Lower bounds on the signed k-domination number of graphs

Lutz Volkmann

Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen, Germany volkm@math2.rwth-aachen.de

Abstract

Let G be a graph with vertex set V(G). For any integer $k \geq 1$, a signed k-dominating function is a function $f:V(G) \to \{-1,1\}$ satisfying $\sum_{x \in N[v]} f(x) \geq k$ for every $v \in V(G)$, where N[v] is the closed neighborhood of v. The minimum of the values $\sum_{v \in V(G)} f(v)$, taken over all signed k-dominating functions f, is called the signed k-domination number. In this note we present some new lower bounds on the signed k-domination number of a graph. Some of our results improve known bounds.

2010 Mathematical subject classification: 05C69.

Keywords: signed k-dominating function, signed k-domination number

1 Terminology and Introduction

Let G be a finite graph with vertex set V=V(G) and edge set E=E(G). We use [4] for terminology and notations which are not defined here. The order of G is given by n=n(G)=|V| and its size by m=m(G)=|E|. If $v\in V(G)$, then $N(v)=N_G(v)$ is the open neighborhood of v, and $N[v]=N(v)\cup\{v\}$ is the closed neighborhood of v. The degree $d(v)=d_G(v)$ of a vertex $v\in V(G)$ is defined by d(v)=|N(v)|. The minimum and maximum degree of a graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. If $S\subseteq V(G)$, then G[S] is the subgraph of G induced by G. For disjoint subsets G and G of vertices of a graph G, we let G denote the set of edges

between S and T. Let $S \subseteq V(G)$. For a real-valued function $f: V(G) \to R$ we define $f(S) = \sum_{v \in S} f(v)$. The weight of f is f(V(G)).

Let $k \geq 1$ be an integer, and let G be a graph with minmum degree $\delta \geq k-1$. A signed k-dominating function, abbreviated SkDF, of G is defined by Changing Wang in [7] as a function $f: V(G) \rightarrow \{-1,1\}$ such that $f(N[v]) \geq k$ for every $v \in V(G)$. The minimum of the values of f(V(G)), taken over all signed k-domination functions f, is called the signed k-domination number, abbreviated SkDN, of G and is denoted by $\gamma_{sk}(G)$. As the condition $\delta \geq k-1$ is clearly necessary, we will always assume that when we discuss $\gamma_{sk}(G)$ all graphs involved satisfy $\delta \geq k-1$.

If k=1, then $\gamma_{s1}(G)=\gamma_s(G)$ is the classical signed domination number, introduced by Dunbar, Hedetniemi, Henning and Slater [3] and investigated, for example, in [2, 5, 8].

In this paper, we derive some new lower bounds on $\gamma_{sk}(G)$ in terms of several different graph parameters, as order, size, maximum degree and minimum degree. We improve some results of Atapour, Sheikholeslami, Hajypory and Volkmann [1] and Wang [7]. In addition, many of our bounds extend inequalities given by Chen and Song [2], Dunbar, Hedetniemi, Henning and Slater [3], Henning and Slater [5] as well as Zhang, Xu, Li and Liu [8] for k = 1.

2 Lower bounds

First, we introduce some notations. Let $k \geq 1$ be an integer, and let G be a graph of order n with minimum degree $\delta \geq k-1$. If $f:V(G)\longrightarrow \{-1,1\}$ is a minimum SkDF of G, then we define the sets $P = \{v \in V | f(v) = 1\}$ and $M = \{v \in V | f(v) = -1\}$. Therefore $\gamma_{sk}(G) = |P| - |M| = 2|P| - n = 1$ n-2|M|. Furthermore, let V_o and V_e be the sets of vertices v with the property that $d(v) - k \equiv 0 \pmod{2}$ and $d(v) - k \equiv 1 \pmod{2}$, respectively. Our first lemma is important for our investigations.

Lemma 1. Using the notations above, the following inequalities are valid.

