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Abstract

Two graphs are defined to be adjointly equivalent if their complements
arc chromatically equivalent. Recently, we introduced a new invariant of a
graph G, which is called the fifth character R5(G). Using this invariant and
the properties of the adjoint polynomials, we completely determine the ad-
joint equivalence class of 3 (n — 3,1). According to the relations between
adjoint polynomial and chromatic polynomial, we also simultancously deter-
minc the chromatic equivalence class of ¢3(n — 3,1).
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1 Introduction

The graphs considered in this pz:Fcr are finite undirected and simple graphs. We
follow the notation of Bondy and Murty | 1], unless otherwise stated. For a graph
G, let V(G), E(G), p(G), ¢(G) and G be the set of vertices, the set of edges,
the order, the size and the complement of G, respectively. For a graph G, we
denote by P(G, A) the chromatic polynomial of G. A partition {A,, Az, - , A, }
of V(G), where 7 is a positive integer, is called an r-independent partition of
graph G if every A; is nonempty independent set of G. Denote by «(G,r) the
number of 7-independent partitions of G. Thus the chromatic polynomial G is
P(G,\) = ¥ 5, a(G,r)(A)r, where (A)r = A(A =1)--- (A — 7 + 1) for all
r > 1. The readers can turn to [15] for details on chromatic polynomials. Two
graphs G and H are said to be chromatically equivalent, denoted by G ~ H , if
P(G,)\) = P(H,)). By [G] we denote the equivalence class determined by G
under “~”. It is obvious that “~” is an equivalence relation on the family of all
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graphs. A ilraph G is called chromatically unique (or simply x-unique)ift H =2 G
whenever G. See |6, 7| for many results on this field.

Definition 1.1. [9] Let G be a graph with p vertices, the polynomial
p .
h(G,z) =Y _ &G, i)z’
i=1

is called its adjoint polynomial.

Definition 1.2. |9] Let G be a graph and h\(G,x) be the polvnomial with a

nonzero constant term such that h(G,z) = zP©)h(G,x G) If hi(G,x) is an
irreducible polynomial over the rational number field, then G is called irreducible

graph.

Two graphs G and H are said to be adjointly equivalent,denoted by G ~h H,
if h(G,x) = h(H,z). Evidently, “~"” is an equivalence relation on the family
of all graphs. Let [G], = {H|H ~" G}. A graph G is said to be adjointly
unique(or simply h-unique) if G = H whenever G ~" H.

Theorem 1.1. [3] (1) G ~'_‘_H ifand only if G ~ H.
2)[Glh={H|HEe[C]}. _
(3) G is x-unique if and only if G is h-unique.

Now we define some classes of graphs with order n, which will be used
throughout the paper.
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(1) Cy, (resp. P,) denotes the cycle (resp. the path) of order n, and write
€ = {Cn |n > 3}, P = {Pn |7 2> 2} and = {Ul,l,t,l.l |t > 1}.

(2) Dp(n > 4) denotes the graph obtained from C3 and P,,_, by identifying
a vertex of C3 with a pendent vertex of P,_».

(3) 11, 45,1, is a tree with a vertex v of degree 3 such that T3, 1,1, — v
Pll ) ]3[, U H3 and Iz > I, > [, write g0 = {Tl,l.l;;‘lii > 1} and .
{Tlulzvls I (lh Ly, l3) 9é (1, 1, 1)}

(4) ¥ = {Cn, D, K1, Thy 151, | 2 2 4}.

(5) £= {Cr(Ps), Q("', S)y By oty Fa, Ufr,s.t.n.b: K4_}

(6) ¢ = {w}n 7/’3” 103(7', S), 1/)-:11(7') S), 1/’;1‘(7’, 8, t)) 1/)g}

For convenience, we simply denote h(G, z) by h(G) and b1 (G, ) by h1(G).
By B(G) and B1.in(G) we denote the smallest real root and the minimal extremes
of the smallest real root of h(G), respectively. Let de(v), simply denoted by

d(v), be the degree of vertex v. For two graphs G and H, denote by G U H the -
disjoint union of G and H, and mH stands for the disjoint union of m copies.

By K, we denote the complete graph with order n, let ni(K3) and ne(Ka)
denote the number of subgraphs isomorphic to K3 and K}, respectively. Let
g(z)| f(x)resp. g(z) + f(z)) denote g(x) divides f(z)(resp. g(zx) does not
divide f(z)) and 8(f(z)) denote the degree of f(x). By (f(x), g{)) we denote
the largest common factor of f(x) and g(x) on the real field. Let Ng(v) be the
neighborhood set of a vertex v.

It is an important problem to determine [G] for a given graph G. From The-
orem 1.1, it is obvious that the goal of determining [G] can be realized by deter-
mining [G],. Thus, if g(G) is large, it may be easier to study [G], rather than
[GJ. The determination of [G} for a given graph G has received much attention in

12,13, 14,21, 22, 23] recently. In this paper, using the properties of adjoint poly-
nomials, we determine the (3 (n — 3, 1)],, of graph ¥3 (n — 3, 1), simultancously,

[¥3(n — 3,1)] is also determined, where n > 7.

2 Preliminaries
For a polynomial f(z) = x™ + b1a™~! + bea™ "2 + - -+ + by, we define
- +1 if n=1;
Ri(F(2)) = (3) +1, t )
ey ={ 5 R IR,
For a graph G, we write R;(G) instead of R, (h(G)).

Definition 2.1. {2,9] Let G be a graph with q edges.
(1) The first character of a graph G is defined as

0. if q=0;
RI(G)={ ba— (";Y) +1, ifqg>0.

(2) The second character of a graph G is defined as
Ra(0) = 1a(6) - (")) - (@) -2 (bz(G) -(" (f))) ~b(G),



where b;(G)(0 < i < 3) is the first four coefficients of h(G).

Lemma 2. l [2,9] Let G be a graph with k components of Gy, Gy, - -+ ,G. Then
h(G) = H L h(Gi) and R;(G) = Zz_ R;(G;) for j =1,2.

It is obvious that R;(G) is an invariant of graphs. So, for any two graphs G

and H, we have R;(G) = R;j(H) for j = 1,2if h(G) = h(H) or (G) =
hy(H).
Lemma 2.2. (9, 10] Let G be a graph with p vertices and q edges. Denote M
the set of the triangles in G and by M (i) the number of triangles which cover the
vertex i in G. [f the degree sequence of G is (d1,dz,- -+ ,d;,), then the first four
coefficients of h(G) are, respectively,

(1) bo(G') =1,0(G) =q.

(2) b2(G) (‘”’l) -3 ¥F 1 d? + ng(Ks).

(3) b3(G) = &(¢° +3‘I+4) 9122?—1&‘*‘%2&1@‘2@53(0) did; -
Yiem M(@)di + (g + 2)nc(Ks) + ng(Ky), where bi(G) = o(G,p — i) (i =
0,1,2,3).

For an edge e = vy v, of a graph G, the graph G * e is defined as follow: the
vertex set of G x e is (V(G) — {v1,v2}) | Jv(v € G), and the edge set of G x e is
{e'le’ € E(G), € is not incident with vy or v2} U {uvju € Ng(v1) N Ng(v2)},
where N¢(v) is the set of vertices of G which are adjacent to v.

Lemma 23. (9] Let G be a graph with e € E(G). Then
MG, z) = h(G —e,z) + h(G * e, x),
where G — e denotes the graph obtained by deleting the edge e from G.

Lemma 24. [9] (1) Forn > 2, h(P.) = ¥, N

(2) Forn 2 4, h(Dy) = stn(z n—k) + (n—k 3))zk
(3) Forn > 4, m > 6, i(P,) = z(h(Pu-1) + h(Pr=2)), (Dn) =
a"(h’(Dm—l) + h(Dm—’z))'

Lemma 2.5. [25] Ler {gi(x)}. simply denoted by {g.}. be a polynomial sequence
with integer coefficients and g,,(z) = x(gn—1(z) + gn-2(x)). Then

(1) gn(z) = h(Pr)gn—i(2) + Th(Pie1)gn—k-1(2).

(2) h1(Pn) | gr(n+1y+i(x) if and only if hy(P,)|g:(x), where 0 < i < n,
n>2andk 2> 1.

Lemma 2.6. [4,8] Let G be a nontrivial connected graph with n vertices. Then
G ~(1} R, (G) < 1, and the equality holds if and only if G = P,(n > 2) or

(2) Rl(G) =0ifandonly if G € 9.

(3) R1(G) = -1 ifand only if G € &, especially, q(G) = p(G) + 1 ifand
only if G € {F,|n > 6} U {K[}.

(4) Ri(G) = —2ifand only if G € ¢ for (G) = p(G). G € ¥ for q(G) =
p(G) +1and G = K, for q(G) = p(G) + 2.



(5) R1(G) = —3 ifand only if G € ¢ (see Figure 3) for q(G) = p(G) + 1
and G € ( (see Figure 2) for g(G) = p(G) + 2.
(6) R\ (G) = —4 ifand only if G € 0 (see Figure 4) for ¢(G) = p(G) + 2.

Lemma 2.7. |5] Let G be a connected 5
(1) If Ry(G) = 0, -1, =2, then g(G) P(G ) < |Ri(G)].
(2) If R\(G) = -3, then q(G) - p(G) < |R1(G) + 1|.
(3) If Ri(G) < —4, then q(G) — p(G) < |R1(G) + 1.

