The chromatic equivalence class of graph

$$\psi_n^3(n-3,1)$$
 *

Yaping Mao^{1†} Chengfu Ye¹ Hengzhe Li² Shumin Zhang¹

¹Department of Mathematics, Qinghai Normal
University, Xining, Qinghai 810008, P. R. China

²College of Mathematics and Information Science,
Henan Normal University, Xingxiang 453007 China

Abstract

Two graphs are defined to be adjointly equivalent if their complements are chromatically equivalent. Recently, we introduced a new invariant of a graph G, which is called the fifth character $R_5(G)$. Using this invariant and the properties of the adjoint polynomials, we completely determine the adjoint equivalence class of $\psi_n^3(n-3,1)$. According to the relations between adjoint polynomial and chromatic polynomial, we also simultaneously determine the chromatic equivalence class of $\psi_n^3(n-3,1)$.

Keywords: chromatic equivalence class; adjoint polynomial; the smallest real root; the fifth character.

AMS subject classification 2010: 05C15, 05C31, 05C60.

1 Introduction

The graphs considered in this paper are finite undirected and simple graphs. We follow the notation of Bondy and Murty [1], unless otherwise stated. For a graph G, let V(G), E(G), p(G), q(G) and G be the set of vertices, the set of edges, the order, the size and the complement of G, respectively. For a graph G, we denote by $P(G,\lambda)$ the chromatic polynomial of G. A partition $\{A_1,A_2,\cdots,A_r\}$ of V(G), where r is a positive integer, is called an r-independent partition of graph G if every A_i is nonempty independent set of G. Denote by $\alpha(G,r)$ the number of r-independent partitions of G. Thus the chromatic polynomial G is $P(G,\lambda) = \sum_{r\geq 1} \alpha(G,r)(\lambda)_r$, where $(\lambda)_r = \lambda(\lambda-1)\cdots(\lambda-r+1)$ for all $r\geq 1$. The readers can turn to [15] for details on chromatic polynomials. Two graphs G and G are said to be chromatically equivalent, denoted by $G \sim H$, if $P(G,\lambda) = P(H,\lambda)$. By G we denote the equivalence class determined by G under " \sim ". It is obvious that " \sim " is an equivalence relation on the family of all

^{*}Supported by the National Science Foundation of China (No. 11161037 and 11401181) and the Science Found of Qinghai Province (No. 2014-ZJ-907).

[†]Corresponding author. Email: maoyaping@ymail.com

graphs. A graph G is called *chromatically unique* (or simply χ -unique) if $H \cong G$ whenever $H \sim G$. See [6, 7] for many results on this field.

Definition 1.1. [9] Let G be a graph with p vertices, the polynomial

$$h(G,x) = \sum_{i=1}^{p} \alpha(G,i)x^{i}$$

is called its adjoint polynomial.

Definition 1.2. [9] Let G be a graph and $h_1(G,x)$ be the polynomial with a nonzero constant term such that $h(G,x) = x^{\rho(G)}h_1(G,x)$. If $h_1(G,x)$ is an irreducible polynomial over the rational number field, then G is called irreducible graph.

Two graphs G and H are said to be *adjointly equivalent*, denoted by $G \sim^h H$, if h(G,x) = h(H,x). Evidently, " \sim^h " is an equivalence relation on the family of all graphs. Let $[G]_h = \{H \mid H \sim^h G\}$. A graph G is said to be *adjointly unique*(or simply h-unique) if $G \cong H$ whenever $G \sim^h H$.

Theorem 1.1. [3] (1) $G \sim^h H$ if and only if $\overline{G} \sim \overline{H}$.

- $(2) [G]_h = \{ \overrightarrow{H} \mid \overline{H} \in [\overline{G}] \}.$
- (3) G is χ -unique if and only if \overline{G} is h-unique.

Now we define some classes of graphs with order n, which will be used throughout the paper.

Figure 1 Families ξ and $\psi(n_1 = r + s + t, n_2 = r + s + t + a + b)$

(1) C_n (resp. P_n) denotes the cycle (resp. the path) of order n, and write $\mathscr{C} = \{C_n \mid n \geq 3\}, \mathscr{P} = \{P_n \mid n \geq 2\} \text{ and } \mathscr{U} = \{U_{1,1,t,1,1} \mid t \geq 1\}.$

(2) $D_n (n \ge 4)$ denotes the graph obtained from C_3 and P_{n-2} by identifying a vertex of C_3 with a pendent vertex of P_{n-2} .

(3) T_{l_1,l_2,l_3} is a tree with a vertex v of degree 3 such that $T_{l_1,l_2,l_3}-v=$ $P_{l_1} \cup P_{l_2} \cup P_{l_3}$ and $l_3 \geq l_2 \geq l_1$, write $\mathscr{T}^0 = \{T_{1,1,l_3} | l_3 \geq 1\}$ and $\mathscr{T} = \{T_{l_1,l_2,l_3} | (l_1,l_2,l_3) \neq (1,1,1)\}$.

 $(4) \vartheta = \{C_n, D_n, K_1, T_{l_1, l_2, l_3} \mid n \geq 4\}.$

 $(5) \xi = \{C_r(P_s), Q(r, s), B_{r,s,t}, F_n, U_{r,s,t,a,b}, K_4^-\}.$

(6) $\psi = \{\psi_n^1, \psi_n^2, \psi_n^3(r, s), \psi_n^4(r, s), \psi_n^5(r, s, t), \psi_5^6\}.$ For convenience, we simply denote h(G, x) by h(G) and $h_1(G, x)$ by $h_1(G)$. By $\beta(G)$ and $\beta_{min}(G)$ we denote the smallest real root and the minimal extremes of the smallest real root of h(G), respectively. Let $d_G(v)$, simply denoted by d(v), be the degree of vertex v. For two graphs G and H, denote by $G \cup H$ the disjoint union of G and H, and mH stands for the disjoint union of m copies. By K_n we denote the complete graph with order n, let $n_G(K_3)$ and $n_G(K_4)$ denote the number of subgraphs isomorphic to K_3 and K_4 , respectively. Let $g(x) \mid f(x)$ (resp. $g(x) \nmid f(x)$) denote g(x) divides f(x) (resp. g(x) does not divide f(x) and $\partial(f(x))$ denote the degree of f(x). By (f(x), g(x)) we denote the largest common factor of f(x) and g(x) on the real field. Let $N_G(v)$ be the neighborhood set of a vertex v.

It is an important problem to determine [G] for a given graph G. From Theorem 1.1, it is obvious that the goal of determining [G] can be realized by determining $[G]_h$. Thus, if q(G) is large, it may be easier to study $[\overline{G}]_h$ rather than [G]. The determination of [G] for a given graph G has received much attention in 12, 13, 14, 21, 22, 23 recently. In this paper, using the properties of adjoint polynomials, we determine the $[\psi_n^3(n-3,1)]_h$ of graph $\psi_n^3(n-3,1)$, simultaneously, $[\psi_n^3(n-3,1)]$ is also determined, where n > 7.

Preliminaries 2

For a polynomial $f(x) = x^n + b_1 x^{n-1} + b_2 x^{n-2} + \cdots + b_n$, we define

$$R_1(f(x)) = \begin{cases} -\binom{b_1}{2} + 1, & \text{if } n = 1; \\ b_2 - \binom{b_1 - 1}{2} + 1, & \text{if } n \ge 2. \end{cases}$$

For a graph G, we write $R_1(G)$ instead of $R_1(h(G))$.

Definition 2.1. [2, 9] Let G be a graph with q edges.

(1) The first character of a graph G is defined as

$$R_1(G) = \begin{cases} 0, & if \ q = 0; \\ b_2 - {b_1 - 1 \choose 2} + 1, & if \ q > 0. \end{cases}$$

(2) The second character of a graph G is defined as

$$R_2(G) = b_3(G) - \binom{b_1(G)}{3} - (b_1(G) - 2) \left(b_2(G) - \binom{b_1(G)}{2} \right) - b_1(G),$$

where $b_i(G)(0 \le i \le 3)$ is the first four coefficients of h(G).

Lemma 2.1. [2, 9] Let G be a graph with k components of G_1, G_2, \dots, G_k . Then $h(G) = \prod_{i=1}^{k} h(G_i)$ and $R_j(G) = \sum_{i=1}^{k} R_j(G_i)$ for j = 1, 2.

It is obvious that $R_i(G)$ is an invariant of graphs. So, for any two graphs Gand H, we have $R_i(G) = R_i(H)$ for i = 1, 2 if h(G) = h(H) or $h_1(G) = 1$ $h_1(H)$.

Lemma 2.2. [9, 10] Let G be a graph with p vertices and q edges. Denote M the set of the triangles in G and by M(i) the number of triangles which cover the vertex i in G. If the degree sequence of G is (d_1, d_2, \dots, d_p) , then the first four coefficients of h(G) are, respectively,

- $(1) b_0(G) = 1, b_1(G) = q.$
- (2) $b_2(G) = {q+1 \choose 2} \frac{1}{2} \sum_{i=1}^p d_i^2 + n_G(K_3).$ (3) $b_3(G) = \frac{q}{6}(q^2 + 3q + 4) \frac{q+2}{2} \sum_{i=1}^p d_i^2 + \frac{1}{3} \sum_{i=1}^p d_i^3 \sum_{ij \in E(G)} d_i d_j \frac{q+2}{2} \sum_{i=1}^p d_i^2 + \frac{1}{3} \sum_{i=1}^p d_i^3 \frac{q+2}{2} \sum_{i=1}^p d_i^2 + \frac{1}{3} \sum_{i=1}^p d_i^3 \frac{q+2}{2} \sum_{i=1}^p d_i^2 \frac{q+2}{2} \sum_{i=1}^p d_i^2 + \frac{1}{3} \sum_{i=1}^p d_i^3 \frac{q+2}{2} \sum_{i=1}^p d_i^2 \frac{q+2}{2} \sum_{i=1}^p d_i$ $\sum_{i \in M} M(i)d_i + (q+2)n_G(K_3) + n_G(K_4)$, where $b_i(G) = \alpha(\overline{G}, p-i)$ (i = 1)0, 1, 2, 3).

For an edge $e = v_1 v_2$ of a graph G, the graph G * e is defined as follow: the vertex set of G * e is $(V(G) - \{v_1, v_2\}) \bigcup v(v \notin G)$, and the edge set of G * e is $\{e'|e'\in E(G), e' \text{ is not incident with } v_1 \text{ or } v_2\} \cup \{uv|u\in N_G(v_1)\cap N_G(v_2)\},$ where $N_G(v)$ is the set of vertices of G which are adjacent to v.

Lemma 2.3. [9] Let G be a graph with $e \in E(G)$. Then

$$h(G,x) = h(G-e,x) + h(G*e,x),$$

where G - e denotes the graph obtained by deleting the edge e from G.