- $\lceil \frac{\delta+k+1}{2} \rceil |M| \leq |[P,M]| \leq \lfloor \frac{\Delta+1-k}{2} \rfloor |P|,$ $2|E(G[P])| \geq 2|E(G[M])| + (k-1)n + 2|M| + |V_o|,$
- $2|E(G[P])| + |[M, P]| > 4|E(G[M])| + (k-1)n + (k+3)|M| + |V_0|$

Proof. (a) Let f be a minimum SkDF of G. Let $v \in M$. Since $f(N[v]) \ge k$, we have $2|N(v)\cap P|\geq d(v)+k+1$ and therefore $|N(v)\cap P|\geq \left\lceil \frac{d(v)+k+1}{2}\right\rceil\geq$ $\lceil \frac{\delta + k + 1}{2} \rceil$. This leads to $|[M, P]| \geq \lceil \frac{\delta + k + 1}{2} \rceil |M|$. Now let $v \in P$. Since $f(\tilde{N[v]}) \ge k$, we see that $2|N(v) \cap M| \le d(v) + 1 - k$ and therefore $|N(v) \cap M| \le d(v) + 1 - k$ $|M| \le \left| \frac{d(v)+1-k}{2} \right| \le \left\lfloor \frac{\Delta+1-k}{2} \right\rfloor$. This yields $|[P,M]| \le \left\lfloor \frac{\Delta+1-k}{2} \right\rfloor |P|$.

(b) Let f be a minimum SkDF of G. First we derive a lower bound on |[M,P]|. Let $v \in M$. Since $f(N[v]) \ge k$, we observe that $|N(v) \cap M| \le |N(v) \cap P| - k - 1$ and $|N(v) \cap M| \le |N(v) \cap P| - k - 2$ when $v \in M \cap V_o$. We deduce that

$$\begin{aligned} 2|E(G[M])| &= \sum_{v \in M} |N(v) \cap M| \\ &= \sum_{v \in M \cap V_c} |N(v) \cap M| + \sum_{v \in M \cap V_o} |N(v) \cap M| \\ &\leq \sum_{v \in M \cap V_c} (|N(v) \cap P| - k - 1) \\ &+ \sum_{v \in M \cap V_o} (|N(v) \cap P| - k - 2) \\ &= |[M, P]| - (k + 1)|M| - |M \cap V_o|. \end{aligned}$$

This implies

$$|[M, P]| \ge (k+1)|M| + 2|E(G[M])| + |M \cap V_o|. \tag{1}$$

Now let $v \in P$. Since $f(N[v]) \ge 1$, we have $|N(v) \cap P| \ge |N(v) \cap M| + k - 1$ and $|N(v) \cap P| \ge |N(v) \cap M| + k$ when $v \in P \cap V_o$. It follows that

$$\begin{aligned} 2|E(G[P])| &= \sum_{v \in P} |N(v) \cap P| = \sum_{v \in P \cap V_e} |N(v) \cap P| + \sum_{v \in P \cap V_o} |N(v) \cap P| \\ &\geq \sum_{v \in P \cap V_e} (|N(v) \cap M| + k - 1) + \sum_{v \in P \cap V_o} (|N(v) \cap M| + k) \\ &= |[M, P]| + k|P| - |P \cap V_e| \\ &= |[M, P]| + (k - 1)|P| + |P \cap V_o| \end{aligned}$$

Combining this inequality chain with (1), we obtain (b) as follows

$$\begin{aligned} 2|E(G[P])| & \geq |[M,P]| + (k-1)|P| + |P \cap V_o| \\ & \geq 2|E(G[M])| + (k+1)|M| + |M \cap V_o| \\ & + (k-1)|P| + |P \cap V_o| \\ & = 2|E(G[M])| + (k-1)n + 2|M| + |V_o|. \end{aligned}$$

(c) Using (b) and (1), we deduce that

$$\begin{aligned} 2|E(G[P])| + |[M, P]| & \geq 2|E(G[M])| + (k-1)n + 2|M| + |V_o| \\ & + 2|E(G[M])| + (k+1)|M| \\ & = 4|E(G[M])| + (k-1)n + (k+3)|M| + |V_o|, \end{aligned}$$

and (c) is proved.