Lemma 2.8. [25] Let G be a connected graph and H a proper subgraph of G.
Then B(G) < B(H).
Lemma 2.9. |25] Let G be a connected graph. T

(1) (G) = ~4ifandonly if G € {T'(1, 2,5) 7(2,2,2),T(1,8,3), Ky 4,
Cs(P2).Q(1,1), K, Dg} U lU.

(2) B(G) > —4ifandonly if G € {K1,T(1,2,i)(2<i < 4),Di(4 <i <
N}uPUECUL.F°.

Lemma 2.10. [25] Let G be a connected graph. Then —(2 + Vv5) < B(G) < —4

if and only if G is one of the following graphs:
'.Zy 1213f0r11 =1, l2—2,13>50rh =1, l2>2 l3 > 30"[1 —12—

2l3>20rll—- l)—’;—
2) Ur,,,t,a,bfor r=a=1, (r,8,8) € {(1,1,2),(2,4,2),(2,5,3),(3,7,3)
,(3,8,)borr=a=1,8>1,t > t*(s,b). b > 1, where (s,b) # (1,1) and

s+b+2, ifs>3.
tr={ b+3, = ifs=2
, ifs=1.

(3) Dy forn > 9.

(4) Cu(P,) forn 2 5

(5) F,, forn > 9.

(6) Bysiforr = 5,8 =1
s——lrft=2 orb>c 3,

(7)G Ca(Ps)orG= Q( 2).

Corollary 2.1. {21] If graph G such that R1(G) < =2, then B(G) < —2 — /5.

3 The algebraic properties of adjoint polynomials

3.1 The gdivisibility of adjoint polynomials and the fifth characters of graphs
Lemma 3.1. [25] For n,m > 2, h(P,) | h(P.) if and only if (n + 1)|(m + 1).

9 if niscven,
Theorem 3.1. (1) Forn > 7, p(¥3(n — 3,1)) = { Rol otherwise.

. 2, if nis even;
@ forn> 1.0 =300 = { B (fieruiee

(3) Forn > 7, h($2(n—3,1)) = s(h(U2_, (n—4, 1)) + h(¥3_g(n—5,1))).
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Proof. (1) Choosing an edge e = uv € E(¥3(n — 3, 1)) whose deletion brlngs
about a proper subgraph D,, of 43 (n — 3,1). By Lemma 2.3, we have h(y3 (n —
3,1)) = h(D,) + zh(K3)h(Pn-5). We have, from Lemma 2 4, that

n—4J

p(Dn) = BJ and p(K, UK3UP,_5) =2+ l 5

lt nis even,then p(Dn) = p(K1UK3UP,_s) = % and hence p(¢3(n— 3 1)) =
. If n is odd, then we arrive at p(D,,) = p(K; U K3 U P,,_5) = "3=, which
|mp1|es p(¥3(n - 3,1)) = 251, as desired.

(2) It obviously follows from (1).
(3) Choosing an edge e = uv € E(¢3(n—3, 1)) whose deletion brings about
a proper subgraph D,, of %3(n — 3,1). From Lemma 2.4, we have

h(¥j(n - 3,1))
= h(Dy) + zh(K3)h(P,-s)
(th(Dn_ ) + xh(Dn—2)) + xh(Ks)(fL‘h(R;_s) + mh(-Pn—7))
z(h(¥a-1(n — 4,1)) + h(¥3_o(n - 5,1))) o

Theorem 32. Forn > 2,m > 7, h(P,) | h(¥3,(m — 3, lz) tfandonly ifn=4
andm =5k +3fork>1,0orn=3andm = Bk + 2 for

Proof. Let go(z) = —x% — 522 — 8z — 2, g1(x) = 2* + 422 + 6z + 2 and
gm(z) = £(gm-1(z) + gm-2(x)). We can deduce that

go(x) = —-2°—-5z2-8x-2,

g(z) = 234417462 +2,

golz) = —z°—2x2

g3(z) = 223 4622422,

ga(z) = z* 442 + 222 (3.1)
gs(z) = a4+ 6x* +8z% + 222,

gs(x) = a4 7%+ 1227 + 423,

gm(z) = h(®h(m-3,1)),if m>7.

Letm = (n+1)k+i,where0 < i < n. Itis obvious that by (P,) | h(¥3,(m—
3,1))ifand only if k1 (P, )|gm (z). From Lemma2.5,it follows that k1 (P, )|gm ()
if and only if hy(P,) | gi(z), where 0 < ¢ < n. We distinguish the following two

cases:
Casel:n > 7.
If0 < i < 6, it follows from (3.1) that hy(P,) t gi(z). If i > 7, then it
follows from ¢ < n, Lemma 2.4 and Theorem 3.1 that

B(ha(Pa)) = [n/2) and (i (W3 = 3,1))) = [(i +1)/2).  (32)

The following cases are taken into account.
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Subcase 1.1: i = n.
It follows from (3. 2) that 8(h, (¥3(i - 3, l))) O(h1(P)) = Zif niseven

and d(hy (¥3(i — 3,1))) = O(h1(Pa)) + 1 = 2 if nis odd. FII‘Sl we consider
the case 6(h1(1/;;3(i —3,1))) = 8(h1(Pn)). Suppose hy(Pn) | k1 (¥3(i — 3,1)).
Then hy(P,) = hi(¥3(i — 3,1)), which implies that R1(P,) = Ry(v3(i —
3,1)). By Lemma 2.6, we know it is impossible. So k3 (Py,) 1 A1 (%3 (i — 3,1))).
Combining this with (h; (P,), @ (¢=31)} = 1, we have hi(P.) t A(3(i —
3,1)). Next, we consider the case 8(hy(¥3 (i —3,1))) = 8(h1(Pn))+1. Suppose
hi(Po) | ha(@3(i — 3,1)). Then hy(¥3(i — 3,1)) = (z + a)h1(Pa). Note that
Ri(¥3(i - 3,1)) = ~2 and Ry(P,) = 1. Therefore, Ri(z + a) = —3 and
hence a = 3*‘/33 , which contradicts to a is an integer number. Hence h(PB,) t
b =3, 1) Since (hy (Pa), g WIE=8D)) = 1, hy(P,) + A(43(i - 3,1)).

Subcase 1
It follows by (3 2) thal A(h (P2 - 3,1))) < 8(h1(P,)). Assume that
hy(Po) Ry (¥3(i — 3,1)). Then 8(hy (¥3(i — 3,1))) = O(h1(Pr)) and hy (Y3 (i —
3, 1)& h21 (123,,) So we can turn to Subcase 1.1 for the same contradiction.
ase <n<

From (1) of Lemma24and (3.1) , we can verify that hy (P,) = gi(z) if and
onlyifn =3andi = 2, orn=4andi =3 for 0 <i<n<7. FromlLemma

2.5, we have that hy (P, )|h(¢3,(m — 3,1)) ifand only if n = 3 and m = 4k + 2,

orn =4and m = 5k + 3. From p(P3) = 2, p(P4) = 2 and p(¢3(i — 3,1)) > 3
for m > 7, we know that the result holds.

Theorem 3.3. Form > 7, h?(Py) { h(¥3,(m—3,1)), h3(Ps) { h(¢s3,(m—3,1)).

Proof. Suppose h?(Py) | h(y3,(m — 3,1)). From Theorem 3.2, we have m =
5k + 3, where k > 1. Let g, (z) = h(w3 (m—3,1)) form > 7. By (3) of
Theorem 3.1 and ( ) of Lemma 2.5, we have
gm(z) = h(Py)gm-4(x) + zh(Ps)gm-5(z)

= h*(Pa)gm-s(z) + 22h(P3)h(Py)gm-9(2) + (zh(P3))gm—10(x)

= R*(Ps)(gm-8(z) + 22h(P3)gm-13(2)) + 3(zh(P3))*h(Py)gm_14(x)

+(zh(Ps))’ gm-15()

= hz(P‘i)(gm—B(-"’) + 2zh(Ps)gm-13(z) + 3(xh(P:x))2.qm-|s(:r))

+4(xh(P3))°h(Pa)gm-19(x) + (zh(P3))*gm-20()
k=2

= AP s(@h(P))* ' gm-ss-s(@) + (k — 1)(zh(P3))*~2h(Py)

s=1

Gmt1—(sk—1)(T) + (@h(P3))* g (sk1y (@)

According to the assumption and m = 5k -+ 3, we arrive at, by (3.1), that

h?(Ps) | ((k = 1)@~ (2 + 2)*"2h(Pa)gs(z) + 2** (2 + 2)* 7 ga(2))
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By calculation, we have k = —1, which contradicts to k > 1.
Using the similar method, we can also prove h?(P;) t h(¥3,(m - 3,1)). O

In [13], we introduced a new character.

Definition 3.1. |13] Let G be a graph with q edges. Then the fifth character of a
graph G is defined as follow:

R5(G) = R2(G) — R\(G) +p—4q.

It is obvious that R5(G) is an invariant of graph G. So, for any two graphs G
and H,we have R5(G) = Rs(H) if h(G) = h(H) or h1(G) = hy(H).

Theorem 3.4. [13] Let graph G with k components G1,Gz,- - - ,Gr. Then Rs(G) =
Z:f:l R5(Gk)

It is obvious that Rs(G) is an invariant of graphs. So, for any two graphs G
and H, we have R5(G) = Rs(H) if h{(G) = h(H) or h1(G) = h1(H).