- **Lemma 2.4.** [9] (1) For $n \ge 2$, $h(P_n) = \sum_{k \le n} {k \choose n-k} x^k$. (2) For $n \ge 4$, $h(D_n) = \sum_{k \le n} {n \choose k} {k \choose n-k} + {k-2 \choose n-k-3} x^k$. (3) For $n \ge 4$, $m \ge 6$, $h(P_n) = x(h(P_{n-1}) + h(P_{n-2}))$, $h(D_m) = x(h(P_n))$ $x(h(D_{m-1}) + h(D_{m-2})).$

Lemma 2.5. [25] Let $\{g_i(x)\}$, simply denoted by $\{g_i\}$, be a polynomial sequence with integer coefficients and $g_n(x) = x(g_{n-1}(x) + g_{n-2}(x))$. Then

- $(1) g_n(x) = h(P_k)g_{n-k}(x) + xh(P_{k-1})g_{n-k-1}(x).$
- (2) $h_1(P_n) | g_{k(n+1)+i}(x)$ if and only if $h_1(P_n) | g_i(x)$, where $0 \le i \le n$, n > 2 and k > 1.

Lemma 2.6. [4,8] Let G be a nontrivial connected graph with n vertices. Then (1) $R_1(G) \leq 1$, and the equality holds if and only if $G \cong P_n(n \geq 2)$ or $G\cong \check{K}_3.$

- (2) $R_1(G) = 0$ if and only if $G \in \vartheta$.
- (3) $R_1(G) = -1$ if and only if $G \in \xi$, especially, q(G) = p(G) + 1 if and only if $G \in \{F_n | n \ge 6\} \cup \{K_4^-\}$.
- (4) $R_1(G) = -2$ if and only if $G \in \varphi$ for q(G) = p(G), $G \in \psi$ for $q(G) = \varphi$ p(G) + 1 and $G \cong K_4$ for q(G) = p(G) + 2.

- (5) $R_1(G) = -3$ if and only if $G \in \phi$ (see Figure 3) for q(G) = p(G) + 1and $G \in \zeta$ (see Figure 2) for q(G) = p(G) + 2.
 - (6) $R_1(G) = -4$ if and only if $G \in \theta$ (see Figure 4) for q(G) = p(G) + 2.

Lemma 2.7. [5] Let G be a connected graph.

- (1) If $R_1(G) = 0, -1, -2$, then $q(G) p(G) \le |R_1(G)|$.
- (2) If $R_1(G) = -3$, then $q(G) p(G) \le |R_1(G) + 1|$.
- (3) If $R_1(G) \leq -4$, then $q(G) p(G) \leq |R_1(G) + 1|$.

Lemma 2.8. [25] Let G be a connected graph and H a proper subgraph of G. Then $\beta(G) < \beta(H)$.

Lemma 2.9. [25] Let G be a connected graph. Then

(1) $\beta(G) = -4$ if and only if $G \in \{T(1,2,5), T(2,2,2), T(1,3,3), K_{1,4}, K_{1,4}$

 $C_4(P_2), Q(1,1), K_4^-, D_8\} \cup \mathcal{U}.$

(2) $\beta(G) > -4$ if and only if $G \in \{K_1, T(1,2,i)(2 \le i \le 4), D_i(4 \le i \le 4)\}$ 7)} $\cup \mathcal{P} \cup \mathcal{C} \cup \mathcal{T}^0$.

Lemma 2.10. [25] Let G be a connected graph. Then $-(2+\sqrt{5}) \le \beta(G) < -4$

if and only if G is one of the following graphs:

(1) T_{l_1,l_2,l_3} for $l_1=1,l_2=2,l_3>5$ or $l_1=1,l_2>2,l_3>3$ or $l_1=l_2=2,l_3>2$ or $l_1=2,l_2=l_3=3$.

(2) $U_{r,s,t,a,b}$ for r=a=1, $(r,s,t)\in\{(1,1,2),(2,4,2),(2,5,3),(3,7,3)\}$ $\{(3,8,4)\}$, or r=a=1, $s\geq 1$, $t\geq t^*(s,b)$, $b\geq 1$, where $(s,b)\neq (1,1)$ and

$$t^* = \begin{cases} s+b+2, & if \ s \ge 3, \\ b+3, & if \ s = 2, \\ b, & if \ s = 1. \end{cases}$$

- (3) D_n for $n \geq 9$.
- (4) $C_n(P_2)$ for $n \geq 5$.
- (5) F_n for $n \geq 9$.
- (6) $B_{r,s,t}$ for r = 5, s = 1 and t = 3, or $r \ge 1, s = 1$ if t = 1, or $r \ge 4, s = 1$ if t = 2, or $b \ge c + 3, s = 1$ if $t \ge 3$. (7) $G \cong C_4(P_3)$ or $G \cong Q(1, 2)$.

Corollary 2.1. [21] If graph G such that $R_1(G) \leq -2$, then $\beta(G) < -2 - \sqrt{5}$.

3 The algebraic properties of adjoint polynomials

3.1 The divisibility of adjoint polynomials and the fifth characters of graphs

Lemma 3.1. [25] For $n, m \ge 2$, $h(P_n) \mid h(P_m)$ if and only if $(n+1) \mid (m+1)$.

Theorem 3.1. (1) For $n \ge 7$, $\rho(\psi_n^3(n-3,1)) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even}; \\ \frac{n-1}{2}, & \text{otherwise}. \end{cases}$

(2) For $n \ge 7$, $\partial(\psi_n^3(n-3,1)) = \begin{cases} \frac{n}{2}, & \text{if } n \text{ is even}; \\ \frac{n+1}{2}, & \text{otherwise.} \end{cases}$

 $(3) \ \textit{For} \ n \geq 7, \ h(\psi_n^3(n-3,1)) = x(h(\psi_{n-1}^3(n-4,1)) + h(\psi_{n-2}^3(n-5,1))).$

Proof. (1) Choosing an edge $e = uv \in E(\psi_n^3(n-3,1))$ whose deletion brings about a proper subgraph D_n of $\psi_n^3(n-3,1)$. By Lemma 2.3, we have $h(\psi_n^3(n-3,1))$ $(3,1) = h(D_n) + xh(K_3)h(P_{n-5})$. We have, from Lemma 2.4, that

$$\rho(D_n) = \begin{bmatrix} n \\ 2 \end{bmatrix} \text{ and } \rho(K_1 \cup K_3 \cup P_{n-5}) = 2 + \left\lfloor \frac{n-4}{2} \right\rfloor.$$

If n is even, then $\rho(D_n) = \rho(K_1 \cup K_3 \cup P_{n-5}) = \frac{n}{2}$ and hence $\rho(\psi_n^3(n-3,1)) =$ $\frac{n}{2}$. If n is odd, then we arrive at $\rho(D_n) = \rho(K_1 \cup K_3 \cup P_{n-5}) = \frac{n-1}{2}$, which implies $\rho(\psi_n^3(n-3,1)) = \frac{n-1}{2}$, as desired.

- (2) It obviously follows from (1).
- (3) Choosing an edge $e = uv \in E(\psi_n^3(n-3,1))$ whose deletion brings about a proper subgraph D_n of $\psi_n^3(n-3,1)$. From Lemma 2.4, we have

$$h(\psi_n^3(n-3,1)) = h(D_n) + xh(K_3)h(P_{n-5})$$

$$= (xh(D_{n-1}) + xh(D_{n-2})) + xh(K_3)(xh(P_{n-6}) + xh(P_{n-7}))$$

$$= x(h(\psi_{n-1}^3(n-4,1)) + h(\psi_{n-2}^3(n-5,1)))$$

Theorem 3.2. For $n \ge 2$, $m \ge 7$, $h(P_n) \mid h(\psi_m^3(m-3,1))$ if and only if n = 4 and m = 5k + 3 for $k \ge 1$, or n = 3 and m = 4k + 2 for $k \ge 2$.

Proof. Let $g_0(x) = -x^3 - 5x^2 - 8x - 2$, $g_1(x) = x^3 + 4x^2 + 6x + 2$ and $g_m(x) = x(g_{m-1}(x) + g_{m-2}(x))$. We can deduce that

$$g_{0}(x) = -x^{3} - 5x^{2} - 8x - 2,$$

$$g_{1}(x) = x^{3} + 4x^{2} + 6x + 2,$$

$$g_{2}(x) = -x^{3} - 2x^{2},$$

$$g_{3}(x) = 2x^{3} + 6x^{2} + 2x,$$

$$g_{4}(x) = x^{4} + 4x^{3} + 2x^{2},$$

$$g_{5}(x) = x^{5} + 6x^{4} + 8x^{3} + 2x^{2},$$

$$g_{6}(x) = x^{6} + 7x^{5} + 12x^{4} + 4x^{3},$$

$$g_{m}(x) = h(\psi_{m}^{3}(m - 3, 1)), \text{ if } m \ge 7.$$

$$(3.1)$$

Let m = (n+1)k+i, where $0 \le i \le n$. It is obvious that $h_1(P_n) \mid h(\psi_m^3(m-1)) \mid h(\psi_m^3$ (3,1) if and only if $h_1(P_n)|g_m(x)$. From Lemma 2.5, it follows that $h_1(P_n)|g_m(x)$ if and only if $h_1(P_n) \mid g_i(x)$, where $0 \le i \le n$. We distinguish the following two cases:

Case 1: $n \ge 7$. If $0 \le i \le 6$, it follows from (3.1) that $h_1(P_n) \nmid g_i(x)$. If $i \ge 7$, then it follows from $i \le n$, Lemma 2.4 and Theorem 3.1 that

$$\partial(h_1(P_n)) = |n/2| \text{ and } \partial(h_1(\psi_i^3(i-3,1))) = |(i+1)/2|. \tag{3.2}$$

The following cases are taken into account.

Subcase 1.1: i = n.

It follows from (3.2) that $\partial(h_1(\psi_i^3(i-3,1))) = \partial(h_1(P_n)) = \frac{n}{2}$ if n is even and $\partial(h_1(\psi_i^3(i-3,1))) = \partial(h_1(P_n)) + 1 = \frac{n+1}{2}$ if n is odd. First, we consider the case $\partial(h_1(\psi_i^3(i-3,1))) = \partial(h_1(P_n))$. Suppose $h_1(P_n) | h_1(\psi_i^3(i-3,1))$. Then $h_1(P_n) = h_1(\psi_i^3(i-3,1))$, which implies that $R_1(P_n) = R_1(\psi_i^3(i-3,1))$ 3, 1)). By Lemma 2.6, we know it is impossible. So $h_1(P_n) \nmid h_1(\psi_i^3(i-3,1))$). Combining this with $(h_1(P_n), x^{\alpha(\psi_i^3(i-3,1))}) = 1$, we have $h_1(P_n) \nmid h(\psi_i^3(i-3,1))$ (3,1)). Next, we consider the case $\partial(h_1(\psi_i^3(i-3,1))) = \partial(h_1(P_n)) + 1$. Suppose $h_1(P_n) | h_1(\psi_i^3(i-3,1))$. Then $h_1(\psi_i^3(i-3,1)) = (x+a)h_1(P_n)$. Note that $R_1(\psi_i^3(i-3,1)) = -2$ and $R_1(P_n) = 1$. Therefore, $R_1(x+a) = -3$ and hence $a = \frac{3 \pm \sqrt{33}}{2}$, which contradicts to a is an integer number. Hence $h_1(P_n) \nmid 1$ $h_1(\psi_i^3(i-3,1))$. Since $(h_1(P_n), x^{\alpha(\psi_i^3(i-3,1))}) = 1, h_1(P_n) \nmid h(\psi_i^3(i-3,1))$. Subcase 1.2: $i \leq n-1$.