Theorem 2. Let $k \geq 1$ be and integer, and let G be a graph of order n, size m, maximum degree Δ and minimum degree $\delta \geq k-1$. Then

$$\gamma_{sk}(G) \ge \frac{\left(\left\lceil \frac{\delta + k + 1}{2} \right\rceil - \left\lfloor \frac{\Delta + 1 - k}{2} \right\rfloor\right)n}{\left\lfloor \frac{\Delta + 1 - k}{2} \right\rfloor + \left\lceil \frac{\delta + k + 1}{2} \right\rceil},\tag{2}$$

$$\gamma_{sk}(G) \ge \frac{(2k + \delta - \Delta)n + 2|V_o|}{\Delta + \delta + 2},\tag{3}$$

$$\gamma_{sk}(G) \ge \frac{2m + (k+1)n + |V_o|}{\Delta + 1} - n,\tag{4}$$

$$\gamma_{sk}(G) \ge n - \frac{2m - (k-1)n - |V_o|}{\delta + 1},\tag{5}$$

$$\gamma_{sk}(G) \ge \left\lceil \frac{(3k+1-3\Delta-2\lfloor\frac{\Delta+1-k}{2}\rfloor)n+2|V_o|+8m}{3\Delta+k+3+2\lfloor\frac{\Delta+1-k}{2}\rfloor} \right\rceil, \tag{6}$$

$$\gamma_{sk}(G) \ge \left\lceil \frac{(3k+1+3\delta-2\lfloor\frac{\Delta+1-k}{2}\rfloor)n+2|V_o|-4m}{3\delta+k+3+2\lfloor\frac{\Delta+1-k}{2}\rfloor} \right\rceil. \tag{7}$$

Proof. (i) Lemma 1 (a) implies that $\lceil \frac{\delta+k+1}{2} \rceil |M| \leq \lfloor \frac{\Delta+1-k}{2} \rfloor |P|$. Using this inequality and $|P| = \frac{n+\gamma_{sk}(G)}{2}$ and $|M| = \frac{n-\gamma_{sk}(G)}{2}$, the bound (2) is easy to verify.

(ii) We note that

$$2|E(G[P])| = \sum_{v \in P} |N(v) \cap P| = \sum_{v \in P} (d(v) - |N(v) \cap M|) \le \Delta |P| - |[P, M]|$$
(8)

and

$$2|E(G[M])| = \sum_{v \in M} |N(v) \cap M| = \sum_{v \in M} (d(v) - |N(v) \cap P|) \ge \delta|M| - |[P, M]|.$$
(9)

By (8), (9) and Lemma 1 (b), we conclude that

$$\Delta|P| \geq 2|E(G[P])| + |[P, M]|$$

$$\geq 2|E(G[M])| + (k-1)n + 2|M| + |V_o| + \delta|M| - 2|E(G[M])|$$

$$= (k-1)n + (\delta+2)|M| + |V_o|.$$

Using this inequality chain and again $|P| = \frac{n + \gamma_{sk}(G)}{2}$ and $|M| = \frac{n - \gamma_{sk}(G)}{2}$, we obtain the lower bound (3).

(iii) According to (8), (9) and Lemma 1 (b), we conclude that

$$\sum_{v \in P} d(v) = \sum_{v \in M} d(v) + 2|E(G[P])| - 2|E(G[M])|$$

$$\geq \sum_{v \in M} d(v) + (k-1)n + 2|M| + |V_o|. \tag{10}$$

It follows that

$$2\Delta|P| \geq 2\sum_{v \in P} d(v) \geq \sum_{v \in V} d(v) + (k-1)n + 2|M| + |V_o|$$
$$= 2m + (k-1)n + 2(n-|P|) + |V_o|,$$

and thus

$$2|P| \ge \frac{2m + (k+1)n + |V_o|}{\Delta + 1}.$$

Using this inequality, we obtain (4) as follows

$$\gamma_{sk}(G) = 2|P| - n \ge \frac{2m + (k+1)n + |V_o|}{\Lambda + 1} - n.$$

(iv) Applying (10), we observe that

$$2m = \sum_{v \in P} d(v) + \sum_{v \in M} d(v) \ge 2 \sum_{v \in M} d(v) + (k-1)n + 2|M| + |V_o|$$

$$\ge 2\delta |M| + (k-1)n + 2|M| + |V_o|$$

and therefore

$$2|M| \le \frac{2m - (k-1)n - |V_o|}{\delta + 1}.$$

Consequently,

$$\gamma_{sk}(G) = n - 2|M| \ge n - \frac{2m - (k-1)n - |V_o|}{\delta + 1},$$

and (5) is proved.