Theorem 3.5, [13] (1) R5(C,) =0 forn > 4; R5(C3) = —3; Rs(¥K,) = 1.
(2) Rs(Br1,1) =4forr > 1; Rg(By1,) =5 forr,t > 1.
(3) Rs(Fg) = 5; Rs(F,) =4 forn > 7; Rs(K;) =3.
(4) R5(D4) = 0,‘ R5(D") = lforn > 5; RS(TI,I.I) =0,
(5) Rs(Th,1,05) = 1 Rs(Th185) = 20 Re(Thy 1o 0) = Bforls 2 e 2 1, 2

(6) Rs(Cr(F2)) =4 forr > 4; Rs(C4(P3)) = Rs(Q1,2) = 5.
(7) Rs(P2) = —1; Rs(P,) = —2forn > 3.
(8) Rs(K4) =7: Rs(¥3(n—3,1)) =9 forn > 1.

Lemma 3.2, |13] Let graph G € ¢. Then 9 < Rg(G) < 14.
From the definition of R5(G), we have the following results.

Lemma 33. [16] Let graph G € E\{Fy, Uy s,1,0,0, K7 }. Then
(1) Rs(G) = 4difandonly if G € {Cr—1(P2) |n 2 5}U{Q11}U{Bn-s5.1.1]n >

" (2) Rs(G) = 5 ifand only if G € {Co(Pa) |7 2 4,5 > 3} U{Qurnea |1 >
6} U{Br1,,B1,1,1|7.t > 2}.
(3) Bs(G) = 6 ifand only if G € {Qr.s |7y > 2} U{Bu.1.1, Broae | 75,8 >
2}.
(4) Rs(G) =Tifandonly if G € {By,5,t|s,t > 2}.

Corollary 3.1. Let graph G € E\{Fy,U; s,t,a,6: K; }. Then R5(G) > 4.

Lemma 3.4. |16] Let graph G € . Then

(1) Rs(G) = 8 ifand only if G € {1} U {93} U {¥i(r,8)[r 2 4,5 2
2} U {¥i(n—6,1)|n > 8 U{Yi(1,5,t)]s,t > 2}.

(2) Rs(G) = 9 ifand only if G € {2} U {¥3(n — 3,2)|n > 6} U
{i(r,s)|ms 2 2} U {7(1, 1)} U {95 (1, 1, 1), 9 (r, 8, 8) |7, 8,8 > 2} U {92}

(3) Rs(G) = 10ifandonlyif G € {a(1,n—6)|n > 8Yu{y3(r,1,t)|r,t >
2} {¥8(1,1,1)}.

(4) Rs(G) = 11 ifand only if G € {¢3(n — 7,1,1) |n > 9}



Corollary 3.2. Let graph G € o. Then Rs(G) > 8.

Lemma 3.5. [16] Let graph G € . Then

(1) Rs(G) = 12 ifand only if G € {¢}|n > 8} U {¢3(r,s)|rs = 2} U
{¢G3(r, s, t) |, 8,8 > 2}.

(2) Rs(G) = 13 ifand only if G € {3} U {¢?*(1,n — 8)|n > 10} U
{¢3(1,s,t)|s,t > 2}.

(3) Rs(G) = 14 ifand only if G € {¢3(1,1)} U {¢3(1,1,n = 9)|n > 11}.

(4) Rs(G) = 15ifand only if G € {¢2(1,1,1) | n > 9}.

Corollary 3.3. Let graph G € {. Then R5(G) > 12.
Lemma 3.6. [17] Let graph G € 6. Then 16 < Rs(G) < 22.
Lemma 3.7. |16| Let graph G € ¢. Then 12 < R5(G) < 17.

32 The smallest real roots of adjoint polynomials of a graph
In [18, 19, 20|, Ren and Liu obtained the following results.

Lemma 3.8. [18,19,20] (1) Forn > 4, m > 6, B(K,4) < B(Fim) < B(Dy) <
B(Cr) < B(Fn).

(2) ﬂmin(Br,s,t) S ﬁmin(Q("'y S)) S ﬁmin(cr(P.s)) S ﬁmin(Tn)for n 2 6.

(3) ﬁmin('l/);(r, S;t)) < ﬁmin(‘/)g('r, 9)) < 6min(¢3(rs S)) < ﬁmin("/)ﬁ) <
Brmin (¥5) for n > 8.

(4) ﬁmin(Br,:«,t) = ,B(Bl.l.n—fv)-' ﬁmiu(Q('ry 3)) = ,H(Q(l’ n-— 4))-

(5) ﬁmin((ﬁ) S ﬂmin(cz) S ﬂmin((};)-

(6) Brnin (wi (r,s)) = ﬁ("/’?;(n -3.1)): ﬁmin(“/":(rv 8)) = [3(1/);1(1, n —6));
Bmin(¥3(r, 5, ) = B3 (n - 7,1,1)).

(7) ﬁmin((ﬁ(ﬁ S)) = ﬁ(c,%(l, “"—8)): ﬂmin(cz(r’ 8, t)) = ﬂ(cz(la 1,n-9)).

(8) ﬁmin('d’)z) < ﬁ('d’?x(lv s,t)).

Lemma 3.9. (1) Forn > 7, B(¥3(n — 3,1)) < B(¥3_1(n — 4,1)).

(2) Forn 27,1 > 5,m > 6, B(¢;(n—3,1)) < B(K;): B (n-3,1)) <
B(Cn-1(Pe)): B3 (n — 3,1)) < B(Bm-s,1.1): B@a(n — 3,1)) < B(Fn):
Bi(n—3,1)) <B(Q1,1).

(8) Forn 2 7, m > 8, B(¥5(n — 3,1)) < B(Ka) = B(Y3): B¥i(n -
3: 1)) < ﬂ(Bl,l,m—S) < .B(Cr(Ps))

(4) Forn 2 7,m 2 6, B(¥i(n — 3,1)) < B(Qrm-1); BYi(n —3,1)) <
B(B1,1,1)-

Proof. (1) Using Software Mathematica, for n; > 18, we have 3(¥3(4,1)) =
—4.68554 > B(¥3(5,1)) = —4.73205 > B(¥3(6,1)) = —4.75047 > B(34(7,1))
= —4.75802 > B(¢3,(8,1)) = —4.76118 > [(¥3,(9,1)) = —4.76251 >
B(¥13(10,1)) = —4.76308 > B(¢}4(11,1)) = —4.76332 > B(y5(12,1)) =
~4.76343 > B(¢3:(13,1)) = —4.76347 > B(¥3,(14,1)) = —4.76349 >
B(¥;, (m = 3,1)).

. lcl(2) From Lemmas 2.9, 2.10 and Corollary 2.1, it is easy to see that the result

olds.
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(3) Forny > 8,8(¢2, (n1 — 3,1)) < B(¥3(4,1)) = ~4.68554 < B(K,) =
—4.49086; From n; > 8, m; > 14, (%3 (ny — 3,1)) < B(¥3(4,1)) =
—4.68554 < ﬁ(Bl,l.ml—S) < .B(Bl,l,ls) = —4.51729 < ﬂ(Bl,l_lq) = -4.51728
< ﬁ(Bl,|,13) = —4.51726 < ﬁ(B]JJQ) = —4.51721 < ﬂ(Bl,l,ll) = —-4.51713
< ﬂ(Bl.l,lo) = —4.51695 < ﬁ(Bl,l,g) = —4.51658 < ﬁ(B]]lys) = —4.51584 <
ﬂ(Bl,1,7) = —4.51432 < ,B(Bl,l,ﬁ) = —4.51119 < ﬂ(Bl,1,5) = —4.50469 <
ﬂ(Bl,lA) = —4.49086 < ((By,1,3) = —4.4605 < ﬂ(Bl,l,g) = —4.39026 <
B(Bi,1,1) = —4.21432.

(4) Forny > 8,m; > 16, 8(¥3, (n1 — 3,1)) < B(¥3(4,1)) = —4.68554 <
B(Q1,m,-4) < B(Q1,11) = —4.38249 < B(Q1,10) = —4.38207 < B(Q1,9) =
—4.38131 < B(Q18) = —4.37988 < B(Q1.7) = —43772 < B(Qr6) =
—4.37213 < B(Q,5) = —4.36232 < B(Q1.4) = —4.334292 < B(Q13) =
—4.30278 < B(Q,2) = —4.21342. Since By,1,; is a subgraph of ¥3(n — 3,1),
it follows from Lemma 2.8 that B(y3 (n — 3,1)) < B(B1,1.1)- )

Lemma 3.10. (1) Forn > 7,m > 5, B(¥3(n—3, 1)) < B(pr) < B3 (1, 5,t)).

(82) Forn>7.m > 5, B(¥3(n - 3,1)) = B2, ifand only if m = 8 and
n=

(3) Forn > 7.m > 8, B(v3,(1,m —6)) < [3(1/),,(71 — 3,1)) the equality
holds ifand only ifm =n =T7; B(t/ﬂ(n 3,1)) < B3 (m —6,1)).

(4) Forn > 7,m > 10, ﬁ(wn(m 7,1,1)) < ﬁ(wn(n 3,1)).

(5) Forn > 7, m > 10, B(¥3 (n — 3,1)) < B(¥8).

