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Abstract

In this article, we prove a conjecture about the equality of two
generating functions described in “From Parking Functions to Gelfand
Pairs (Aker, Can 2012)” attached to two sets whose cardinalities are
given by Catalan numbers: We establish a combinatorial bijection be-
tween the two sets on which the two generating functions were based

on.
Keywords: Catalan numbers, parking functions, generating func-
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1 Introduction

Catalan numbers enumerate a diverse collection of disparate mathematical
objects which seem unrelated at first impression. For a nonnegative integer
n, the n-th Catalan number, C,, is n—}rl(z:) A standard combinatorial
definition is that the Catalan number, Cy, is the number of Dyck paths in
an n x n box. A Dyck path in n x n box is a path starting from the corner
(0,0) to the corner (n,n) which stays always weakly below the diagonal (or

always weakly above).
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For any positive integer n and integer r, define the set U(n,r) as in [1]:

Un,r) = {(u,) € N#tl. Zui =n and Ziui =7 (modn+ 1)} .

i=0 i=0

The following set V' (n) appears as (¢°) in Stanley’s Catalan Addendum [2]):

n J
V(n) = {(v,-) eN": Zv,- =n and Zv,- >jforallj= 1,...,n}.

i=1 i=1
For a sequence w = (wp, w1, .. .,w,) of total n, denote the multinomial
coefficient (‘wo.w:--. w“) by ().

As in [1], attach to the sets U(n,r) and V(n) generating functions, the

sums ., q(:') where ¢ is an indeterminate and the index w runs over the
corresponding set. Denote the generating functions by u(n,r) and v(n)
respectively.

In [1], Aker and Can conjecture that
Conjecture (Conjecture 1.1 [1]). For a positive integer n and an integer

r, the generating sets u(n,r) and v(n) coincide.

We prove this conjecture in Theorem 8 as a direct corollary of a bijection
established between the sets U(n,r) and V(n) in Theorem 7.

2 The Sets U(n), U(n,r) and
the Shift Operator

In this section, we prove that the cardinality of the set U(n,r) is equal to
the n-th Catalan number, C,,.

For a positive integer n, the following sets are in bijection:

Un) := {(uo,...,un) e N*HL. zn:u,- =n},

i=0

U(n)

i=0

{(uo,...,un) € (Z/(n +1)Z)™*! :iui = n} .

Denote the set of n-element subsets of a set X by (’:) and the set
{1,2,3,...,n} by [n]. For u = (uo,u1,...,un) € U(n), define F': U(n) —
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2 .
(‘:l) as follows:
F(ug,up, . ttn) i={ug +1 <ug+14+us+1<.. <uj+us+..+u,+n}

Then,

Lemma 1. The map F : U(n) — (1*™) is a bijection. The cardinalities of
the sets U(n) and U(n) are equal to (2:)

Proof. First, the map F is well-defined: Since 0 < u;, we have 1 < u; +1.
Similarly, 0 < u; implies that fori =1,...,n,
uptuet-cFtuigti-l<uyytus+--+u+t
We also have uy +us+- - -+upn+n < uwotuy+us+---+up,+n=n+n =2n.
The sequence
u+l <uyptu+2< - <uptustecFuiti < <uyptugttus+tn

forms an n-element subset of the set [2n].

We prove that F is a bijection by providing an inverse function, G.
For any n-element a = {a1 < a3 < ... < a,} subset of [2n], set
G(a):=(2n—an,a1 —lyag —a; —1,...,a, —an_; — 1).
Let u = G(a). Such u lies in U(n); that is, all entries of u are nonneg-
ative and they add up to n. Because 1 < a;, we have uy =a; -1 > 0.

Similarly for i = 2,...,n, a;—1 < a;, hence u; = a; — a;—; — 1 > 0. Finally,
a, < 2n implies that ug = 2n — a, > 0.

Also the sum of all terms telescope and cancel each other:

2n—-a,+a;—-14+ay—a;—14+:--+ae,—ap_1—1=2n—n=n.
Clearly, F' and G are inverses of each other, hence F' is a bijection. O

Let s be the cyclic shift operator on the set U(n): For (up,...,u,), set
s(u0, ..y Un) 1= (U1,.. ., Un,Ug).
The operator s induces an action of Z/(n + 1)Z on the set U(n).

Define another map ¢ : U(n) — Z/(n + 1)Z. For (ug,...,un) € U(n),
set

Y(ug,y...,Un) = Ziui.

i=0
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Lemma 2. 1. For any u € U(n), ¥(s(u)) = ¥(u) + 1.
2. Cyclic shift operator s is a fized-point free automorphism of U(n).
3. For anyr € Z/(n + 1)Z, shift operator s takes the set U(n,r) bijec-
tively to U(n,r + 1).

Proof. 1. For any u = (ug,...,un) € U(n),

Yls(w) = D is(w)i = Y duir = ) (G~ Dus =D _ju; = ) s
=0 i=0 =0
— p() —n =) + 1

2. Suppose the automorphism s fixes some u = (up,...,un) € U(n),
this implies that all n +1 coordinates of u are equal. On the other hand, as
an element in U(n), sum of the coordinates of U(n) is equal to n, which is
clearly a contradiction. Therefore the automorphism s is fixed-point free.