It follows by $(\overline{3.2})$ that $\partial(h_1(\psi_i^3(i-3,1))) \leq \partial(h_1(P_n))$. Assume that $h_1(P_n)|h_1(\psi_i^3(i-3,1))$. Then $\partial(h_1(\psi_i^3(i-3,1))) = \partial(h_1(P_n))$ and $h_1(\psi_i^3(i-3,1))$

 $(h_1(P_n), h_1(P_n))$. So we can turn to Subcase 1.1 for the same contradiction. **Case 2**: $2 \le n \le 6$. From (1) of Lemma 2.4 and (3.1), we can verify that $h_1(P_n) = g_i(x)$ if and only if n = 3 and i = 2, or n = 4 and i = 3 for $0 \le i \le n \le 7$. From Lemma 2.5, we have that $h_1(P_n)|h(\psi_m^3(m-3,1))$ if and only if n=3 and m=4k+2, or n=4 and m=5k+3. From $\rho(P_3)=2$, $\rho(P_4)=2$ and $\rho(\psi_i^3(i-3,1))\geq 3$ for $m \ge 7$, we know that the result holds.

Theorem 3.3. For m > 7, $h^2(P_4) \nmid h(\psi_m^3(m-3,1))$, $h^2(P_3) \nmid h(\psi_m^3(m-3,1))$.

Proof. Suppose $h^2(P_4) \mid h(\psi_m^3(m-3,1))$. From Theorem 3.2, we have m=5k + 3, where $k \ge 1$. Let $g_m(x) = h(\psi_m^3(m - 3, 1))$ for $m \ge 7$. By (3) of Theorem 3.1 and (1) of Lemma 2.5, we have

$$g_{m}(x) = h(P_{4})g_{m-4}(x) + xh(P_{3})g_{m-5}(x)$$

$$= h^{2}(P_{4})g_{m-8}(x) + 2xh(P_{3})h(P_{4})g_{m-9}(x) + (xh(P_{3}))^{2}g_{m-10}(x)$$

$$= h^{2}(P_{4})(g_{m-8}(x) + 2xh(P_{3})g_{m-13}(x)) + 3(xh(P_{3}))^{2}h(P_{4})g_{m-14}(x)$$

$$+ (xh(P_{3}))^{3}g_{m-15}(x)$$

$$= h^{2}(P_{4})(g_{m-8}(x) + 2xh(P_{3})g_{m-13}(x) + 3(xh(P_{3}))^{2}g_{m-18}(x))$$

$$+ 4(xh(P_{3}))^{3}h(P_{4})g_{m-19}(x) + (xh(P_{3}))^{4}g_{m-20}(x)$$

$$= \cdots$$

$$= h^{2}(P_{4})\sum_{s=1}^{k-2} s(xh(P_{3}))^{s-1}g_{m-5s-3}(x) + (k-1)(xh(P_{3}))^{k-2}h(P_{4})$$

$$g_{m+1-(5k-1)}(x) + (xh(P_{3}))^{k-1}g_{m-(5k-1)}(x).$$

According to the assumption and m = 5k + 3, we arrive at, by (3.1), that

$$h^2(P_4) \mid ((k-1)x^{3k-6}(x+2)^{k-2}h(P_4)g_5(x) + x^{3k-3}(x+2)^{k-1}g_4(x))$$

By calculation, we have k = -1, which contradicts to $k \ge 1$. Using the similar method, we can also prove $h^2(P_3) \nmid h(\psi_n^3(m-3,1))$. \square

In [13], we introduced a new character.

Definition 3.1. [13] Let G be a graph with q edges. Then the fifth character of a graph G is defined as follow:

$$R_5(G) = R_2(G) - R_1(G) + p - q.$$

It is obvious that $R_5(G)$ is an invariant of graph G. So, for any two graphs G and H, we have $R_5(G) = R_5(H)$ if h(G) = h(H) or $h_1(G) = h_1(H)$.

Theorem 3.4. [13] Let graph G with k components G_1, G_2, \dots, G_k . Then $R_5(G) = \sum_{i=1}^k R_5(G_k)$.

It is obvious that $R_5(G)$ is an invariant of graphs. So, for any two graphs G and H, we have $R_5(G) = R_5(H)$ if h(G) = h(H) or $h_1(G) = h_1(H)$.

Theorem 3.5. [13] (1) $R_5(C_n) = 0$ for $n \ge 4$; $R_5(C_3) = -3$; $R_5(K_1) = 1$.

- (2) $R_5(B_{r,1,1}) = 4$ for $r \ge 1$; $R_5(B_{r,1,t}) = 5$ for r, t > 1.
- (3) $R_5(F_6) = 5$; $R_5(F_n) = 4$ for $n \ge 7$; $R_5(K_4^-) = 3$.
- $(4) R_5(D_4) = 0; R_5(D_n) = 1 \text{ for } n \ge 5; R_5(T_{1,1,1}) = 0.$
- (5) $R_5(T_{1,1,l_3}) = 1$: $R_5(T_{1,l_2,l_3}) = 2$: $R_5(T_{l_1,l_2,l_3}) = 3$ for $l_3 \ge l_2 \ge l_1 \ge l_3$
- (6) $R_5(C_r(P_2)) = 4$ for $r \ge 4$; $R_5(C_4(P_3)) = R_5(Q_{1,2}) = 5$.
- (7) $R_5(P_2) = -1$; $R_5(P_n) = -2$ for $n \ge 3$.
- (8) $R_5(K_4) = 7$; $R_5(\psi_n^3(n-3,1)) = 9$ for $n \ge 7$.

Lemma 3.2. [13] Let graph $G \in \varphi$. Then $9 \le R_5(G) \le 14$.

From the definition of $R_5(G)$, we have the following results.

Lemma 3.3. [16] Let graph $G \in \xi \setminus \{F_n, U_{r,s,t,a,b}, K_4^-\}$. Then

(1) $R_5(G) = 4$ if and only if $G \in \{C_{n-1}(P_2) \mid n \ge 5\} \cup \{Q_{1,1}\} \cup \{B_{n-5,1,1} \mid n \ge 7\}$.

(2) $R_5(G) = 5$ if and only if $G \in \{C_r(P_s) \mid r \ge 4, s \ge 3\} \cup \{Q_{1,n-4} \mid n \ge 6\} \cup \{B_{r,1,t}, B_{1,1,1} \mid r, t \ge 2\}.$

(3) $R_5(G) = 6$ if and only if $G \in \{Q_{r,s} | r, s \ge 2\} \cup \{B_{1,1,t}, B_{r,s,t} | r, s, t \ge 2\}$

2}.

2.

(4) $R_5(G) = 7$ if and only if $G \in \{B_{1,s,t} \mid s,t \geq 2\}$.

Corollary 3.1. Let graph $G \in \xi \setminus \{F_n, U_{r,s,t,a,b}, K_4^-\}$. Then $R_5(G) \geq 4$.

Lemma 3.4. [16] Let graph $G \in \psi$. Then

(1) $R_5(G) = 8$ if and only if $G \in \{\psi_n^1\} \cup \{\psi_n^2\} \cup \{\psi_n^3(r,s) \mid r \geq 4, s \geq 1\}$

 $2\} \cup \{\psi_n^4(n-6,1) \mid n \ge 8\} \cup \{\psi_n^5(1,s,t) \mid s,t \ge 2\}.$

(2) $R_5(G) = 9$ if and only if $G \in \{\psi_n^2\} \cup \{\psi_n^3(n-3,2) \mid n \geq 6\} \cup \{\psi_n^4(r,s) \mid r,s \geq 2\} \cup \{\psi_7^4(1,1)\} \cup \{\psi_n^5(1,1,t),\psi_n^5(r,s,t) \mid r,s,t \geq 2\} \cup \{\psi_5^6\}.$

(3) $R_5(G) = 10$ if and only if $G \in \{\psi_n^4(1, n-6) \mid n \ge 8\} \cup \{\psi_n^5(r, 1, t) \mid r, t \ge 2\} \cup \{\psi_n^5(1, 1, 1)\}.$

(4) $R_5(G) = 11$ if and only if $G \in \{\psi_n^5(n-7,1,1) \mid n \ge 9\}$.

Corollary 3.2. Let graph $G \in \psi$. Then $R_5(G) \geq 8$.

Lemma 3.5. [16] Let graph $G \in \zeta$. Then

- (1) $R_5(G) = 12$ if and only if $G \in \{\zeta_n^1 | n \ge 8\} \cup \{\zeta_n^2(r,s) | r,s \ge 2\} \cup \{\zeta_n^2(r,s) | r,s \ge 2\}$ $\{\zeta_n^3(r,s,t) \mid r,s,t \geq 2\}.$
- (2) $R_5(G) = 13$ if and only if $G \in \{\zeta_7^1\} \cup \{\zeta_n^2(1, n-8) \mid n \geq 10\} \cup \{\zeta_n^2(1, n-8) \mid n \geq 10\}$ $\{\zeta_n^3(1,s,t) \mid s,t \ge 2\}.$
 - (3) $R_5(G) = 14$ if and only if $G \in \{\zeta_9^2(1,1)\} \cup \{\zeta_n^3(1,1,n-9) \mid n \ge 11\}$.
 - (4) $R_5(G) = 15$ if and only if $G \in \{\zeta_n^3(1,1,1) \mid n \geq 9\}$.

Corollary 3.3. Let graph $G \in \zeta$. Then $R_5(G) \ge 12$.

Lemma 3.6. [17] Let graph $G \in \theta$. Then $16 \le R_5(G) \le 22$.

Lemma 3.7. [16] Let graph $G \in \phi$. Then $12 \le R_5(G) \le 17$.

3.2 The smallest real roots of adjoint polynomials of a graph In [18, 19, 20], Ren and Liu obtained the following results.