Proof. (1)Forny > 8,my > 6,8(¥3, (n1—3,2)) < B(¢3(4,2)) = —4.68554 <
[3(11:,‘,,1) < B(lg) = —4.61347 < B(W},) = —4.61346 < B(hls) = —4.61345 <
B(¥ls) = —4.61342 < B(],) = —4.61337 < B(¥]3) = —4.61325 < B(¥},) =
—4.613 < B(1},) = —4.61246 < B(v}y) = —4.61128 < B(¥3) = —4.60873 <
B(bd) = —4.60212 < B(¥3) = —4.59056 < B() = —4.56155 < B(vi) =
—4.49086. From (8) of Lemma 3.8, the result holds.

(2) Forny > 10,my > 9, B(¥3, (ny — 3,1)) < B(¥§(6,1)) = —4.75047 <

(1/),2,“) < B(¥};) = —4.74819 < B(v¥) = —4.74818 < B(¥%) = —4.74815 <
B(¥2,) = —4.7481 < B(2;) = —4.74796 < B(¥?,) = —4.74766 < B(Y3) =
—4.74694 < B(?)) = —4.74528 < B(Y3) = —4.74137 < B(¥7) = /3(1/);(5 1))
= —4.73205 < ﬁ(w';’) = —4.70928 < B(13(4,1)) = —4.68554 < B(vE) =
—~4.65109 < B(12) = —4.49086.

(3) Forn; > 8 my > 16,me > 12, 3( !!/'m,(l my — 6)) < B(¥is(1,10)) =
—4.85505 < B(¥is(1, 9)) = —4.85498 < B(¥3,(1,8)) = —4.85482 < B(¥i4(1,7))
= —4.85443 < ﬁ(wmu 6)) = —4.85347 < B(¢¥$,(1,5)) = —4.85109 <
[3(1/:,0(1 4)) = —4.84517 < B(¥4(1,3)) = —4.83021 < B(¥i(1,2)) = —4.79129
< B3, (n1 - 3,2)) < B(¥3(4,2)) = B(¥3(1,1)) = —4.68554; B(P}, (n1 —
3,1)) < B(¥3(4,1)) = —4.68554 < B(¥§(2, 1)) = —4.56155 < B(¥5(3, 1)) =
—4.49086 < B(1;(4,1)) = —4.4887 < B(¥f,(5,1)) = —4.4217 < B(¥d,, (ma—
6,1)).

(4) For ny > 8, my > 10, B(¢3, (m1 — 7,1,1)) < B(¥3(1,1,1)) =
-5.53103 < B(¥2, (m1 — 3,1)) < B(¥3(4,1)) = —4.68554.



(5) B(¥E) = —6.17508 < B(¥3, (n — 3,1)). O

Lemma 3.11. (1) Forn > 7, m > 8, B(¥3(n — 3,1)) = B(¢L) if and only if
m=13andn =9.

(2) Forn > 7,m > 8, B(¢%(1,m — 8)) < B(yi(n - 3,1)).

(3) Forn > 10, m > 14, 8(¢3,(1,1,m — 9)) < B(¥3(n — 3,1)).

Proof. Using Software Mathematica, we have

(1) Forn, > 10,m > 14, 8(¢}) = —5 < B(¢}) = —4.86906 < B(¢}) =
—4.80535 < B(Clo) = —4.77448 < B(¢1,) = —4.75999 < B((],) = —4.7534 <
ﬂ( ?n (7L1—3, 2)) < ﬁ(¢g(6:2)) = ﬁ(CIIS) = —4.75047 < ﬁ(C'rlm) < ﬂ(¢g(5’ 1))
= —4.73205 < B(¥3(4,1)) = —4.68554.

(2) Forn; > 9, m; > 18, B(¢3(1,1)) = —5.04802 < B((%(1,2)) =
—4.9418 < (¢34 (1,3)) = —4.89307 < B(¢E(1,4)) = —4.8713 < B(¢%(1,5))
= —4.86188 < B(¢2,(1,6)) = —4.8579 < A(¢F(1,7)) = —4.85626
< B(C%(1,8)) = —4.85557 < B(¢E(1,9)) = —4.85529 < B(¢%(1,10)) =
—4.85517 < B(¢2,, (1,m1—8)) < B(¥3, (n1-3,1)) < B(¥3(5,1)) = —4.73205
< B(¥(4,1)) = —4.68554.

(3) Forny > 9,m; > 20, B(¢H(1,1,1)) = —5.23607 < B(¢F(1,1,2)) =
-5.10522 < B(¢3,(1,1,3)) = —5.04892 < F(¢34(1,1,4)) = —5.0254 <
B(¢34(1,1,5)) = —5.01594 < B(¢F5(1,1,6)) = —5.01224 < B(¢Fs(1,1,7)) =
-5.01082 < B(¢3(1,1,8)) = —5.01027 < B(¢3(1,1,9)) = —5.01006 <
B(¢35(1,1,10)) = —5.00998 < B(¢3,, (1,1, — 9)) < B(¥3 (ny —3,1)) <
B(¥3(5,1)) = —4.73205 < B(v3(4,1)) = —4.68554. |

4 The chromaticity of graph ¢3(n — 3,1)
Lemma 4.1. [24| For n > 4, D,, is adjointly unique if and only if n # 4, 8.

Lemma 4.2. Let G be a graph such that G ~" 3 (n — 3,1), where n > 7. Then
G does not contain K as one of its components.

Proof. Suppose h(K ) | h(¥3(n — 3,1)). From Lemma 2.3, we have h(K]) =
z2(z + 1)(z + 4) and hence h1(P2) | A(¥3(n — 3, 1)), which contradicts to The-
orem 3.3. O

Theorem 4.1. Let G be a graph satisfying G ~" ¢)2(n—3,1) wheren > 7. Then
G contains at most two components whose first characters are 1, furthermore, one
of both is Py and the other is Py or one of both is P; and the other is C.

Proof. Let G; be one of the components of G such that R;(G) = 1. From
Lemma 2.6 and Theorem 3.2, h(G1)|h(¥23(n — 3,1)) if and only if G; & P; and
n =4k +2,or Gy = Py and n = 5k + 3. According to (1) of Lemma 2.5, we
obtain the following equality:

h(¥30s418(20(k — 1) + 15,1)) = h(Pao)h(¥3g(x_1y418(20(k — 1) + 15,1))



+“’}‘(P19)h(‘/’go(k-1)+17(2O(k -1)+14,1)) (4.1)

Noting that {n|n =4k +2,k>1}N{n|n=5k+3,k > 1} = {n|n=
20k + 18,k > 0}, we have

h(Ps)h(Py) | h(@’/'go(k-l)ﬂa(?o(k - 1) +15,1)) (4.2)

By Lemma 3.1, we get h( P3)|h(P1o) and h(Py)|h(Pyo). Combining this with
(h(P3), h(P,)) = 1, we have

h(Ps)h(FPs) | h(Pro) (4.3)

From (4.1) to (4.3), we obtain h(P3)h(Py) | h{¥30;415(20k + 15, 2)). Note
that h(Py) = h(K; U Cj3) and hence h(Ps)h(Cs) | h(¥3y415(20k + 15,2)).
From Theorem 3.3, we know that the theorem holds.

Theorem 4.2. Let G be a graph such that G ~" 3 (n — 3,1), wheren > 9.
(1) Ifn = 8, then [G]h = {1/):8;(51 1)y¢é U C3,1/}§}'
(2) If n # 8, then [G)n, = {¢3(n — 3,1)}.

Proof. (1) When n = 8, let G be a graph satisfying h(G) = h(¥3(5,2)). From
Lemmas 2.1,2.2 and 2.6, we obtain that ¢(G) —p(G) = 1and Ry (G) = -2. if G
is a connected graph, then G € 4 = {¥2,¥3(5,1),¢3(2,2), ¥3(1,3),44(3,1),
¥5(1,1,1)} by Rs(G) = Rs(¥3(5,1)) = 9 and (2) of Lemma 3.4. By calcula-
tion, we have {2, ¥3(5,1)} € [G]n. We now assume that G is not a connected
graph. By calculation, we have h(G) = h(¢3(5,2)) = z%(2? + 3z + 1)(2? +
6z + 6). Let h(G) = h(¥3(5,2)) = 28 f1(z} f2(z), where fi(z) = 2% + 3z + 1,
fa(x) = 22 4+ 624 6. Note that Ry (f1(x)) = 1 and by (f1(z)) = 3. Then Lemma
2.6 implies that f1(z) = hy(Py) = h1(C3) if f1(z) is a factor of adjoint polyno-
mial of some graph. Then Py or C3 is a component of G. If P4 is a component of
G, then G = P, U G and hence hi(f2(z)) = 2% + 6z + 6, which implies that
R1(G1) = Ry(f2(x)) = —3 and ¢(G1) — p(G1) = 2. From (5) of Lemma 2.6,
we have G € ¢, which contradicts to p(G,) = 4. Suppose that C3 is a compo-
nent of G. Then G = C3 U G, and so h;(f2(x)) = 22 + 6z + 6, which implies
that R (G)) = Ri(f2(x)) = -3 and ¢(G,) — p(G1) = 1. From Lemma 2.6,
we have G € ¢. Since p(G) = 8, we can only find one graph G € ¢ such that
p(G1) = 5. Then Gy = ¢}. So G = C3 U ¢}. By calculation, C3 U ¢} € [G],.
(2)Whenn >Tandn # 8,letG = U§=1 G;. From Lemma 2.1, we have

WG = [TH(G:) = hi(n - 3,1)), (4.4)
i=1

which results in 8(G) = B(¥3(n—3,1)) € (—o0, —2~+/5) by Corollary 2.1. Let
s; denote the number of components G; such that R(G;) = —i, where i > —1.
From Theorem 4.1, Lemmas 4.1,2.1 and 2.2, it follows that 0 < s_; < 2 and

i=1

Ry(G) =) Ri(Gi) = —2andq(G) = p(G) + 1, (4.5)
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which implies —4<RB(Gi) <1,

S_1 = 8y + 289 + 353 + 454 — 2, (4.6)
N N
¢ : N
A Do_‘l I_(q De'l_g—”ltq
ncél} 7 T,S %il(r,’ ;)2 9 T, s,%’gT}fht)z 10

Figure 2 Family of ¢

Let Urery Tiy 1ot = (Urery T1,1,0) U (Uren Th105) U (Urers Thy i),
Ty = {Tialls 22}, = {Tiuulls 2022V, = {10l 2
lo 213 > 2}, T = T1 UTp UTs, the tree Ty, 1, 1, is denoted by T for short,
A= i1i24}andB={j]j25}.

e distinguish the following cases by 0 < s_; < 2:

Casel: s_; =0,

It follows from (4.6) thatsy = s3 = 0 and s; + 252 = 2. We distinguish the
following subcases:

Subcase 1.1: s, = 1and s; = 0.