3. Since it is an automorphism, any restriction of s to a subset of U(n)
is a bijection. By (1), the automorphism s maps U(n,r) to U(n,r + 1)
which shows that the restriction s : U(n,r) — U(n,7+1) is a bijection. O

Corollary 3. For a positive integer n and an integer r, the cardinality of
the set U(n,r) is the n-th Catalan number, C,.

Proof. Note that U(n) is a disjoint union of U(n,r)’s where 7 € Z/(n + 1):

Um)y= || U

reZ/(n+1)

and

/6 = o) = 7 () = W

3 Necklaces and the Main Result

In this section, we prove the equality of the generating functions u(n,r) and
v(n) introduced in the introduction. We first establish a bijection the sets
U(n)/(s) and V(n), which in return produces a bijection between U(n,r)
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and V(n). The equality of the generating functions follows as a direct
corollary.

Define a string of pearls to be a finite sequence of nonnegative integers.
Elements of the sequence are called pearls, each with an assigned value in
the string. For convenience, we allow such a string to be circular. Such a
circular string is called a necklace.

Definition 4. Given a string of pearls A labelled sequentially a;, a3, ..., by
£(A) denote the length of string A and by |A| denote the sum a; +az+---.

A subsequence S of a string A consisting of consecutive pearls is called
a substring. Write S < A. Denote the set of all substrings of A by Sub(A).
Then, Sub(A, <) is a partially ordered set.

Call a string B a block if by + bo +--- + b > kforall k =1,...,¢(B).
Blocks of a string A are those substrings which are also blocks. Denote the
set of all blocks of A by Blocks(A).

Let A = (1,0,2,1,0,3). For instance, (2,1,0,3) is substring, whereas
(2,1,3) is not. The blocks of A are (1), (2), (2,1), (2,1,0), (2,1,0,3), (1)
(this is the 1 to the right of 2) and (3). Note that A is not a block.

If a string A has at least one positive pearl, the set of blocks of A is not
empty. The partial order < on the set of substrings of A induces a partial
order on the set of blocks of A.’

Notice that in the above example, each positive pearl is contained in a
unique block of maximal length.

Now fix a necklace N in U(n)/(s}, i.e. a circular string of n + 1 non-
negative integers whose sum is n. Note that any such necklace contains at
least one pearl with label 0.

Fix a clockwise orientation for necklaces. For instance, in the figure is

0120

Figure 1: An example of a necklace

the necklace (0, 1,2,0) or 0120, which can be equivalently written as 1200,
2001, or as 0012.

Lemma 5. Suppose B is a mazimal block of N. Then,

1. Pearls adjacent to B are labelled 0.
2. |B| =¢(B).
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Proof. Let’s analyze the pearls adjacents to the maximal block B in the
necklace N.

1. Let’s say the pearl P after B has a label > 1. That is, BP is a string
of pearls, where B is a maximal block and P > 1.

Then, |BP| = |B| + |P| > &(B) + 1 = ¢(BP).

Hence BP is a block which contains B. This contradicts the maxi-
mality of B. Reversing the orientation proves the statement for the pearl
preceeding the maximal block B. So, any pearl next to B is labelled 0.

2. Assume that |B| > ¢(B).

We proved that a pearl P adjacent to B is labelled 0. (There must be
such a pearl, otherwise |B| > {(B) > n +1).

Say P follows B. Then BP is a block: Because |B| > £(B) + 1;
|BP| = |B|+ |P|=|B| 2 {(B)+1={BP).

Once again, this contradicts the maximality of B. Therefore for any maxi-
mal block B is stacked by 0’s before and after and |B| = ¢(B). O

Being a poset, the set of blocks of the necklace N must have maximal
blocks. In fact,

Lemma 6. A necklace N contains a unique mazimal block B, where |B} =

¢B) =n.

Proof. Lemma. 5 implies that the necklace N consists of (possibly several)
maximal blocks By, ..., By, separated by strings of zeros (Figure 2).
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Figure 2: The necklace N depicted in two different, yet equivalent forms

Note that

e Sum of all pearls = |By| + ... + |Bn| = n,
e Number of pearls = ¢(By) + ... + {(Bm) + m, =n+l

for m zeros
Therefore,
n+1=4¢B;)+..+By)+m.
Because blocks By, ..., B,, are maximal,
n+1=|Bi|+..+|Bn|+m=n+m.

If follows that m = 1, i.e. the necklace N contains a unique maximal block

B, where |B| = {(B) = n. a

Notice that the maximal block of a necklace is an element of the set

n j
V(n) = {(v,-) €N":> wi=nand ) v >jforalj= ln}

i=1 i=1

A direct consequence of the previous lemma is
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Theorem 7. The following map is a bijection:

¢: V(n) — U(n)/(s)

Necklaces

B
The necklace < >
0

A direct corollary of the bijection is

B

Theorem 8 (Conjecture 1.1 [1]). For a positive integer n and an integer
r, the generating functions u(n,r) and v(n) coincide.

Proof. For v in V(n), let u = ¢(n). Then, () = (7). By Theorem 7 and
Corollary 3,

v(n) = Z gt} = Z ) = Z at) = u(n,r).

vEV(n) u€lU(n)/(s) u€U(n,r)
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