Lemma 3.8. [18, 19, 20] (1) For $n \ge 4$, $m \ge 6$, $\beta(K_4) < \beta(F_m) < \beta(D_n) < \beta(F_m) < \beta(F$ $\beta(C_n) < \beta(P_n)$.

- $(2) \beta_{min}(B_{r,s,t}) \leq \beta_{min}(Q(r,s)) \leq \beta_{min}(C_r(P_s)) \leq \beta_{min}(T_n) \text{ for } n \geq 6.$
- (3) $\beta_{min}(\psi_n^5(r,s,t)) \le \beta_{min}(\psi_n^4(r,s)) \le \beta_{min}(\psi_n^3(r,s)) \le \beta_{min}(\psi_n^2) \le \beta_{min}(\psi_n^2)$ $\beta_{min}(\psi_n^1)$ for $n \geq 8$.
 - (4) $\beta_{min}(B_{r,s,t}) = \beta(B_{1,1,n-5}): \beta_{min}(Q(r,s)) = \beta(Q(1,n-4)).$
- (5) $\beta_{min}(\zeta_n^3) \le \beta_{min}(\zeta_n^2) \le \beta_{min}(\zeta_n^1)$. (6) $\beta_{min}(\psi_n^4(r,s)) = \beta(\psi_n^4(n-3,1))$: $\beta_{min}(\psi_n^4(r,s)) = \beta(\psi_n^4(1,n-6))$; $\beta_{min}(\psi_n^5(r,s,t)) = \beta(\psi_n^5(n-7,1,1)).$
 - $(7) \beta_{min}(\zeta_n^2(r,s)) = \beta(\zeta_n^2(1,n-8)) : \beta_{min}(\zeta_n^3(r,s,t)) = \beta(\zeta_n^3(1,1,n-9)).$
 - (8) $\beta_{min}(\psi_n^1) < \beta(\psi_n^5(1,s,t)).$

Lemma 3.9. (1) For $n \geq 7$, $\beta(\psi_n^3(n-3,1)) < \beta(\psi_{n-1}^3(n-4,1))$.

- (2) For $n \geq 7$, $r \geq 5$, $m \geq 6$, $\beta(\psi_n^3(n-3,1)) < \beta(K_4^-)$; $\beta(\psi_n^3(n-3,1)) <$ $\beta(C_{n-1}(P_2)): \beta(\psi_n^3(n-3,1)) < \beta(B_{m-5,1,1}): \beta(\psi_n^3(n-3,1)) < \beta(F_m);$ $\beta(\psi_n^3(n-3,1)) < \beta(Q_{1,1}).$
- (3) For $n \geq 7$, $m \geq 6$, $\beta(\psi_n^3(n-3,1)) < \beta(K_4) = \beta(\psi_5^2)$; $\beta(\psi_n^3(n-3,1)) < \beta(K_4) = \beta(\psi_5^2)$ (3,1) $< \beta(B_{1,1,m-5}) < \beta(C_r(P_s)).$
- (4) For $n \geq 7$, $m \geq 6$, $\beta(\psi_n^3(n-3,1)) < \beta(Q_{1,m-4})$; $\beta(\psi_n^3(n-3,1)) < \beta(Q_{1,m-4})$ $\beta(B_{1,1,1}).$
- *Proof.* (1) Using Software Mathematica, for $n_1 \ge 18$, we have $\beta(\psi_7^3(4,1)) =$ $-4.68554 > \beta(\psi_8^3(5,1)) = -4.73205 > \beta(\psi_9^3(6,1)) = -4.75047 > \beta(\psi_{10}^3(7,1))$ $= -4.75802 > \beta(\psi_{11}^3(8,1)) = -4.76118 > \beta(\psi_{12}^3(9,1)) = -4.76251 >$ $\beta(\psi_{13}^3(10,1)) = -4.76308 > \beta(\psi_{14}^3(11,1)) = -4.76332 > \beta(\psi_{15}^3(12,1)) =$ $-4.76343 > \beta(\psi_{16}^3(13,1)) = -4.76347 > \beta(\psi_{17}^3(14,1)) = -4.76349 >$ $\beta(\psi_{n_1}^3(n_1-3,1)).$
- (2) From Lemmas 2.9, 2.10 and Corollary 2.1, it is easy to see that the result holds.

```
\begin{array}{l} (3) \ {\rm For} \ n_1 \geq 8, \beta(\psi_{n_1}^3(n_1-3,1)) < \beta(\psi_7^3(4,1)) = -4.68554 < \beta(K_4) = \\ -4.49086; \ {\rm From} \ n_1 \geq 8, \ m_1 \geq 14, \ \beta(\psi_{n_1}^3(n_1-3,1)) < \beta(\psi_7^3(4,1)) = \\ -4.68554 < \beta(B_{1,1,m_1-5}) < \beta(B_{1,1,15}) = -4.51729 < \beta(B_{1,1,14}) = -4.51728 \\ < \beta(B_{1,1,13}) = -4.51726 < \beta(B_{1,1,12}) = -4.51721 < \beta(B_{1,1,11}) = -4.51713 \\ < \beta(B_{1,1,10}) = -4.51695 < \beta(B_{1,1,9}) = -4.51658 < \beta(B_{1,1,8}) = -4.51584 < \\ \beta(B_{1,1,7}) = -4.51432 < \beta(B_{1,1,6}) = -4.51119 < \beta(B_{1,1,5}) = -4.50469 < \\ \beta(B_{1,1,4}) = -4.49086 < \beta(B_{1,1,3}) = -4.4605 < \beta(B_{1,1,2}) = -4.39026 < \\ \beta(B_{1,1,1}) = -4.21432. \end{array}
```

 $\begin{array}{l} (4) \ \text{For} \ n_1 \geq 8, m_1 \geq 16, \beta(\psi_{n_1}^3(n_1-3,1)) < \beta(\psi_{1}^3(4,1)) = -4.68554 < \\ \beta(Q_{1,m_1-4}) < \beta(Q_{1,11}) = -4.38249 < \beta(Q_{1,10}) = -4.38207 < \beta(Q_{1,9}) = \\ -4.38131 < \beta(Q_{1,8}) = -4.37988 < \beta(Q_{1,7}) = -4.3772 < \beta(Q_{1,6}) = \\ -4.37213 < \beta(Q_{1,5}) = -4.36232 < \beta(Q_{1,4}) = -4.334292 < \beta(Q_{1,3}) = \\ -4.30278 < \beta(Q_{1,2}) = -4.21342. \ \text{Since} \ B_{1,1,1} \ \text{is a subgraph of} \ \psi_{n}^3(n-3,1), \\ \text{it follows from Lemma 2.8 that} \ \beta(\psi_{n}^3(n-3,1)) < \beta(B_{1,1,1}). \end{array}$

Lemma 3.10. (1) For $n \ge 7$, $m \ge 5$, $\beta(\psi_n^3(n-3,1)) < \beta(\psi_m^1) < \beta(\psi_m^5(1,s,t))$. (2) For $n \ge 7$, $m \ge 5$, $\beta(\psi_n^3(n-3,1)) = \beta(\psi_m^2)$ if and only if m = 8 and n = 8.

(3) For $n \ge 7$, $m \ge 8$, $\beta(\psi_m^4(1, m - 6)) \le \beta(\psi_n^3(n - 3, 1))$ the equality holds if and only if m = n = 7; $\beta(\psi_n^3(n - 3, 1)) < \beta(\psi_m^4(m - 6, 1))$.

(4) For $n \ge 7$, $m \ge 10$, $\beta(\psi_n^5(m-7,1,1)) < \beta(\psi_n^3(n-3,1))$.

(5) For $n \geq 7$, $m \geq 10$, $\beta(\psi_n^3(n-3,1)) < \beta(\psi_5^6)$.

 $\begin{array}{l} \textit{Proof.} \ \ (1) \ \text{For} \ n_1 \geq 8, m_1 \geq 6, \beta(\psi_{n_1}^3(n_1 - 3, 2)) < \beta(\psi_7^3(4, 2)) = -4.68554 < \\ \beta(\psi_{m_1}^1) < \beta(\psi_{18}^1) = -4.61347 < \beta(\psi_{17}^1) = -4.61346 < \beta(\psi_{16}^1) = -4.61345 < \\ \beta(\psi_{15}^1) = -4.61342 < \beta(\psi_{14}^1) = -4.61337 < \beta(\psi_{13}^1) = -4.61325 < \beta(\psi_{12}^1) = -4.613 < \beta(\psi_{11}^1) = -4.61246 < \beta(\psi_{10}^1) = -4.61128 < \beta(\psi_9^1) = -4.60873 < \\ \beta(\psi_8^1) = -4.60212 < \beta(\psi_7^1) = -4.59056 < \beta(\psi_6^1) = -4.56155 < \beta(\psi_5^1) = -4.49086. \ \text{From} \ \ (8) \ \text{of Lemma 3.8, the result holds.} \end{array}$

- $\begin{array}{l} (2) \ {\rm For} \ n_1 \geq 10, m_1 \geq 9, \beta(\psi_{n_1}^3(n_1-3,1)) < \beta(\psi_{9}^3(6,1)) = -4.75047 < \\ \beta(\psi_{m_1}^2) < \beta(\psi_{17}^2) = -4.74819 < \beta(\psi_{16}^2) = -4.74818 < \beta(\psi_{15}^2) = -4.74815 < \\ \beta(\psi_{14}^2) = -4.7481 < \beta(\psi_{13}^2) = -4.74796 < \beta(\psi_{12}^2) = -4.74766 < \beta(\psi_{11}^2) = \\ -4.74694 < \beta(\psi_{10}^2) = -4.74528 < \beta(\psi_{9}^2) = -4.74137 < \beta(\psi_{8}^2) = \beta(\psi_{8}^3(5,1)) \\ = -4.73205 < \beta(\psi_{7}^2) = -4.70928 < \beta(\psi_{7}^3(4,1)) = -4.68554 < \beta(\psi_{6}^2) = \\ -4.65109 < \beta(\psi_{5}^2) = -4.49086. \end{array}$
- $\begin{array}{l} (3) \ {\rm For} \ n_1 \geq 8, m_1 \geq 16, m_2 \geq 12, \beta(\psi_{m_1}^4(1,m_1-6)) < \beta(\psi_{16}^4(1,10)) = \\ -4.85505 < \beta(\psi_{15}^4(1,9)) = -4.85498 < \beta(\psi_{14}^4(1,8)) = -4.85482 < \beta(\psi_{13}^4(1,7)) \\ = -4.85443 < \beta(\psi_{12}^4(1,6)) = -4.85347 < \beta(\psi_{11}^4(1,5)) = -4.85109 < \\ \beta(\psi_{10}^4(1,4)) = -4.84517 < \beta(\psi_{9}^4(1,3)) = -4.83021 < \beta(\psi_{8}^4(1,2)) = -4.79129 < \beta(\psi_{n_1}^3(n_1-3,2)) < \beta(\psi_{7}^3(4,2)) = \beta(\psi_{7}^4(1,1)) = -4.68554; \beta(\psi_{n_1}^3(n_1-3,1)) < \beta(\psi_{7}^3(4,1)) = -4.68554 < \beta(\psi_{8}^4(2,1)) = -4.56155 < \beta(\psi_{9}^4(3,1)) = \\ -4.49086 < \beta(\psi_{10}^4(4,1)) = -4.4887 < \beta(\psi_{11}^4(5,1)) = -4.4217 < \beta(\psi_{m_2}^4(m_2-6,1)). \end{array}$

(4) For $n_1 \ge 8$, $m_1 \ge 10$, $\beta(\psi_{m_1}^5(m_1 - 7, 1, 1)) < \beta(\psi_9^5(1, 1, 1)) = -5.53103 < \beta(\psi_{n_1}^3(n_1 - 3, 1)) < \beta(\psi_7^3(4, 1)) = -4.68554$.