From Lemma 2.6, we set

G = G1U(UieaCi)U(Uje B Dj)Uf DgUa K UBTY 1 1V (UTeto Tl 10 0,)s (4.7)

where R1(G;) = -2.
By Theorems 3.4 and 3.5, we arrive at

Rs(G) = Rs(¥3(n—3,1)) = 9 = Rs(G1)+|B{+a+|T|+2|T|+3|Ts| (4.8)

Recall that ¢(G) = p(G) + 1. Then ¢(G1) — p(G;) 2 1. By (1) of Lemma
2.7, it follows that ¢(G1) — p(G1) < 2. Thus 1 < ¢(G1) — p{G)) < 2. So we
have the following subcases to consider.

Subcase 1.1.1: ¢(G)) — p(G;) = 2.

From (4) of Lemma 2.6 and R;(G;) = —2, we have G; = K,. Since
q(G) = p(G) + 1, we can obtain @ + b + |T,| + 2|T3| + 3|73| = 1 from (4.7),
which implies that |73| = |T3] = 0 and 0 < b < 1. From this together with (4.8),
if b = 0,then 9 = Rs(Ky) + |B| + 1. Since Rs(K4) = 7, we have |B| = 1
and G = K4 U (UieaCi) U D; U fDy4. If b = 1, then it follows from (4.8)
that 9 = Rs(K,) + |B|, which leads to |B| = 2 and G = K4 U (U;eaCi) U
2D; U fDs U Ty 1,1 As stated above, we conclude, from Lemma 2.9 and (1)
of Lemma 3.8, that B(¢3(n — 3,1)) = B(G) = B(K,), which contradicts to
B(¥3(n—3,1)) < B(K4) by (3) of Lemma 39.

Subcase 1.1.2: q(G,) — p(G;) = 1.

Since ¢(G) = p(G) + 1,itfollows thata = b = |T}| = |T2| = |T3| = 0
and G; € ¢ by (4) of Lemma 2.6 and (4.7). From (4.8),9 = Rs(G;) + |B| and
hence |B| = 0 and R5(G,) = 9or |[B| =1and R;(G;) = 8 by Lemma 3 4.
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If |B] = 1, then G = G; U (UicaCi) U D; U fDy, where Gy € {y2} U
{2} U {¥3(r,8)} U {¢i(n — 6,1)} U {¥3(1,s,t)} by (1) of Lemma 3.4. By
Lemma 2.9 and Corollary 2.1, it follows that ﬂ(v,bn(n 3, 1)) B(G) = B(Gy).
From (1), (2), (3) of Lemma 3.10, (%3 (n — 3,1)) < B(¥})) < B(¥3(1,s,t))
and [3(1}13(n 3,1)) < B(¥i(n —6,1)). Therefore, B(3 (n — 3, 1)) = B(G1) =
Bmin{(¢3(r, s)). From this together with (6) of Lemma 3.8, Gy = ¢3,(m — 3,1)
and m < n, which contradicts to p(G) = q(G) by (1) of Lemma 3.9.

If |B] = 0,then G = G, U (Usic A C}) UfD4,where Gre {(W2}u {¥i(n—
3,1} U (04(r, )} U {w#(1, 1)} U (3(1, 1,0), 3, 2,0} U (4E) by (2) of
Lemma 34. If G; & 2, then p(G,) = p(G) = E by (2) of Lemma 3.10. It
is impossible. If G = 1/)3(7’, s), then p(G,) = p(G) = 7 by (6) of Lemma
3.8 and (3) of Lemma 3.10. One can see that it is impossible. From (4), (5)
of Lemma 3.10 and (6) of Lemma 3.8, G; % g, 93(r,s,t),¥5(1,1,t). So
Gy = ¢3,(m — 3,1). From (1) of Lemma 3.9, we have rn = n. It is impossible.

Subcase 1.2: s; = 2and s; = 0.
From Lemma 2.6 and (4.5), let

G=G,UGU (U,;GAC,-) U(UjeBDj) UfD, UakK, UbT1,]‘| U (UTGToTll.ézJa)
4.9)

where R1(G,) = Ri(G2) =
By Theorems 3.4 an 3. 5 we have

Rs(G) = Rs(¢3(n—3,1)) =9 = Ro(G1)+Re(Ga) 1Bl /Ti 21Tl 31T

Recall that ¢(G) = p(c)+1 Then $2_, (¢(G:) —p(Gy)) > 1. Usmg(l)of

Lemma 2.7, it follows that Z (9(Gi) —p(G;)) <2.Thus1 < Zr—-l(Q(G )—
?(G:)) < 2, which brings about the following two subcases to be considered.

Subcase 1.2.1: °2_ (¢(G:) — p(G:)) =2.

From (3) of Lemma 2.6 and Lemma 4.2 and (4.5), we have G; = F,,(i =
1,2) and a+ b+ |T;| + 2|T2| + 3| T3] = 1, which implies that | 73| = | T3] = 0 and
0 < b < 1.1fb = 0,then it follows from (4.10) that 9 = 2R5(F,;,)+|B|+1. Then
|B] = 0and G = F,,,UF,,U(U;e aC;)Uf Dy4. If b = 1,thenit follows from (4.10)
that 9 = 2Rs(Fy,)+|B|. Then|B| = 1and G = F,,UF,;,U(VieaCi)UD;Uf D;.
Using (1) of Lemma 3.8, we have S(¢3(n — 3.1)) = B(G) = B(F,.), which
contradicts to B(¥2(n — 3,1)) < [3(Fm) by (2) of Lemma 3.9.

Subcase 122: "2 ¢(G:) - p(Gi) = 1.

Itisobviousthata = b= |1} = || = |T3| = 0,G, = F,,, and G» € £
by Lemmas 2.6 and 4.2 and (4.5). Then 9 = Rs(F,.) + Rs(G2) + |B|, that is
R5(G2) = 5 + |B|. Since G2 € &, it follows that R5(G2) > 4 by Corollary
3.1. Then 4 < Ry(G2) < 5 since |Bj is an integer. If Rs(Gy) = 4, then
|B| =1and G = F;n UG2 U (U;eaCi) U D; U fD, by (4.9) and (1) of Lemma
3.3, where {Cpn—1(P2)|n = 5} U {@Q1.1} U {Bn-s.1.1|n > 7}. By Lemma 2.9,
2.10 and Corollary 2.1, we know that 3(¢3(n — 3,1)) = B(G) = B(Gz) or
B3 (n — 3,1)) = B(G) = B(Fx), which contradicts to (2) of Lemma 3.9.
If R5(G2) = 5,then |[B| = 0and G = F,;, U Ga U (UieaCi) U fDy, where
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{Cr(Ps)lr = 4,5 2 3} U {Q1n—a|n 2 6} U {Br 1,6, Bi,11|7, ¢t > 2} by (2) of
Lemma 3.3. From (1) of Lemma 3.8, 8(G) = B(Fy) or B(G) = B(G2). From
(2) of Lemma 3.9, 3(¢3(n — 3,1)) = B(G2) < B(Fm). So B(G) = B(Ga),
which contradicts to (4) of .emma 3.8 and (3), (4) of Lemma 3.9.

Case2: s_; =1.

It follows from (4.6) that s; = 0 and s; + 2s2 + 3s3 = 3. Thus we have the
following subcases to consider.

Subcase 2.1: s3=1,80 =8, = 0.

Without loss of generahty, let

G =Gi1UGaU(UieaCi)U (UjeBDj)UfD4 UaK3 V0T 1 U(UTG%Tllilst))v
4.11
where G; € {P3,P4,C,3} Rl(Gg) = -3.
By Theorems 3.4 and 3.5, we arrive at

Rs(G) = Rs(¥3(n—3,1)) = 9 = Rs(G1)+Rs(Ga)+|Bl+a+|T; |+2|7'212L3|T..;|

Subcase 2.1.1: Gy X PyorG; &

Recall that ¢(G) = p(G) +1. Then q(Gz) 2(G2) > 2. From (2) of Lemma
2.7, it follows that ¢(G3) — p(Gz) < 2. Then q(G2) — p(G2) = 2, which implies
Gy e landa =b=|Th| = |’T2| = |T3| = 0. Hence we have, from (4.12),
that 9 = —2 + Rsscz) + |B|, which results in R5(G2) = 11 — |B| < 11. It
contradicts to Corol ary 3 33.

