)|M| + |V,| + 4m < 3A|P| + 2|[P, M]|.
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By Lemma 1 (a), we have 2|[P, M]| < 2| 2+}=£||P| and therefore

A -k
(k=1)n+ (k+3)|M]+|Vo| +4m < (3A +2 [—+21——D | P
Using this incquality, it is a simple matter to obtain (6).
(vi) Combining 2m = 2|E(G[M})| +2|[P, M]|+ 2| E(G[P])| with Lemma
1 (c), we find that

(k — D)n + (k + 3)| M| + 6| E(G[M])| + |Vo| + |[P, M]| < 2m.
Applying (9), we conclude that
(k — D)n + (k + 3+ 38)|M| + |Vo| — 2|[P, M]| < 2m.

According to Lemma 1 (a), we have 2|[P, M]| < 2| 25=£||P| and so the
last inequality yields

A+l -k

5 J |P| < 2m.

(k—1)n+(k+3+35)|M|+|Vo|—2{

This implies inequality (7). O

If G is an r-regular graph of order n, then (2) leads to ys(G) > r—ﬂf’-‘-l-
when r—k = 1(mod 2) and 7s4(G) > &) when r—k = 0(mod2). This
is a result by Wang [7]. For the special case k = 1, these bounds can be
found in (3] and [5]. In addition, (3) is slightly better than Corollary 2.9 in
the article [1]. We note that (3) and (4) imply results in [8] and [2] for the
case k= 1.

For the complete graph K,, Wang (7] has proved that vy (K,) = &
when n—k = 0 (mod2) and vsx(Kn) =k+1whenn—k =1 (mod2). It is
straightforward to verify that K, fulfills inequalities (2) - (7) with equality,
and therefore all these bounds are sharp.

Moreover, Wang [7] presented the following lower bound on the signed
k-domination number of graphs.

Theorem 3. (7 If G is a graph of order n and size m, then

(2k+1)n —2m

'Ysk(G) 2 k+ 2 )

and this bound is sharp.

The special case k = 1 of Theorem 3 can be found in [8]. Next we will
improve the bound of Theorem 3 for § > k.
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Theorem 4. Let k > 1 be an integer, and let G be a graph of order n, size
m and minimum degree § > k. Then
3[&thtl] 4 k — 1)n — 4m
(@) 2 ST m o,
e —k+1

Proof. Since |M| = n — |P|, it follows from Lemma 1 (a) that

ez i [ S o pp [T

On the other hand [N(v)N M| < [N(v)NP| -k +1 for each vertex v € P,
and so

I[P, M]| STIN@)NM| <D (INW)NP| -k +1)

vEP veEP
2|E(GIPY)| — (k- 1)|P).

Combining the last inequality chain with (11), we obtain

[P, M]| + (k — 1)|P|

2
n[EH6H] — |P|[&E2 + (k - 1)|P|
> 5 .

\Y

|E(G[P])

and hence by (11)

v

|E(GIP))]| + I[P, M]|
n[StEtl] — |P|[&4tl] 4 (k- 1)|P)
2

d+k+1 d+k+1
et nfeeter]

m

v

+

Using |P| = 232:(5) we deduce the desired bound. a

Note that for § > &
(B[] + k —1)n — 4m 5 (2k+1)n —2m
& —k+1 k+2

is equivalent to

o ([EE41] 1) e (252 i),

Since 2m > (k — 1)n and [5L’;"'—1'| >k + 1 for § > k, the last inequality is
valid. Therefore Theorem 4 is an improvement of Theorem 3.
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Theorem 5. If k > 1 is an integer and G a graph of order n and size m,
then

Y5 (G) = g + %\/k2 +4(2m+ (k+ L)n+ [Vo|) — n.
Proof. Obviously,
STUN@) NP <> (1P| -1) =|P|(IP| - 1) = |P|* - |P.
vEP veEP
Using the inequality 2| N(v) N P| > d(v) + k — 1 for v € P, we obtain

2P > 23 IN@W)NP+2|P| > (dwv) +k—1)+2|P|
veEP veP
= Y d@)+(k+1)|P|. (12)
veEP

Using (10), it follows that

23 dv) = D d@)+ Y dv)+(k—1)n+2M|+|V,|
veP veP veM
2m + (k — )n+2(n — |P|) + |V,|
= 2m+ (k+ 1)n—-2|P}|+V,|.

Applying this and inequality (12), we deduce that
4|P)? > 2m + (k + 1)n + |V,| + 2k|P|
and so

2m+ (k+ )n+ |V, >0
1 2

k
1P| = 5IP| -

This implies that

k1
|P| > I + Z\/k2 +4(2m + (k + 1)n + |Vo|),

and we arrive at

k
+= \/k2 +4(2m + (k + 1)n + |V, |) - n.

10k(G) = 2P|~ 2 3

a

Theorem 1 (5) in article [2] by Chen and Song is the special case k =1
of Theorem 5.
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Theorem 6. Ifk > 1 is an integer and G a graph of order n and minimum
degree § > k — 1, then

'ysk(G')_>_%(k—l—6+\/(k—1—-6)2+8n(6+k+1)+8|Vo]) —n.

Proof. Using (10), we obtain

2IP[(IP|-1) 2 2) IN@W)NP|2) (dv) +k-1)

vEP veP

= > d@)+(k-1)P|
veEP

> 3" d)+ (k= 1)n+ Vo] +2|M| + (k — 1)|P|
veM

> Sn+(k-3-08)P|+(k+1)n+|V.

This leads to
P2+ 6+1_k|P|-— (k+ 1)n+dn+ |V, >0

2 2

and thus

|P| > -}I (k—1—6+ \/(k—1—6)2+8n(6+k+1)+8|V‘,]) .
Combining this inequality with v,£(G) = 2|P| — n, we arrive at the desired
bound. O

A graph is Kp-free if it does not contain the complete graph K, as
a subgraph. For our next lower bound, we use the following well-known
Theorem of Turan (6]

Theorem 7. [6] If G is a K,11-free graph of order n, then

r—1
-n?.

|E(G)| <

Theorem 8. Let k > 1 and r > 2 be integers, and let G be a K, 1-free
graph of order n. If ¢ = [(6(G) + k +1)/2], then

yuk(G) > —

(—(c—k+1)+\/(c—k+l)2+4r%1-cn) —n.

r—1

Proof. By Lemma 1 (a), we have

5(G) +k+1
2

1P, M) 2 [ } M| = M| =c(n—|P).  (13)
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Furthermore, Theorem 7 leads to

(PM]| = Y INw)NM|<D (INw)NP|-k+1)
veP veEP

1
—|P* = (k- 1)|P|

= 2|E(G[P})| - (k-1)|P| <

Combining this inequality chain with (13), we obtain

e(n—|Pl) < “=2|PP ~ (k~ 1IP)
and thus
“=L1Pf 4 (c~ k+ )Pl —en 20
and so r r
PP+ (e~ k+1)|P| - ——en 20

It follows that

|P| > 2_(;"75 (—(c~k+1)+\/(c—k+l)2+4r—lcn),

T

and this leads to the desired bound

Ysx(G) = 2|P|-n
r (—(c-—k+l)+\/(c—k+1)2+4r_lcn)-n.

- r-1 r
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