(5)
$$\beta(\psi_5^6) = -6.17508 < \beta(\psi_{n_1}^3(n-3,1)).$$

Lemma 3.11. (1) For $n \ge 7$, $m \ge 8$, $\beta(\psi_n^3(n-3,1)) = \beta(\zeta_m^1)$ if and only if m = 13 and n = 9.

- (2) For $n \ge 7$, $m \ge 8$, $\beta(\zeta_m^2(1, m 8)) < \beta(\psi_n^3(n 3, 1))$.
- (3) For $n \ge 10$, $m \ge 14$, $\beta(\zeta_m^3(1,1,m-9)) < \beta(\psi_n^3(n-3,1))$.

Proof. Using Software Mathematica, we have

- (1) For $n_1 \ge 10$, $m \ge 14$, $\beta(\zeta_7^1) = -5 < \beta(\zeta_8^1) = -4.86906 < \beta(\zeta_9^1) = -4.80535 < \beta(\zeta_{10}^1) = -4.77448 < \beta(\zeta_{11}^1) = -4.75999 < \beta(\zeta_{12}^1) = -4.7534 < \beta(\psi_{n_1}^3(n_1 3, 2)) < \beta(\psi_9^3(6, 2)) = \beta(\zeta_{13}^1) = -4.75047 < \beta(\zeta_{m_1}^1) < \beta(\psi_8^3(5, 1)) = -4.73205 < \beta(\psi_7^3(4, 1)) = -4.68554.$
- (2) For $n_1 \geq 9$, $m_1 \geq 18$, $\beta(\zeta_9^2(1,1)) = -5.04892 < \beta(\zeta_{10}^2(1,2)) = -4.9418 < \beta(\zeta_{11}^2(1,3)) = -4.89307 < \beta(\zeta_{12}^2(1,4)) = -4.8713 < \beta(\zeta_{13}^2(1,5)) = -4.86188 < \beta(\zeta_{14}^2(1,6)) = -4.85599 < \beta(\zeta_{15}^2(1,7)) = -4.85529 < \beta(\zeta_{16}^2(1,8)) = -4.85557 < \beta(\zeta_{17}^2(1,9)) = -4.85529 < \beta(\zeta_{18}^2(1,10)) = -4.85517 < \beta(\zeta_{m_1}^2(1,m_1-8)) < \beta(\psi_{n_1}^3(n_1-3,1)) < \beta(\psi_{8}^3(5,1)) = -4.73205 < \beta(\psi_{7}^3(4,1)) = -4.68554.$
- (3) For $n_1 \geq 9$, $m_1 \geq 20$, $\beta(\zeta_{10}^3(1,1,1)) = -5.23607 < \beta(\zeta_{11}^3(1,1,2)) = -5.10522 < \beta(\zeta_{12}^3(1,1,3)) = -5.04892 < \beta(\zeta_{13}^3(1,1,4)) = -5.0254 < \beta(\zeta_{14}^3(1,1,5)) = -5.01594 < \beta(\zeta_{15}^3(1,1,6)) = -5.01224 < \beta(\zeta_{16}^3(1,1,7)) = -5.01082 < \beta(\zeta_{17}^3(1,1,8)) = -5.01027 < \beta(\zeta_{18}^3(1,1,9)) = -5.01006 < \beta(\zeta_{19}^3(1,1,10)) = -5.00998 < \beta(\zeta_{m_1}^3(1,1,m_1-9)) < \beta(\psi_{n_1}^3(n_1-3,1)) < \beta(\psi_{8}^3(5,1)) = -4.73205 < \beta(\psi_{7}^3(4,1)) = -4.68554.$

4 The chromaticity of graph $\overline{\psi_n^3(n-3,1)}$

Lemma 4.1. [24] For $n \ge 4$, D_n is adjointly unique if and only if $n \ne 4, 8$.

Lemma 4.2. Let G be a graph such that $G \sim^h \psi_n^3(n-3,1)$, where $n \geq 7$. Then G does not contain K_4^- as one of its components.

Proof. Suppose $h(K_4^-) \mid h(\psi_n^3(n-3,1))$. From Lemma 2.3, we have $h(K_4^-) = x^2(x+1)(x+4)$ and hence $h_1(P_2) \mid h(\psi_n^3(n-3,1))$, which contradicts to Theorem 3.3.

Theorem 4.1. Let G be a graph satisfying $G \sim^h \psi_n^3(n-3,1)$ where $n \geq 7$. Then G contains at most two components whose first characters are 1, furthermore, one of both is P_3 and the other is P_4 or one of both is P_3 and the other is C_3 .

Proof. Let G_1 be one of the components of G such that $R_1(G)=1$. From Lemma 2.6 and Theorem 3.2, $h(G_1)|h(\psi_n^3(n-3,1))$ if and only if $G_1\cong P_3$ and n=4k+2, or $G_1\cong P_4$ and n=5k+3. According to (1) of Lemma 2.5, we obtain the following equality:

$$h(\psi_{20k+18}^3(20(k-1)+15,1)) = h(P_{20})h(\psi_{20(k-1)+18}^3(20(k-1)+15,1))$$

$$+xh(P_{19})h(\psi_{20(k-1)+17}^{3}(20(k-1)+14,1))$$
 (4.1)

Noting that $\{n \mid n = 4k + 2, k \ge 1\} \cap \{n \mid n = 5k + 3, k \ge 1\} = \{n \mid n = 1\}$ $20k + 18, k \ge 0$, we have

$$h(P_3)h(P_4) \mid h(\psi_{20(k-1)+18}^3(20(k-1)+15,1))$$
 (4.2)

By Lemma 3.1, we get $h(P_3)|h(P_{19})$ and $h(P_4)|h(P_{19})$. Combining this with $(h(P_3), h(P_4)) = 1$, we have

$$h(P_3)h(P_4) \mid h(P_{19})$$
 (4.3)

From (4.1) to (4.3), we obtain $h(P_3)h(P_4) \mid h(\psi_{20k+18}^3(20k+15,2))$. Note that $h(P_4) = h(K_1 \cup C_3)$ and hence $h(P_3)h(C_3) \mid h(\psi_{20k+18}^3(20k+15,2))$. From Theorem 3.3, we know that the theorem holds.

Theorem 4.2. Let G be a graph such that $G \sim^h \psi_n^3(n-3,1)$, where $n \geq 9$. (1) If n = 8, then $[G]_h = \{\psi_8^3(5,1), \phi_5^1 \cup C_3, \psi_8^2\}$. (2) If $n \neq 8$, then $[G]_h = \{\psi_n^3(n-3,1)\}$.

Proof. (1) When n=8, let G be a graph satisfying $h(G)=h(\psi_8^3(5,2))$. From Lemmas 2.1, 2.2 and 2.6, we obtain that q(G) - p(G) = 1 and $R_1(G) = -2$. If Gis a connected graph, then $G \in \mathscr{G} = \{\psi_8^2, \psi_8^3(5,1), \psi_8^4(2,2), \psi_8^4(1,3), \psi_8^4(3,1), \psi_8^4($ $\psi_8^5(1,1,1)$ by $R_5(G)=R_5(\psi_8^3(5,1))=9$ and (2) of Lemma 3.4. By calculation, we have $\{\psi_8^2, \psi_8^3(5,1)\} \in [G]_h$. We now assume that G is not a connected graph. By calculation, we have $h(G) = h(\psi_8^3(5,2)) = x^4(x^2 + 3x + 1)(x^2 + 6x + 6)$. Let $h(G) = h(\psi_8^3(5,2)) = x^6f_1(x)f_2(x)$, where $f_1(x) = x^2 + 3x + 1$, $f_2(x) = x^2 + 6x + 6$. Note that $R_1(f_1(x)) = 1$ and $b_1(f_1(x)) = 3$. Then Lemma 2.6 implies that $f_1(x) = h_1(P_4) = h_1(C_3)$ if $f_1(x)$ is a factor of adjoint polynomial of some graph. Then P_4 or C_3 is a component of G. If P_4 is a component of G, then $G = P_4 \cup G_1$ and hence $h_1(f_2(x)) = x^2 + 6x + 6$, which implies that $R_1(G_1)=R_1(f_2(x))=-3$ and $q(G_1)-p(G_1)=2$. From (5) of Lemma 2.6, we have $G_1\in \zeta$, which contradicts to $p(G_1)=4$. Suppose that G_3 is a component of G. Then $G = C_3 \cup G_1$ and so $h_1(f_2(x)) = x^2 + 6x + 6$, which implies that $R_1(G_1) = R_1(f_2(x)) = -3$ and $q(G_1) - p(G_1) = 1$. From Lemma 2.6, we have $G_1 \in \phi$. Since p(G) = 8, we can only find one graph $G_1 \in \phi$ such that $p(G_1) = 5$. Then $G_1 = \phi_5^1$. So $G = C_3 \cup \phi_5^1$. By calculation, $C_3 \cup \phi_5^1 \in [G]_h$.