Subcase 2.1.2: G, = Cs.

Applying (4.5) and Lcmma2 7,wehavel < g(G2)—p(G2) < 2. If ¢(G2) —

p(G2) =1,thenGe € panda =b = |Th| = |7§| [73| = 0 by (5) of Lemma
2.6 and (4.5). From (4.12), it follows that 9 = —3 + R5(G2) + |B| + 1, which
leads to R5(G2) = 11 — |B] < 11. It contradicts to Lemma 3.7.

Suppose q(G2) — p(G2) = 2. Itis easy tosee that G € anda +b+ |T)| +
2|T3| + 3|T3| = 1 by (5) of Lemma 2.6 and (4.5). If b = 0, then we obtain, from
(4.12),that9 = —3+ R5(G2)+|B|+1,whichleads to R5(G,) = 11—|B| < 11.
It contradicts to Corollary 3.3. If b = 1, then we have, from (4.12), that 9 =
-3+ R5(G3) + |B|, whichresults in G = C3 U Ga U (Ui aCi) U fD4UTY 1,
where R5(G2) = 12. It implies that G, € {¢1} U {(3(r, s)} U {¢3(r, s,t)} by
(1) of Lemma 3.5. From Lemma 2.1 and (1) of Lemma 3.8, 8(¥3(n — 3,1)) =

B(G) = B(G2). By (7) of Lemma 3.8 and Lemma 3.11, we know that Go = ¢}
if and only if p(G) = 13 and p(G2) = 9. One can see that it is impossible.

Subcase 2.2: s = 5; = 1.
Without loss of generahty, let

GC=0G; UGzUGgU(UieACi )U(UjeB Dj )UfD4UaK1 Ule,l’lU(UTE’]bnl(.lz'(s )
4.13)
where G; € {Ps,P4,C3} Rl(Gl) =-1, R1(G2) = -2,
From Theorems 3.4 and 3.5, we arrive at

3
Rs(G) = Rs(93(n—3,1)) =9 = ZR{,(G,’) +|B| +a+ |T| + 2|T2| + 3|73

i=1

(4.14)
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Subcase 22.1: G, = Py or Gy = Fy.

Using (4.5) and Lemma 2.7, we get that 2 < Z,?:;,(q(Gg) - p(Gg)) < 3.
We have the following cases to consider.

First, we consider the case that g(G2) — p(G2) = 1 and g(Gs) — p(G3) =2,
From (3) and (4) of Lemmas 2.6 and Lemma 4.2, we have that G2 = F),, G3 ¢
Ksanda+ b+ |T1| + 2|72 + 3|73} = 1. If b = 0,then 9 = —2 + R5(Fy,.) +
Rs(K4) + |B| + 1, which results in |[B| = —1. It contradicts to that | B is an
positive integer. If b = 1,then 9 = —2+ R5(Fr,) + Rs(K4) +|B|, which implies
lBl =0andG =G UF,UK4U (UieACj) U (UjEBDj) UfD, UT1,1,1. From
l.emma 2.9 and (1) of Lemma 3.8, we have 8(¥2(n — 3,1)) = B8(G) = A(K.),
which contradicts to B(¥3 (n — 3,1)) < B(K4) by (3) of Lemma 3.9.

Next, we consider the case that g(G3) — p(G2) = 1 and ¢(G3) — p(G3) = 1.
Itis obvious that G = F,,,,Gz € Yanda = b = |T}| = |T2| = |T3| = O by
Lemma 2.6, Lemma 4.2. By (4.14), we have 9 = —2 + R5(F,,,) + Rs(G3) + | B|
and hence R5(G3) = 7 — | B| < 7, which contradicts to Corollary 3.2.

In this end, we consider the case that ¢(G2) = p(G2) and ¢(G3)—p(G3) = 2.
Applying Lemma 2.6 and (4.5), it follows that Go € €, G3 = Kjand a =
b= |7 = |T2| = |T5| = 0. Then9 = -2 + R5(G2) + Rs(Ks4) + |B|
and hence |B| = 0 and R5(G2) = 4. By (1) of Lemma 3.3, we know that G =
C3UGUK 3 U(U;eaCi)U f Dy, where Gy € {Cr1(P1)}U{@Q1 1 }U{Bn-s.1.}.
We can get the same comradlcuon as Subcase 1.2.2.

Subcase 22.2: G =

From (4.5) and Lemma 2 J,wehavel < Zi=2(9(02) — p(G3)) < 3. Thus
we distinguish the following subcases.

If ¢(G2) — p(G2) = 1 and q(G3) — p(G3) = 2,then G, = F,,,,G3 = K,
and a + b+ |T;| +2|T2| + 3| 73] = 2 by Lemmas 2.6,4.2, (4.5) and (4.13), which
implies that |73] = |T2| = 0and 0 < b < 2. If b = 0, then we have, from (4.14),
that 9 = —3+ R5(Fy,,) + Rs(K4) +|B| +2 and hence | B| = —1, a contradiction.
Ifb=1,then9 = -3+ Rs(Fn) + Rs(K4) + |B|+1and hence G = C3 U F,,, U
KqU(UieaCi)U fDgUT, 1. If b= 2,then 9 = =3+ Rs(F),) + Rs(K4) +|B|,
whichresultsin G = C3 U F,, UK4U(U;eaCi)UD; U fDgU2T 4,1. As stated
above, from (1) of Lemma 3.8, we have B(¥3(n — 3,1)) = B(G) = B(K.),
which contradicts to (i3 (n — 3,1)) < B(K,) by (3) of Lemma 3.9.

If ¢(G2) — p(G2) = 1 and ¢(G3) — p(G3) = 1, then Gy = F,,, G3 €
¢and a+ b+ |Th| + 2|72| + 3|73| = 1 by Lemmas 2.6. From this together
with (4.14),if b = 0,then 9 = —3 + Rg(F,n) + Rs(G3) + |B| + 1 and hence
Rs(G3) = 7 — |B| £ 7, which contradicts to G3 € ¢ by Lemma 3.7. If b = 1,
then9 = -3 + Rr(.Fm) + R5(Gs) + |BJIand hence R5(G3) = 8 — |B| < 8,
which contradicts to G3 € ¢ by Lemma 3

If ¢(G2) = p(G2) and q(G3) — p(G3) = 1, then it follows from Lemmas
2.6 and (4.15) that G, € £,G3 € Ypanda = b = |T}| = |T2] = |T3] = 0.
By (4.16), we have Rs(G3) = 12 — R5(G3) — |B|, which results in |B| = 0,
Rs(G2) = 4 and R5(G3) = 8. From this together with (1) of l.cmma 3.3 and
(1) of Lemma 3.4, we know that G = C3 U G2 U G3 U (Ui aC;) U f Dy, where
Gy € {C,;-](Pl)hl >5}1U {Q1 1} U {Bn_51 in > 7} Gs € {4,1) } U {l[12} U
{3(r,s)|r > 4,5 > 2} U {yi(n—6,1)|n > 8 U {¥3(1,s,t)]s,t > 2}. Using
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the similar discussing method as Subcase 1.2.2, we can get a contradiction.

I3 14 15 1o ¥4 Is
ki) k43 I Ix d)n ¢u

Figure 3 Family of ¢

Suppose that ¢(G2) — p(G2) = 1 and ¢(G3) = p(G3). Applying Lemmas
26,42 and (4.15),we have that G2 = F,,Gz € panda = b = |Th| = |Tp| =
k’Z’%l = 0. Hence R5(G3) = 8 — | B| < 8, which contradicts to G3 € ¢ by L.emma

Subcase 2.3: s; = 3.
Without loss of generality, let

G =Up,GiU(UicaCi)U(UjepDj)U fDyUa K, UbT 1 U (UTE'TnTInilz.ls)v
4.15)
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where G, € {3, P4, Cs}, Gi)=-1(: = 2,3,4).
Using Theorems 3.4 a n 5, it follows that

4
Rs(G) = Rs(¥3(n—3,1)) =9= Y Rs(Gi)+|B|+a+|Ti|+2|T3| + 3| T

i=1

Subcase 2.3.1: G, = Pyor G = Py.

Using Lemma 2.7 and (4.5), we know that2 < 37 _,(q(Gi)—p(Gy)) < 3. If
S 2(g(Gi)—p(Gi)) = 3,then G; & F (i = 2,3,4) and a + b+ | T3 | + 2| Ta| +
3|73| = 1 by Lemmas 2.6 and 4.2, which implies that |T3| = |T| = Oand 0 <
b < 1.If b = 0, then we obtain, from (4.16), that 9 = —2 + 3R5(Fn) + |B] + 1,
which contradicts to Rs(F,,) = 4. If b = 1, then we have 9 = —2 + 3R5(F},,) +
| B, which also contradicts to Rs(F,,) = 4. Suppose ZL?(q(Gi) -p(Gy)) = 2.
Applying Lemmas 2.6 and 4.2, we obtain that G; = F,,,(i = 2,3)and G4 € §
anda=b=|Ti| = |T2| = |’1§| 0. Hence 9 = —2+2Rs(F,)+ Rs(G4) + B,
which lmplles Rs(G4) = 3 — |B| < 3. It contradicts to G4 € € by Corollary 3.1.