(v) Because of 4m = 4|E(G[M])| + 4|[P, M]| + 4|E(G[P])| and Lemma 1 (c), we deduce that

$$(k-1)n + (k+3)|M| + |V_o| + 4m \le 6|E(G[P])| + 5|[P, M]|.$$

Applying (8), we obtain

$$(k-1)n + (k+3)|M| + |V_o| + 4m \le 3\Delta |P| + 2|[P, M]|.$$

By Lemma 1 (a), we have $2|[P,M]| \le 2\lfloor \frac{\Delta+1-k}{2} \rfloor |P|$ and therefore

$$(k-1)n + (k+3)|M| + |V_o| + 4m \le \left(3\Delta + 2\left\lfloor\frac{\Delta+1-k}{2}\right\rfloor\right)|P|.$$

Using this inequality, it is a simple matter to obtain (6).

(vi) Combining 2m = 2|E(G[M])| + 2|[P, M]| + 2|E(G[P])| with Lemma 1 (c), we find that

$$(k-1)n + (k+3)|M| + 6|E(G[M])| + |V_o| + |[P, M]| \le 2m.$$

Applying (9), we conclude that

$$(k-1)n + (k+3+3\delta)|M| + |V_o| - 2|[P, M]| \le 2m.$$

According to Lemma 1 (a), we have $2|[P,M]| \le 2\lfloor \frac{\Delta+1-k}{2} \rfloor |P|$ and so the last inequality yields

$$(k-1)n + (k+3+3\delta)|M| + |V_o| - 2\left\lfloor \frac{\Delta+1-k}{2} \right\rfloor |P| \le 2m.$$

This implies inequality (7).

If G is an r-regular graph of order n, then (2) leads to $\gamma_{sk}(G) \geq \frac{kn}{r+1}$ when $r-k \equiv 1 \pmod{2}$ and $\gamma_{sk}(G) \geq \frac{(k+1)n}{r+1}$ when $r-k \equiv 0 \pmod{2}$. This is a result by Wang [7]. For the special case k=1, these bounds can be found in [3] and [5]. In addition, (3) is slightly better than Corollary 2.9 in the article [1]. We note that (3) and (4) imply results in [8] and [2] for the case k=1.

For the complete graph K_n , Wang [7] has proved that $\gamma_{sk}(K_n) = k$ when $n-k \equiv 0 \pmod{2}$ and $\gamma_{sk}(K_n) = k+1$ when $n-k \equiv 1 \pmod{2}$. It is straightforward to verify that K_n fulfills inequalities (2) - (7) with equality, and therefore all these bounds are sharp.

Moreover, Wang [7] presented the following lower bound on the signed k-domination number of graphs.

Theorem 3. [7] If G is a graph of order n and size m, then

$$\gamma_{sk}(G) \ge \frac{(2k+1)n - 2m}{k+2},$$

and this bound is sharp.

The special case k=1 of Theorem 3 can be found in [8]. Next we will improve the bound of Theorem 3 for $\delta \geq k$.

Theorem 4. Let $k \ge 1$ be an integer, and let G be a graph of order n, size m and minimum degree $\delta \ge k$. Then

$$\gamma_{sk}(G) \ge \frac{(3\lceil \frac{\delta+k+1}{2} \rceil + k - 1)n - 4m}{3\lceil \frac{\delta+k+1}{2} \rceil - k + 1}.$$

Proof. Since |M| = n - |P|, it follows from Lemma 1 (a) that

$$|[P,M]| \ge |M| \left\lceil \frac{\delta + k + 1}{2} \right\rceil = (n - |P|) \left\lceil \frac{\delta + k + 1}{2} \right\rceil. \tag{11}$$

On the other hand $|N(v) \cap M| \leq |N(v) \cap P| - k + 1$ for each vertex $v \in P$, and so

$$\begin{split} |[P,M]| &= \sum_{v \in P} |N(v) \cap M| \leq \sum_{v \in P} (|N(v) \cap P| - k + 1) \\ &= 2|E(G[P])| - (k-1)|P|. \end{split}$$