(2) When $n \ge 7$ and $n \ne 8$, let $G = \bigcup_{i=1}^t G_i$. From Lemma 2.1, we have

$$h(G) = \prod_{i=1}^{t} h(G_i) = h(\psi_n^3(n-3,1)), \tag{4.4}$$

which results in $\beta(G) = \beta(\psi_n^3(n-3,1)) \in (-\infty, -2-\sqrt{5})$ by Corollary 2.1. Let s_i denote the number of components G_i such that $R(G_i) = -i$, where $i \geq -1$. From Theorem 4.1, Lemmas 4.1, 2.1 and 2.2, it follows that $0 \le s_{-1} \le 2$ and

$$R_1(G) = \sum_{i=1}^t R_1(G_i) = -2 \text{ and } q(G) = p(G) + 1, \tag{4.5}$$

which implies

$$-4 \le R_1(G_i) \le 1,$$

$$s_{-1} = s_1 + 2s_2 + 3s_3 + 4s_4 - 2,$$
(4.6)

Figure 2 Family of ζ

Let $\cup_{T \in \mathcal{T}_0} T_{l_1, l_2, l_3} = (\cup_{T \in \mathcal{T}_1} T_{1, 1, l_3}) \cup (\cup_{T \in \mathcal{T}_2} T_{1, l_2, l_3}) \cup (\cup_{T \in \mathcal{T}_3} T_{l_1, l_2, l_3}),$ $\mathcal{T}_1 = \{T_{1, 1, l_3} \mid l_3 \geq 2\}, \, \mathcal{T}_2 = \{T_{1, l_2, l_3} \mid l_3 \geq l_2 \geq 2\}, \, \mathcal{T}_3 = \{T_{l_1, l_2, l_3} \mid l_3 \geq l_2 \geq l_1 \geq 2\}, \, \mathcal{T}_0 = \mathcal{T}_1 \cup \mathcal{T}_2 \cup \mathcal{T}_3, \, \text{the tree } T_{l_1, l_2, l_3} \, \text{is denoted by } T \, \text{for short,}$ $A = \{i \mid i \geq 4\} \, \text{and} \, B = \{j \mid j \geq 5\}.$

We distinguish the following cases by $0 \le s_{-1} \le 2$:

Case 1: $s_{-1} = 0$.

It follows from (4.6) that $s_4 = s_3 = 0$ and $s_1 + 2s_2 = 2$. We distinguish the following subcases:

Subcase 1.1: $s_2 = 1$ and $s_1 = 0$.

From Lemma 2.6, we set

$$G = G_1 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup f D_4 \cup a K_1 \cup b T_{1,1,1} \cup (\cup_{T \in T_0} T_{l_1,l_2,l_3}), (4.7)$$

where $R_1(G_1) = -2$.

By Theorems 3.4 and 3.5, we arrive at

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = R_5(G_1) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$
 (4.8)

Recall that q(G) = p(G) + 1. Then $q(G_1) - p(G_1) \ge 1$. By (1) of Lemma 2.7, it follows that $q(G_1) - p(G_1) \le 2$. Thus $1 \le q(G_1) - p(G_1) \le 2$. So we have the following subcases to consider.

Subcase 1.1.1: $q(G_1) - p(G_1) = 2$.

From (4) of Lemma 2.6 and $R_1(G_1)=-2$, we have $G_1\cong K_4$. Since q(G)=p(G)+1, we can obtain $a+b+|T_1|+2|T_2|+3|T_3|=1$ from (4.7), which implies that $|T_2|=|T_3|=0$ and $0\leq b\leq 1$. From this together with (4.8), if b=0, then $9=R_5(K_4)+|B|+1$. Since $R_5(K_4)=7$, we have |B|=1 and $G=K_4\cup (\cup_{i\in A}C_i)\cup D_j\cup fD_4$. If b=1, then it follows from (4.8) that $9=R_5(K_4)+|B|$, which leads to |B|=2 and $G=K_4\cup (\cup_{i\in A}C_i)\cup 2D_j\cup fD_4\cup T_{1,1,1}$. As stated above, we conclude, from Lemma 2.9 and (1) of Lemma 3.8, that $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(K_4)$, which contradicts to $\beta(\psi_n^3(n-3,1))<\beta(K_4)$ by (3) of Lemma 3.9.

Subcase 1.1.2: $q(G_1) - p(G_1) = 1$.

Since q(G) = p(G) + 1, it follows that $a = b = |\mathcal{T}_1| = |\mathcal{T}_2| = |\mathcal{T}_3| = 0$ and $G_1 \in \psi$ by (4) of Lemma 2.6 and (4.7). From (4.8), $9 = R_5(G_1) + |B|$ and hence |B| = 0 and $R_5(G_1) = 9$ or |B| = 1 and $R_5(G_1) = 8$ by Lemma 3.4.

If |B|=1, then $G=G_1\cup (\cup_{i\in A}C_i)\cup D_j\cup fD_4$, where $G_1\in \{\psi_n^1\}\cup \{\psi_5^2\}\cup \{\psi_n^3(r,s)\}\cup \{\psi_n^4(n-6,1)\}\cup \{\psi_n^5(1,s,t)\}$ by (1) of Lemma 3.4. By Lemma 2.9 and Corollary 2.1, it follows that $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(G_1)$. From (1), (2), (3) of Lemma 3.10, $\beta(\psi_n^3(n-3,1))<\beta(\psi_n^1)<\beta(\psi_n^5(1,s,t))$ and $\beta(\psi_n^3(n-3,1))<\beta(\psi_n^4(n-6,1))$. Therefore, $\beta(\psi_n^3(n-3,1))=\beta(G_1)=\beta_{min}(\psi_n^3(r,s))$. From this together with (6) of Lemma 3.8, $G_1\cong\psi_m^3(m-3,1)$ and m< n, which contradicts to p(G)=q(G) by (1) of Lemma 3.9.

If |B|=0, then $G=G_1\cup (\cup_{i\in A}C_i)\cup fD_4$, where $G_1\in \{\psi_n^2\}\cup \{\psi_n^3(n-3,1)\}\cup \{\psi_n^4(r,s)\}\cup \{\psi_1^4(1,1)\}\cup \{\psi_n^5(1,1,t),\psi_n^5(r,s,t)\}\cup \{\psi_5^6\}$ by (2) of Lemma 3.4. If $G_1\cong \psi_n^2$, then $p(G_1)=p(G)=8$ by (2) of Lemma 3.10. It is impossible. If $G_1\cong \psi_n^4(r,s)$, then $p(G_1)=p(G)=7$ by (6) of Lemma 3.8 and (3) of Lemma 3.10. One can see that it is impossible. From (4), (5) of Lemma 3.10 and (6) of Lemma 3.8, $G_1\ncong \psi_5^6,\psi_n^5(r,s,t),\psi_n^5(1,1,t)$. So $G_1\cong \psi_n^3(m-3,1)$. From (1) of Lemma 3.9, we have m=n. It is impossible. Subcase 1.2: $s_1=2$ and $s_2=0$.

From Lemma 2.6 and (4.5), let

$$G = G_1 \cup G_2 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup f D_4 \cup a K_1 \cup b T_{1,1,1} \cup (\cup_{T \in T_0} T_{l_1,l_2,l_3})$$

$$(4.9)$$

where $R_1(G_1) = R_1(G_2) = -1$. By Theorems 3.4 and 3.5, we have

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = R_5(G_1) + R_5(G_2) + |B| + a + |T_1| + 2|T_2| - 3|T_3|$$

$$(4.10)$$

Recall that q(G) = p(G) + 1. Then $\sum_{i=1}^{2} (q(G_i) - p(G_i)) \ge 1$. Using (1) of Lemma 2.7, it follows that $\sum_{i=1}^{2} (q(G_i) - p(G_i)) \le 2$. Thus $1 \le \sum_{i=1}^{2} (q(G_i) - p(G_i)) \le 2$, which brings about the following two subcases to be considered.

Subcase 1.2.1: $\sum_{i=1}^{2} (q(G_i) - p(G_i)) = 2$.

From (3) of Lemma 2.6 and Lemma 4.2 and (4.5), we have $G_i \cong F_m (i=1,2)$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$, which implies that $|T_2|=|T_3|=0$ and $0 \le b \le 1$. If b=0, then it follows from (4.10) that $9=2R_5(F_m)+|B|+1$. Then |B|=0 and $G=F_m \cup F_m \cup (\cup_{i \in A} C_i) \cup f D_4$. If b=1, then it follows from (4.10) that $9=2R_5(F_m)+|B|$. Then |B|=1 and $G=F_m \cup F_m \cup (\cup_{i \in A} C_i) \cup D_j \cup f D_4$. Using (1) of Lemma 3.8, we have $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(F_m)$, which contradicts to $\beta(\psi_n^3(n-3,1))<\beta(F_m)$ by (2) of Lemma 3.9.

Subcase 1.2.2: $\sum_{i=1}^{2} q(G_i) - p(G_i) = 1$.

It is obvious that $a=b=|T_1|=|T_2|=|T_3|=0$, $G_1\cong F_m$ and $G_2\in \xi$ by Lemmas 2.6 and 4.2 and (4.5). Then $9=R_5(F_m)+R_5(G_2)+|B|$, that is $R_5(G_2)=5+|B|$. Since $G_2\in \xi$, it follows that $R_5(G_2)\geq 4$ by Corollary 3.1. Then $4\leq R_5(G_2)\leq 5$ since |B| is an integer. If $R_5(G_2)=4$, then |B|=1 and $G=F_m\cup G_2\cup (\cup_{i\in A}C_i)\cup D_j\cup fD_4$ by (4.9) and (1) of Lemma 3.3, where $\{C_{n-1}(P_2)|n\geq 5\}\cup \{Q_{1,1}\}\cup \{B_{n-5,1,1}|n\geq 7\}$. By Lemma 2.9, 2.10 and Corollary 2.1, we know that $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(G_2)$ or $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(F_m)$, which contradicts to (2) of Lemma 3.9. If $R_5(G_2)=5$, then |B|=0 and $G=F_m\cup G_2\cup (\cup_{i\in A}C_i)\cup fD_4$, where

 $\{C_r(P_s)|r\geq 4, s\geq 3\}\cup\{Q_{1,n-4}|n\geq 6\}\cup\{B_{r,1,t},B_{1,1,1}|r,t\geq 2\}$ by (2) of Lemma 3.3. From (1) of Lemma 3.8, $\beta(G) = \beta(F_m)$ or $\beta(G) = \beta(G_2)$. From (2) of Lemma 3.9, $\beta(\psi_n^3(n-3,1)) = \beta(G_2) < \beta(F_m)$. So $\beta(G) = \beta(G_2)$, which contradicts to (4) of Lemma 3.8 and (3), (4) of Lemma 3.9.

Case 2: $s_{-1} = 1$.

It follows from (4.6) that $s_4 = 0$ and $s_1 + 2s_2 + 3s_3 = 3$. Thus we have the following subcases to consider.

Subcase 2.1: $s_3 = 1$, $s_2 = s_1 = 0$.

Without loss of generality, let

$$G = G_1 \cup G_2 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup f D_4 \cup aK_1 \cup bT_{1,1,1} \cup (\cup_{T \in \mathcal{T}_0} T_{l_1,l_2,l_3}),$$

$$\tag{4.11}$$

where $G_1 \in \{P_3, P_4, C_3\}, R_1(G_2) = -3$. By Theorems 3.4 and 3.5, we arrive at

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = R_5(G_1) + R_5(G_2) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$

$$(4.12)$$

Subcase 2.1.1: $G_1 \cong P_3$ or $G_1 \cong P_4$. Recall that q(G) = p(G) + 1. Then $q(G_2) - p(G_2) \ge 2$. From (2) of Lemma 2.7, it follows that $q(G_2) - p(G_2) \le 2$. Then $q(G_2) - p(G_2) = 2$, which implies $G_2 \in \zeta$ and $a = b = |T_1| = |T_2| = |T_3| = 0$. Hence we have, from (4.12), that $9 = -2 + R_5(G_2) + |B|$, which results in $R_5(G_2) = 11 - |B| \le 11$. It contradicts to Corollary 3.3.