Subcase 2.3.2: G, = C

Usmg Lemma 2.7 and (4.5), it follows that 1 < 3°3_,(q(G:) — p(G:)) <
If 32 ,(g(G:i)—p(Gi)) = 3,then G; = Fp,(i = 2,3,4) and a+b+|7'1]+2|7’2|+
3|73| = 2 by Lemmas 2.6 and 4.2. If b = 0,then 9 = —3 + 3R5(Fm) + |B| + 2,
which contradicts to Rs(F,,) =4.1f b= 1,then 9 = -3+ 3Rs(F,.) + |B] + 1,
which also contradicts to Rs(F,) = 4. If b = 2, then we arrive, from (4.16),
a9 = =3 + 3Rs(F,,,) + |B|, which implies G = C3U F,,, UF,,, U F,,, U
(UieaCi) U fDqg UU2T) 1 1. From (1) of Lemma 3.8 and Lemma 2.9, it follows
that B(¥3 (n ~ 3,1)) = B(G) = B(Fm), which contradicts to B(y3(n — 3,1)) <
B(Fm) by (2) of Lemma 3.9.

If Z;z(q(Gi) - p(G;)) = 2,then G; = Fi,(i = 2,3)and G4 € € and
a+b+|71|+2|72| + 3|Ts] = 1 by (3) of Lemmas 2.6 and 4.2. From this together
with (4.16), if b = 0,then 9 = —3 + 2R5(F..) + Rs(Ga) + |B| + 1, which
results in R5(G4) = 3 — |B| < 3. It contradicts to G4 € § by Corollary 3.1. If
b =1,then 9 = -3 + 2R5(F.n) + Rs(G4) + |B|, which implies |B| = 0 and
G=C3UF,UF,UG4U (UieACi) UfDsu UT1,1'1, where R5(G4) =4,
From (1) of Lemma 3.3,G4 € {Coic1(P1)} U {Q1,1} U {Bns,1.1}. Combining
this with (1) of Lemma 3.8, it follows that B(¥3(n — 3,1)) = B(G) = B(G.),
which contradicts to (2) of l.emma 3.9.

Suppose Y"1, 4(Gi) — p(G:) = 1. Clearly, G2 = F,,, and G4 € £ (i = 3,4)
anda = b = |T}| = |T2| = |T3| = 0 by (3) of Lemma 2.6, Lemma 4.2 and
(4.5). Hence 9 = —3 + Rs(Fm) + Rs(Gs) + Rs(G4) + | B|, which implies that
G=C3UF,,UG3UG U (UieACi) U fDy, where R5(Gi) = 4(’i = 3,4). We
can also get the same contradiction as the above case.

Case 3: S—1 = 2.

It follows, from (4.6), that sy 4+ 2s2 + 3s2 + 4s4 = 4, which brings about the

following subcases 10 consider.
Subcase 3.1: .54—-1 S3—82=61—0

(4.16)
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Without loss of generality, let

G = P3UG, UGQU(U,’,GAC,')U(UjeBDj)UfD4UaK1 Ule,l.IU(UTe'ZZ, Tll(.lz-l;;))
4.17)

where G; € {P4,Cgl R](Gz) = —4,
From Theorems 3.4 and 3.5, we arrive at

2
Rs(G) = Rs(¥3(n—3,1)) = 9= =2+ _ R5(G:)+|Bl+a+|Th|+2(Ta|+3|Ts|

i=1

(4.18)

Recall that ¢(G) = p(G) + 1. If G = Py, then ¢(G2) — p(G2) > 3. By

(3) of Lemma 2.7, we have g(G2) — p(G2) < 3,acontradiction. We now assume
G, = Cs. Itis obvious that ¢(G2) — p(G2) > 2 by (4.5) and (4.17). By (3)
of Lemma 2.7, we arrive at g(G2) — p(G2) < 3. Then ¢(G2) — p(G2) = 2 and
a =b=|T)| = |T2] = |Tz| = 0, which implies G, € 8 by (6) of Lemma 2.6.
Fré)m (4.18), we have R5(G2) = 13 — |B| < 13, which contradicts to l.cmma

Subcase 3.2: s, = 55 = 0,53 =851 = 1.
Without loss of generality, let

G = PaU(U3_, G;)U(Uie aCi)U(Uje 8 Dj)Uf DyUaK 1 UBT 1 1U(Uret, T, 1, ,),),
(4.19

where G, € {Pf],C:}% Rl(Gz) = -1, Rl(Ga) = -3.
From Theorems 3.4 and 3.5, we arrive at

3
R5(G) = Rs(¢3(n—3,1)) = 9= =2+ _ R5(G:)+|B|+a+|Ti|+2|Ta| +3|Ts|

i=1

(4.20)
If G, = Py, then Z,=2(¢1(G } — p(G:)) > 3 by (4.5) and (4 19) From
Lemmas 2.6 and 2.7, we have Y">_,(g(G:) - p(G;)) < 3. Then 3°°_,(q(G:) —

p(Gi)) = 3, whichimplies Go & F,;,,Gs € (anda =b=|T;| = |T2| |7§|
0. By (4.20),9 = —2 — 2 + Rs(Fm) + Rs(G3) + |B| and hence R5(G3) =
9 — |B| £ 9, which contradicts to G3 € ¢ by Corollary 3.3.

Suppose G = C5. Applying Lemma 2.7 and (4.5), we have 2 < Zf:z(q(G,:)—
2(G;)) < 3. Consider the case Z;.’:z(q(Gi)—p(Gi)) = 3. From Lemmas 2.6,4.2
and (4.5), we have G2 = F,,, and G3 € (anda + b + |T}| + 2|T2| + 3|T3| = 1.
Ifb=0,then9 = —2 — 3 + Rs(Fm) + Rs(G3) + |B| + 1, which results
in Rs(G3) = 9 — |B] £ 9, which contradicts to Gz € ¢. If b = 1, then
9 = -2 — 3 + Rs(Fy,) + Rs(G3) + | B| and hence R5(G3) = 10 — |B| < 10,
which also contradicts to G’3 € (.

Consider the case E,:z(Q(G )—p(G;)) = 2. If ¢(G2) = p(G2) and g(G3) —
p(G3) =2,thenGy € £and G3 € (anda = b = |T}| = |Tp| = |T3| = 0 by
Lemma 2.6 and (4.5). Then 9 = —2 — 3 + R5(G2) + Rs(G3) + | B} and hence
R5(G2) + Rs(G3) = 14 — |B| < 14, which contradicts to G3 € ¢ by Corollary
3.1 and Corollary 3.3. If q(G2) p(G2) = 1 and ¢(G3) — p(G3) = 1, then
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Gy = F,andGz € panda =b=|T)| = |T2| = |T3| = 0 by 2.6,4.2 and (4.5).
From this together with (4.20), we getthat 9 = —2—3+ R5(F., )+ Rs(G3)+|B).
Hence R5(G3) = 10 — | B| < 10, which contradicts to I.emma 3.7,

/t\ . >/\/\ ?1

3 3
971!6 071‘7 07118 97119 920 921 922
Figure 4 Family of 6

Subcase 33: sy = s3 =51 = 0,80 = 2.
Without loss of generality, let

G= P3U(U?=IG,‘)U(U,'€,\ Ci)U(UjeBD',')UfD4U0,I{1UbT1,1_1U(UT€7',,T11 '12,13),

(4.21)
where G; € {P,],C3},R1(Gi) = -2(i = 3,4).
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By Theorems 3.4 and 3.5, we have

3
R5(G) = Rs(¥i(n—3,1)) = 9= -2+ _ R5(G:)+|Bl|+a+|Ti|+2|T2|+3|T:|

i=1
(4.22)

Suppose G; = P,. Recall that ¢(G) = p(G) + 1. Then Zf=2(q(G,~) -
p(G:)) > 3. From Lemma 2.7, 35 ,(q(G:) — p(G:)) < 4. Therefore, 3 <
T3 5(@(Gi) — p(G)) < 4. 1F S, (q(Gi) — p(G)) = 4, then G = Ky(i =
2,3)and a+b+|T1|+2|73]+3[Ts| = 1 by (4) of Lemma 2.6 and (4.5). If b = 0,
then9 = —2—2+2Rs(K4)+|B|+1, which contradicts to Rs(K4) = 7 by (8) of
Theorem 3.5. If b = 1,then 9 = —2 — 2+ 2R5(K4) + | B|, which also contradicts
to Rs(Ka) = 7. If 32 ,(q(G:) — p(G:)) = 3, then it follows (4) of Lemma
26and (4.5)that G2 = K4, Gz € pande = b = |Th| = |To| = |T3] = 0.
Combining this with (4.22), we have 9 = —2 — 2+ R5(K,) + R5(G3) + |B| and
hence Rs(G3) = 6 — |B| < 6, which contradicts to G3 € v by Corollary 3.2.

Suppose G = Cy. From (4.5) and Lemma 2.7, we have 2 < Zfﬂ(q(Gi) -
p(Gi)) < 4. If ¥ ,(9(Gi) — p(G:)) = 4, then G; = Ky(i = 2,3) and
a+ b+ |Th| + 2|T;| + 3|73| = 2 by Lemma 2.6 and (4.5) and hence |T3| =
|72l = 0and 0 < b < 1. Combining this with (4.22), if b = 0, then 9 =
-2-3+ 2R5(K4) + IBl + 2, which contradicts to Rs(K4) =T7.Ifb=1,
then 9 = —2 — 3 + 2R5(K,4) + |B| + 1, which also contradicts to Rs(K,) =
7. If b = 2,then9 = -2 — 3 + 2R;5(K4) + |B| and hence |B| = 0 and

=PBUC3;UK;UK,U (U,feACi) UfDsuU 2T1,1’1. From Lemma 2.9
and (1) of Lemma 3.8, B(¥3(n — 3,1)) = B(G) = B(K4), which contradicts to
B(¥3(n —3,1)) < B(Ky) by (3) of Lemma 3.9.