Combining the last inequality chain with (11), we obtain

$$|E(G[P])| \geq \frac{|[P,M]| + (k-1)|P|}{2} \\ \geq \frac{n\lceil \frac{\delta+k+1}{2} \rceil - |P|\lceil \frac{\delta+k+1}{2} \rceil + (k-1)|P|}{2}.$$

and hence by (11)

$$\begin{array}{ll} m & \geq & |E(G[P])| + |[P,M]| \\ & \geq & \frac{n \lceil \frac{\delta+k+1}{2} \rceil - |P| \lceil \frac{\delta+k+1}{2} \rceil + (k-1)|P|}{2} \\ & + & n \left\lceil \frac{\delta+k+1}{2} \right\rceil - |P| \left\lceil \frac{\delta+k+1}{2} \right\rceil. \end{array}$$

Using $|P| = \frac{n + \gamma_{nk}(G)}{2}$ we deduce the desired bound.

Note that for $\delta \geq k$

$$\frac{(3\lceil \frac{\delta+k+1}{2} \rceil + k - 1)n - 4m}{3\lceil \frac{\delta+k+1}{2} \rceil - k + 1} \ge \frac{(2k+1)n - 2m}{k+2}$$

is equivalent to

$$2m\left(\left\lceil\frac{\delta+k+1}{2}\right\rceil-k-1\right)\geq (k-1)n\left(\left\lceil\frac{\delta+k+1}{2}\right\rceil-k-1\right).$$

Since $2m \ge (k-1)n$ and $\lceil \frac{\delta+k+1}{2} \rceil \ge k+1$ for $\delta \ge k$, the last inequality is valid. Therefore Theorem 4 is an improvement of Theorem 3.

Theorem 5. If $k \ge 1$ is an integer and G a graph of order n and size m, then

$$\gamma_{sk}(G) \ge \frac{k}{2} + \frac{1}{2}\sqrt{k^2 + 4(2m + (k+1)n + |V_o|)} - n.$$

Proof. Obviously,

$$\sum_{v \in P} (|N(v) \cap P| \le \sum_{v \in P} (|P| - 1) = |P|(|P| - 1) = |P|^2 - |P|.$$

Using the inequality $2|N(v) \cap P| \ge d(v) + k - 1$ for $v \in P$, we obtain

$$2|P|^{2} \geq 2\sum_{v \in P} |N(v) \cap P| + 2|P| \geq \sum_{v \in P} (d(v) + k - 1) + 2|P|$$

$$= \sum_{v \in P} d(v) + (k+1)|P|. \tag{12}$$

Using (10), it follows that

$$2\sum_{v \in P} d(v) \geq \sum_{v \in P} d(v) + \sum_{v \in M} d(v) + (k-1)n + 2|M| + |V_o|$$

$$= 2m + (k-1)n + 2(n-|P|) + |V_o|$$

$$= 2m + (k+1)n - 2|P| + V_o|.$$

Applying this and inequality (12), we deduce that

$$4|P|^2 \ge 2m + (k+1)n + |V_o| + 2k|P|$$

and so

$$|P|^2 - \frac{k}{2}|P| - \frac{2m + (k+1)n + |V_o|}{4} \ge 0.$$

This implies that

$$|P| \ge \frac{k}{4} + \frac{1}{4}\sqrt{k^2 + 4(2m + (k+1)n + |V_o|)},$$

and we arrive at

$$\gamma_{sk}(G) = 2|P| - n \ge \frac{k}{2} + \frac{1}{2}\sqrt{k^2 + 4(2m + (k+1)n + |V_o|)} - n.$$

Theorem 1 (5) in article [2] by Chen and Song is the special case k=1 of Theorem 5.