Subcase 2.1.2: $G_1 \cong C_3$.

Applying (4.5) and Lemma 2.7, we have $1 \le q(G_2) - p(G_2) \le 2$. If $q(G_2)$ $p(G_2) = 1$, then $G_2 \in \phi$ and $a = b = |T_1| = |T_2| = |T_3| = 0$ by (5) of Lemma 2.6 and (4.5). From (4.12), it follows that $9 = -3 + R_5(G_2) + |B| + 1$, which leads to $R_5(G_2) = 11 - |B| \le 11$. It contradicts to Lemma 3.7.

Suppose $q(G_2) - p(G_2) = 2$. It is easy to see that $G_2 \in \zeta$ and $a + b + |T_1| +$ $2|T_2| + 3|T_3| = 1$ by (5) of Lemma 2.6 and (4.5). If b = 0, then we obtain, from (4.12), that $9 = -3 + R_5(G_2) + |B| + 1$, which leads to $R_5(G_2) = 11 - |B| \le 11$. It contradicts to Corollary 3.3. If b = 1, then we have, from (4.12), that 9 = 1 $-3 + R_5(G_2) + |B|$, which results in $G = C_3 \cup G_2 \cup (\cup_{i \in A} C_i) \cup fD_4 \cup T_{1,1,1}$, where $R_5(G_2)=12$. It implies that $G_2\in\{\zeta_n^1\}\cup\{\zeta_n^2(r,s)\}\cup\{\zeta_n^3(r,s,t)\}$ by (1) of Lemma 3.5. From Lemma 2.1 and (1) of Lemma 3.8, $\beta(\psi_n^3(n-3,1)) =$ $\beta(G) = \beta(G_2)$. By (7) of Lemma 3.8 and Lemma 3.11, we know that $G_2 \cong \zeta_n^1$ if and only if p(G) = 13 and $p(G_2) = 9$. One can see that it is impossible.

Subcase 2.2: $s_2 = s_1 = 1$. Without loss of generality, let

$$G = G_1 \cup G_2 \cup G_3 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup fD_4 \cup aK_1 \cup bT_{1,1,1} \cup (\cup_{T \in \mathcal{T}_0} T_{l_1,l_2,l_3}), \tag{4.13}$$

where $G_1 \in \{P_3, P_4, C_3\}, R_1(G_1) = -1, R_1(G_2) = -2.$ From Theorems 3.4 and 3.5, we arrive at

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = \sum_{i=1}^3 R_5(G_i) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$
(4.14)

Subcase 2.2.1: $G_1 \cong P_3$ or $G_1 \cong P_4$.

Using (4.5) and Lemma 2.7, we get that $2 \leq \sum_{i=2}^{3} (q(G_2) - p(G_2)) \leq 3$. We have the following cases to consider.

First, we consider the case that $q(G_2) - p(G_2) = 1$ and $q(G_3) - p(G_3) = 2$. From (3) and (4) of Lemmas 2.6 and Lemma 4.2, we have that $G_2 \cong F_m$, $G_3 \cong K_4$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$. If b=0, then $9=-2+R_5(F_m)+R_5(K_4)+|B|+1$, which results in |B|=-1. It contradicts to that |B| is an positive integer. If b=1, then $9=-2+R_5(F_m)+R_5(K_4)+|B|$, which implies |B|=0 and $G=G_1\cup F_m\cup K_4\cup (\cup_{i\in A}C_i)\cup (\cup_{j\in B}D_j)\cup fD_4\cup T_{1,1,1}$. From Lemma 2.9 and (1) of Lemma 3.8, we have $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(K_4)$, which contradicts to $\beta(\psi_n^3(n-3,1))<\beta(K_4)$ by (3) of Lemma 3.9.

Next, we consider the case that $q(G_2) - p(G_2) = 1$ and $q(G_3) - p(G_3) = 1$. It is obvious that $G_2 \cong F_m$, $G_3 \in \psi$ and $a = b = |T_1| = |T_2| = |T_3| = 0$ by Lemma 2.6, Lemma 4.2. By (4.14), we have $9 = -2 + R_5(F_m) + R_5(G_3) + |B|$ and hence $R_5(G_3) = 7 - |B| \le 7$, which contradicts to Corollary 3.2.

In this end, we consider the case that $q(G_2) = p(G_2)$ and $q(G_3) - p(G_3) = 2$. Applying Lemma 2.6 and (4.5), it follows that $G_2 \in \xi$, $G_3 \cong K_4$ and $a = b = |T_1| = |T_2| = |T_3| = 0$. Then $9 = -2 + R_5(G_2) + R_5(K_4) + |B|$ and hence |B| = 0 and $R_5(G_2) = 4$. By (1) of Lemma 3.3, we know that $G = C_3 \cup G_2 \cup K_4 \cup (\cup_{i \in A} C_i) \cup f D_4$, where $G_2 \in \{C_{n-1}(P_1)\} \cup \{Q_{1,1}\} \cup \{B_{n-5,1,1}\}$. We can get the same contradiction as Subcase 1.2.2.

Subcase 2.2.2: $G_1 \cong C_3$.

From (4.5) and Lemma 2.7, we have $1 \le \sum_{i=2}^{3} (q(G_2) - p(G_2)) \le 3$. Thus we distinguish the following subcases.

If $q(G_2)-p(G_2)=1$ and $q(G_3)-p(G_3)=2$, then $G_2\cong F_m$, $G_3\cong K_4$ and $a+b+|T_1|+2|T_2|+3|T_3|=2$ by Lemmas 2.6, 4.2, (4.5) and (4.13), which implies that $|T_3|=|T_2|=0$ and $0\leq b\leq 2$. If b=0, then we have, from (4.14), that $9=-3+R_5(F_m)+R_5(K_4)+|B|+2$ and hence |B|=-1, a contradiction. If b=1, then $9=-3+R_5(F_m)+R_5(K_4)+|B|+1$ and hence $G=C_3\cup F_m\cup K_4\cup (\cup_{i\in A}C_i)\cup fD_4\cup T_{1,1,1}$. If b=2, then $9=-3+R_5(F_m)+R_5(K_4)+|B|$, which results in $G=C_3\cup F_m\cup K_4\cup (\cup_{i\in A}C_i)\cup D_j\cup fD_4\cup 2T_{1,1,1}$. As stated above, from (1) of Lemma 3.8, we have $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(K_4)$, which contradicts to $\beta(\psi_n^3(n-3,1))<\beta(K_4)$ by (3) of Lemma 3.9.

If $q(G_2)-p(G_2)=1$ and $q(G_3)-p(G_3)=1$, then $G_2\cong F_m$, $G_3\in \phi$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$ by Lemmas 2.6. From this together with (4.14), if b=0, then $9=-3+R_5(F_m)+R_5(G_3)+|B|+1$ and hence $R_5(G_3)=7-|B|\leq 7$, which contradicts to $G_3\in \phi$ by Lemma 3.7. If b=1, then $9=-3+R_5(F_m)+R_5(G_3)+|B|$ and hence $R_5(G_3)=8-|B|\leq 8$, which contradicts to $G_3\in \phi$ by Lemma 3.7.

If $q(G_2)=p(G_2)$ and $q(G_3)-p(G_3)=1$, then it follows from Lemmas 2.6 and (4.15) that $G_2\in \xi$, $G_3\in \psi$ and $a=b=|T_1|=|T_2|=|T_3|=0$. By (4.16), we have $R_5(G_3)=12-R_5(G_2)-|B|$, which results in |B|=0, $R_5(G_2)=4$ and $R_5(G_3)=8$. From this together with (1) of Lemma 3.3 and (1) of Lemma 3.4, we know that $G=C_3\cup G_2\cup G_3\cup (\cup_{i\in A}C_i)\cup fD_4$, where $G_2\in \{C_{n-1}(P_1)|n\geq 5\}\cup \{Q_{1,1}\}\cup \{B_{n-5,1,1}|n\geq 7\}, G_3\in \{\psi_n^1\}\cup \{\psi_5^2\}\cup \{\psi_n^3(r,s)|r\geq 4,s\geq 2\}\cup \{\psi_n^4(n-6,1)|n\geq 8\}\cup \{\psi_n^5(1,s,t)|s,t\geq 2\}$. Using

the similar discussing method as Subcase 1.2.2, we can get a contradiction.

Figure 3 Family of ϕ

Suppose that $q(G_2)-p(G_2)=1$ and $q(G_3)=p(G_3)$. Applying Lemmas 2.6, 4.2 and (4.15), we have that $G_2\cong F_m$, $G_3\in \varphi$ and $a=b=|T_1|=|T_2|=|T_3|=0$. Hence $R_5(G_3)=8-|B|\leq 8$, which contradicts to $G_3\in \varphi$ by Lemma 3.2.

Subcase 2.3: $s_1 = 3$. Without loss of generality, let

 $G = \cup_{i=1}^{4} G_{i} \cup (\cup_{i \in A} C_{i}) \cup (\cup_{j \in B} D_{j}) \cup fD_{4} \cup aK_{1} \cup bT_{1,1,1} \cup (\cup_{T \in \mathcal{T}_{0}} T_{l_{1},l_{2},l_{3}}),$ (4.15)

where $G_1 \in \{P_3, P_4, C_3\}$, $R_1(G_i) = -1(i = 2, 3, 4)$. Using Theorems 3.4 and 3.5, it follows that

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = \sum_{i=1}^4 R_5(G_i) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$
(4.16)

Subcase 2.3.1: $G_1 \cong P_3$ or $G_1 \cong P_4$.

Using Lemma 2.7 and (4.5), we know that $2 \le \sum_{i=2}^4 (q(G_i) - p(G_i)) \le 3$. If $\sum_{i=2}^4 (q(G_i) - p(G_i)) = 3$, then $G_i \cong F_m(i=2,3,4)$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$ by Lemmas 2.6 and 4.2, which implies that $|T_3|=|T_2|=0$ and $0 \le b \le 1$. If b=0, then we obtain, from (4.16), that $9=-2+3R_5(F_m)+|B|+1$, which contradicts to $R_5(F_m)=4$. If b=1, then we have $9=-2+3R_5(F_m)+|B|$, which also contradicts to $R_5(F_m)=4$. Suppose $\sum_{i=2}^4 (q(G_i)-p(G_i))=2$. Applying Lemmas 2.6 and 4.2, we obtain that $G_i \cong F_m(i=2,3)$ and $G_4 \in \xi$ and $a=b=|T_1|=|T_2|=|T_3|=0$. Hence $9=-2+2R_5(F_m)+R_5(G_4)+|B|$, which implies $R_5(G_4)=3$ $-|B|\le 3$. It contradicts to $G_4 \in \xi$ by Corollary 3.1.