If % ,(q(Gi) — p(Gi)) = 3, then G2 = K4, G € and @ + b+ |Ty| +
2|T5| + 3|73) = 1 by (4) of Lemma 2.6 and (4.5). If b= 0,then 9 = -2 — 3 +
Rs(K4)+ Rs(G3)+|B|+1 and hence R5(G3) = 6 —|B| < 6, which contradicts
to Corollary 3.2. If b = 1,then 9 = —2 — 3+ R5(K,) + R5(G3) + | B| and hence
R5(G3) = 7 — | B| £ 7, which also contradicts to Corollary 3.2.

Suppose Z?=2(‘1(Gi) — p(G;)) = 2. From Lemma 2.6 and (4.5), we know
that G; € ¥(i = 2,3) and a = b = |T1| = |T2| = |T3| = 0. Combining this with
(4.22),9=-2-3+ Rs(G2) + Rs(Gs) + | B| and hence Rs(G2) + R5(G3) =
14 — |B| < 14, which contradicts to G3 € ¥ by Corollary 3.2.

Subcase 3.4: 54 = 53 =8, =0,5, =4,

Without loss of generality, let

G = P3U(U;., G:i)U(Uic aCi)U(Uje 8 D3 )Uf DyUa K UBT 1 1 U(UTeTo Ty ta 1 )s
4.23

where G| € {P4,Cs}, Ri(G;) = —1(i = 2,3,4,5).
Applying Theorems 3.4 and 3.5, we get that

Rs(G) = Rs(y(n—3,1)) = 9= ~2+) _ R5(G:)+|Bl+a+|Ti|+2|To|+3|T5|
t=1

(4.24)
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Suppose G; = P,. Using (1) of Lemma 2.7 and (4.5), we have 3 <
Ti-a(a(Gi) — p(G)) < 4.1 30_5(¢(Gi) — p(Gi)) = 4, then G = Frp(i =
2,3,4,5) and a + b + |T1| + 2|72} + 3|73 = 1 by Lemmas 2.6 and 4.2. If
b=0,then9 = -2 — 2 + 4R5(F},) + |B| + 1, which contradicts to Rs(F,) =
4. If b = 1,then 9 = -2 — 2 + 4R5(Fy,) + |B|, which also contradicts to
Rs(Fn) = 4. If Y0_,(q(Gi) — p(Gi)) = 3, then G; & F, (i = 2,3,4),
Gs e tanda = b= |Th| = |T2| = |Ts| = 0 by Lemmas 2.6 and 4.2. Hence
9=-2-2+3Rs(Fn) + ng 5) + |B| and hence R5(Gs) =1 — |B| £ 1,
which contradicts to Gs € £ by Corollary 3.1.

Suppose G 2 Cs. Recall that g(G) = p(G) + 1. Then 2 < 3°°_,(q(G:) —
p(Gi)) < 4 by Lemma 2.7. If Y5_,(a(G:) — p(Gi)) = 4, then G; = Fy, (i
2,3,4,5) and a + |T| + 2|T2| + 3|73| = 2. Combining this with (4.24),if b =
then 9 = —2 — 3 + 4Rs(F») + |B| + 2, which contradicts to Rs(Fy,) =
We can gcl a contradictionforb=land b = 2. If Z,_2 (9(G:) — p(G))) = 3,
then G; & F,,, (i = 2,3,4),Gs € §and a + |T1| + 2|T| + 3|T5] = lby
Lemmas 2.6 and 4.2. If b = 0, then it follows from (4.24) that 9 = —2 —
3 + 3Rs(Fm) + R5(Gs) + |B| + 1 and hence R5(Gs) = 1 — |B| < 1, which
contradicts to G5 € £. If b = 1,then 9 = -2 — 3 + 3Rs(Fpn) + R5(G’«—) +
iB| and hence Rs(Gs) = 2 — |[B| £ 2, which also contradicts to G5 € &. If
3 ,(@(Gi) — p(Gi)) = 2,then G; = Fy, (i = 2,3),G; € € (i = 4,5) and
a=b=|T| = |Tz| = |Ts| = 0 by Lecmmas 2.6, 4.2 and (4.23). From this
together with (4.24),9 = —2 — 3 + |B| + 2Rs(F.) + Rs(G4) + Rs(Gs). B
Corollary 3.1, Rs(G3) > 4. Hence R5(G,4) + Rs(Gs) = 6 — |B| < 6, whlch
contradicts to G4, Gs € € by Corollary 3.1, 3

-

C(;Zollary 4.1. Ifn > 17, graph Y3 (n — 3,1) is adjoint uniqueness if and only if
n # 8.

Corollary 42. If n > 7, the chromatic equivalence class of Y3(n — 3,1) only
contains the complements of graphs that are in Theorem 4.2.

(f?or(;éllgry 43. Ifn > 7, graph ¥3(n — 3,1) is chromatic uniqueness if and only
ifn

Acknowledgement. The authors would like to thank the referee for helpful
comments and suggestions.

References

(1] J.A.Bondy, U.S.R. Murty, Graph Theory with Application (North-Holland, Amster-
dam, 1976).

(2] FM. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Two invariants for
adjoint equivalent graphs, Australasian J. Combin. 25(2002), 133-143.

{13] FM. Dong, K.L. Teo, CH.C. Little, M.D. Hendy, Chromaticity of some families of
dense graphs, Discrete Math. 258(2002) 303-321.

14} Q Y. Du, The graph parameter (G and the classification of graphs according to it,
nghal Normal Univ. (Natur. Sci.) 4(1993), 29-33.

420



5] B.F. Huo, Relations between three parameters A(G), R(G) and D2(G), J. Qinghai
Normal Univ. (Natur. Sci.) 2(1998), 1-6.

16] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs and Com-
bin. 6 (1990), 259-262.

|7] K.M.Koh, K.L.Teo, The search for chromatically unique graphs (2), Discrete Math.
172 (1997), 57-78.

18] R.Y.Liu, A new method for proving uniqueness of graphs, Discrete Math. 171(1697),
169-177.
91 R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math.
172(1997), 85-92.
[10] R.Y. Liu, Several results on adjoint polvnomials of graphs (in Chinese), J. Qinghai
Normal Univ. (Natur. Sci.) 1{1992), 1-6.

[11] 1.S.Mao, On the second character R2(C) of graphs (in Chinese), J. Qinghai Normal
Univ. (Natur. Sci.) 1(2004), 18-22.

112} Y.P. Mao, C.F. Ye, S.M. Zhang, A complete solution to the chromatic equivalence
class of graph Bn_s,1,4, ). Math. Res. with Appl. 32(3)(2012), 253-268.

[13] Y.P. Mao, C.F. Ye, A complete solution to the chromatic equivalence class of graph
¢1,J. Combin. Math. Combin. Comput. 81(2012), 33-63.

(14] Y.P.Mao, C.F.Ye, The fifth coefficient of adjoint polynomial and a new invariant, Ars
Combin., in press.

115} R.C.Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.T. Wilson(Eds),
Selected Topics in Graph Theory (3)(Academiv Press, New York, 1998), 15-42.

|16] H.Z.Ren, On the fourth coefficients of adjoint polynomials of some graphs, Pure and
Applied Math. 19(2003), 213-218.

1171 H.Z. Ren, A new family of graphs and its classification, ). Qinghai Normal Univ.
(Natur. Sci.) 2(2002), 1-5.

[18] H.Z. Ren, R.Y. Liu, The Minimum real roots of adjoint polynomials of a class of
graphs with R(G) > —1, Math research and exposition. §(2005), 601-604.

[19] H.Z. Ren, R.Y. Liu, The Minimum real roots of adjoint polynomials of a class of
connected graphs, Xiamen Univ. (Natur. Sci.) 26(2006), 391-392.

[20] H.Z.Ren, R.Y. Liu, The characterization of the minimum real roots of adjoint poly-
nomials of ¢ graphs, Southwest Normal Univ. (Natur. Sci.) 3(2006), 1-4.

121} J.F. Wang, R.Y. Liu, C.F. Ye, Q.X. Huang, A complete solution to the adjoint equiva-
lence class of graph Bn_z 1.3, Discrete Math. 308(2008), 3607-3623.

[22] J.F. Wang, Q.X. Huang, R.Y. Liu, C.F. Ye, The chromatic equivalence class of graph
Bn—_¢,1,2, Discussiones Math. Graph Theory 28(2008), 189-218.

123] J.F. Wang, Q.X. Huang, K.L. Teo, F. Belardo, R.Y. Liu, C.F. Ye, Almost every com-
ggezlgnt of a tadpole graph is not chromatically unique, Ars Combin. 108(2013),

|24] C.F. Ye, The root of adjoint polynomial of the graphs containing trangles, Chin.
Quart. J. Math. 19(2004), 280-285.

125| H.X. Zhao, Chromaticity and adjoint polynomials of graphs, The thesis for Docter
Degree (University of Twente, 2005) The Netherland, Wohrmann Print Service.

421