Theorem 6. If $k \ge 1$ is an integer and G a graph of order n and minimum degree $\delta \ge k-1$, then

$$\gamma_{sk}(G) \ge \frac{1}{2} \left(k - 1 - \delta + \sqrt{(k - 1 - \delta)^2 + 8n(\delta + k + 1) + 8|V_o|} \right) - n.$$

Proof. Using (10), we obtain

$$\begin{split} 2|P|(|P|-1) & \geq & 2\sum_{v \in P}|N(v) \cap P| \geq \sum_{v \in P}(d(v)+k-1) \\ & = & \sum_{v \in P}d(v)+(k-1)|P| \\ & \geq & \sum_{v \in M}d(v)+(k-1)n+|V_o|+2|M|+(k-1)|P| \\ & \geq & \delta n+(k-3-\delta)|P|+(k+1)n+|V_o|. \end{split}$$

This leads to

$$|P|^2 + \frac{\delta + 1 - k}{2}|P| - \frac{(k+1)n + \delta n + |V_o|}{2} \ge 0$$

and thus

$$|P| \ge \frac{1}{4} \left(k - 1 - \delta + \sqrt{(k - 1 - \delta)^2 + 8n(\delta + k + 1) + 8|V_o|} \right).$$

Combining this inequality with $\gamma_{sk}(G) = 2|P| - n$, we arrive at the desired bound.

A graph is K_p -free if it does not contain the complete graph K_p as a subgraph. For our next lower bound, we use the following well-known Theorem of Turán [6]

Theorem 7. [6] If G is a K_{r+1} -free graph of order n, then

$$|E(G)| \le \frac{r-1}{2r} \cdot n^2.$$

Theorem 8. Let $k \geq 1$ and $r \geq 2$ be integers, and let G be a K_{r+1} -free graph of order n. If $c = \lceil (\delta(G) + k + 1)/2 \rceil$, then

$$\gamma_{sk}(G) \ge \frac{r}{r-1} \left(-(c-k+1) + \sqrt{(c-k+1)^2 + 4\frac{r-1}{r}cn} \right) - n.$$

Proof. By Lemma 1 (a), we have

$$|[P,M]| \ge \left\lceil \frac{\delta(G) + k + 1}{2} \right\rceil |M| = c|M| = c(n - |P|).$$
 (13)

Furthermore, Theorem 7 leads to

$$\begin{aligned} |[P,M]| &= \sum_{v \in P} |N(v) \cap M| \le \sum_{v \in P} (|N(v) \cap P| - k + 1) \\ &= 2|E(G[P])| - (k-1)|P| \le \frac{r-1}{r} |P|^2 - (k-1)|P|. \end{aligned}$$

Combining this inequality chain with (13), we obtain

$$c(n-|P|) \le \frac{r-1}{r}|P|^2 - (k-1)|P|$$

and thus

$$\frac{r-1}{r}|P|^2 + (c-k+1)|P| - cn \ge 0$$

and so

$$|P|^2 + \frac{r}{r-1}(c-k+1)|P| - \frac{r}{r-1}cn \ge 0.$$

It follows that

$$|P| \ge \frac{r}{2(r-1)} \left(-(c-k+1) + \sqrt{(c-k+1)^2 + 4\frac{r-1}{r}cn} \right),$$

and this leads to the desired bound

$$\gamma_{sk}(G) = 2|P| - n$$

$$\geq \frac{r}{r-1} \left(-(c-k+1) + \sqrt{(c-k+1)^2 + 4\frac{r-1}{r}cn} \right) - n.$$

References

- [1] M. Atapour, S.M. Sheikholeslami, R. Hajypory and L. Volkmann, The signed k-domination number of directed graphs, Centr. Eur. J. Math. 8 (2010), 1048-1057.
- [2] Weidong Chen and Enmin Song, Lower bounds on several versions of signed domination number, Discrete Math. 308 (2008), 1837-1846.
- [3] J. Dunbar, S.T. Hedetniemi, M.A. Henning and P.J. Slater, Signed domination in graphs, Graph Theory, Combinatorics and Applications, Vol. 1, Wiley, New York, 1995, 311-322.
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.

- [5] M.A. Henning and P.J. Slater, Inequalities relating domination parameters in cubic graphs, Discrete Math. **158** (1996), 87-98.
- [6] P. Turán, On an extremal problem in graph theory, Math. Fiz. Lapok 48 (1941) 436-452 (in Hungarian).
- [7] Changping Wang, The signed k-domination number in graphs, Ars Combin. 106 (2012), 205-211.
- [8] Zhongfu Zhang, Baogan Xu, Yinzhen Li and Linzhong Liu, A note on the lower bounds of signed domination number of a graph, Discrete Math. 195 (1999), 295-298.