Subcase 2.3.2: $G_1 \cong C_3$.

Using Lemma 2.7 and (4.5), it follows that $1 \leq \sum_{i=2}^{3} (q(G_i) - p(G_i)) \leq 3$. If $\sum_{i=2}^{3} (q(G_i) - p(G_i)) = 3$, then $G_i \cong F_m (i=2,3,4)$ and $a+b+|T_1|+2|T_2|+3|T_3|=2$ by Lemmas 2.6 and 4.2. If b=0, then $9=-3+3R_5(F_m)+|B|+2$, which contradicts to $R_5(F_m)=4$. If b=1, then $9=-3+3R_5(F_m)+|B|+1$, which also contradicts to $R_5(F_m)=4$. If b=2, then we arrive, from (4.16), at $9=-3+3R_5(F_m)+|B|$, which implies $G=C_3\cup F_m\cup F_m\cup F_m\cup (\cup_{i\in A}C_i)\cup fD_4\cup \cup 2T_{1,1,1}$. From (1) of Lemma 3.8 and Lemma 2.9, it follows that $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(F_m)$, which contradicts to $\beta(\psi_n^3(n-3,1))<\beta(F_m)$ by (2) of Lemma 3.9.

If $\sum_{i=2}^4 (q(G_i) - p(G_i)) = 2$, then $G_i \cong F_m(i=2,3)$ and $G_4 \in \xi$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$ by (3) of Lemmas 2.6 and 4.2. From this together with (4.16), if b=0, then $9=-3+2R_5(F_m)+R_5(G_4)+|B|+1$, which results in $R_5(G_4)=3-|B|\leq 3$. It contradicts to $G_4\in \xi$ by Corollary 3.1. If b=1, then $9=-3+2R_5(F_m)+R_5(G_4)+|B|$, which implies |B|=0 and $G=C_3\cup F_m\cup F_m\cup G_4\cup (\cup_{i\in A}C_i)\cup fD_4\cup \cup T_{1,1,1}$, where $R_5(G_4)=4$. From (1) of Lemma 3.3, $G_4\in \{C_{n-1}(P_1)\}\cup \{Q_{1,1}\}\cup \{B_{n-5,1,1}\}$. Combining this with (1) of Lemma 3.8, it follows that $\beta(\psi_n^3(n-3,1))=\beta(G)=\beta(G_4)$, which contradicts to (2) of Lemma 3.9.

Suppose $\sum_{i=2}^{4} q(G_i) - p(G_i) = 1$. Clearly, $G_2 \cong F_m$ and $G_4 \in \xi$ (i=3,4) and $a=b=|T_1|=|T_2|=|T_3|=0$ by (3) of Lemma 2.6, Lemma 4.2 and (4.5). Hence $9=-3+R_5(F_m)+R_5(G_3)+R_5(G_4)+|B|$, which implies that $G=C_3 \cup F_m \cup G_3 \cup G_4 \cup (\cup_{i \in A} C_i) \cup fD_4$, where $R_5(G_i)=4(i=3,4)$. We can also get the same contradiction as the above case.

Case 3: $s_{-1} = 2$.

It follows, from (4.6), that $s_1 + 2s_2 + 3s_3 + 4s_4 = 4$, which brings about the following subcases to consider.

Subcase 3.1: $s_4 = 1$, $s_3 = s_2 = s_1 = 0$.

Without loss of generality, let

$$G = P_3 \cup G_1 \cup G_2 \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup fD_4 \cup aK_1 \cup bT_{1,1,1} \cup (\cup_{T \in \mathcal{T}_0} T_{l_1,l_2,l_3}), \tag{4.17}$$

where $G_1 \in \{P_4, C_3\}$, $R_1(G_2) = -4$. From Theorems 3.4 and 3.5, we arrive at

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = -2 + \sum_{i=1}^2 R_5(G_i) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$
(4.18)

Recall that q(G) = p(G) + 1. If $G_1 \cong P_4$, then $q(G_2) - p(G_2) \geq 3$. By (3) of Lemma 2.7, we have $q(G_2) - p(G_2) < 3$, a contradiction. We now assume $G_1 \cong C_3$. It is obvious that $q(G_2) - p(G_2) \geq 2$ by (4.5) and (4.17). By (3) of Lemma 2.7, we arrive at $q(G_2) - p(G_2) < 3$. Then $q(G_2) - p(G_2) = 2$ and $a = b = |T_1| = |T_2| = |T_3| = 0$, which implies $G_2 \in \theta$ by (6) of Lemma 2.6. From (4.18), we have $R_5(G_2) = 13 - |B| \leq 13$, which contradicts to Lemma 3.6.

Subcase 3.2: $s_4 = s_2 = 0$, $s_3 = s_1 = 1$. Without loss of generality, let

$$G = P_3 \cup (\cup_{i=1}^3 G_i) \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup f D_4 \cup a K_1 \cup b T_{1,1,1} \cup (\cup_{T \in \mathcal{T}_0} T_{l_1,l_2,l_3}),$$

$$(4.19)$$

where $G_1 \in \{P_4, C_3\}$, $R_1(G_2) = -1$, $R_1(G_3) = -3$. From Theorems 3.4 and 3.5, we arrive at

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = -2 + \sum_{i=1}^3 R_5(G_i) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$
(4.20)

If $G_1 \cong P_4$, then $\sum_{i=2}^3 (q(G_i) - p(G_i)) \geq 3$ by (4.5) and (4.19). From Lemmas 2.6 and 2.7, we have $\sum_{i=2}^3 (q(G_i) - p(G_i)) \leq 3$. Then $\sum_{i=2}^3 (q(G_i) - p(G_i)) = 3$, which implies $G_2 \cong F_m$, $G_3 \in \zeta$ and $a = b = |T_1| = |T_2| = |T_3| = 0$. By (4.20), $9 = -2 - 2 + R_5(F_m) + R_5(G_3) + |B|$ and hence $R_5(G_3) = 9 - |B| \leq 9$, which contradicts to $G_3 \in \zeta$ by Corollary 3.3.

Suppose $G_1 \cong C_3$. Applying Lemma 2.7 and (4.5), we have $2 \leq \sum_{i=2}^3 (q(G_i) - p(G_i)) \leq 3$. Consider the case $\sum_{i=2}^3 (q(G_i) - p(G_i)) = 3$. From Lemmas 2.6, 4.2 and (4.5), we have $G_2 \cong F_m$ and $G_3 \in \zeta$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$. If b=0, then $9=-2-3+R_5(F_m)+R_5(G_3)+|B|+1$, which results in $R_5(G_3)=9-|B|\leq 9$, which contradicts to $G_3\in \zeta$. If b=1, then $9=-2-3+R_5(F_m)+R_5(G_3)+|B|$ and hence $R_5(G_3)=10-|B|\leq 10$, which also contradicts to $G_3\in \zeta$.

which also contradicts to $G_3 \in \zeta$. Consider the case $\sum_{i=2}^3 (q(G_i) - p(G_i)) = 2$. If $q(G_2) = p(G_2)$ and $q(G_3) - p(G_3) = 2$, then $G_2 \in \xi$ and $G_3 \in \zeta$ by Corollary 2.6 and (4.5). Then $G_3 \in \zeta$ by Corollary 3.1 and Corollary 3.3. If $G_3 \in \zeta$ and $G_3 \in \zeta$ by Corollary 3.1 and Corollary 3.3. If $G_3 \in \zeta$ by Corollary 3.1 and Corollary 3.3.

 $G_2 \cong F_m$ and $G_3 \in \phi$ and $a = b = |T_1| = |T_2| = |T_3| = 0$ by 2.6, 4.2 and (4.5). From this together with (4.20), we get that $9 = -2 - 3 + R_5(F_m) + R_5(G_3) + |B|$. Hence $R_5(G_3) = 10 - |B| \le 10$, which contradicts to Lemma 3.7.

Figure 4 Family of θ

Subcase 3.3: $s_4 = s_3 = s_1 = 0$, $s_2 = 2$. Without loss of generality, let

$$G = P_3 \cup (\cup_{i=1}^4 G_i) \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup f D_4 \cup a K_1 \cup b T_{1,1,1} \cup (\cup_{T \in \mathcal{T}_0} T_{l_1,l_2,l_3}),$$

$$(4.21)$$
 where $G_1 \in \{P_4, C_3\}, R_1(G_i) = -2(i=3,4).$

By Theorems 3.4 and 3.5, we have

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = -2 + \sum_{i=1}^3 R_5(G_i) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$
(4.22)

Suppose $G_1\cong P_4$. Recall that q(G)=p(G)+1. Then $\sum_{i=2}^3(q(G_i)-p(G_i))\geq 3$. From Lemma 2.7, $\sum_{i=2}^3(q(G_i)-p(G_i))\leq 4$. Therefore, $3\leq\sum_{i=2}^3(q(G_i)-p(G_i))\leq 4$. If $\sum_{i=2}^3(q(G_i)-p(G_i))=4$, then $G_i\cong K_4$ (i=2,3) and $a+b+|T_1|+2|T_2|+3|T_3|=1$ by (4) of Lemma 2.6 and (4.5). If b=0, then $9=-2-2+2R_5(K_4)+|B|+1$, which contradicts to $R_5(K_4)=7$ by (8) of Theorem 3.5. If b=1, then $9=-2-2+2R_5(K_4)+|B|$, which also contradicts to $R_5(K_4)=7$. If $\sum_{i=2}^3(q(G_i)-p(G_i))=3$, then it follows (4) of Lemma 2.6 and (4.5) that $G_2\cong K_4$, $G_3\in \psi$ and $a=b=|T_1|=|T_2|=|T_3|=0$. Combining this with (4.22), we have $9=-2-2+R_5(K_4)+R_5(G_3)+|B|$ and hence $R_5(G_3)=6-|B|\leq 6$, which contradicts to $G_3\in \psi$ by Corollary 3.2.

Suppose $G_1\cong C_3$. From (4.5) and Lemma 2.7, we have $2\leq \sum_{i=2}^3 (q(G_i)-p(G_i))\leq 4$. If $\sum_{i=2}^3 (q(G_i)-p(G_i))=4$, then $G_i\cong K_4(i=2,3)$ and $a+b+|T_1|+2|T_2|+3|T_3|=2$ by Lemma 2.6 and (4.5) and hence $|T_3|=|T_2|=0$ and $0\leq b\leq 1$. Combining this with (4.22), if b=0, then $9=-2-3+2R_5(K_4)+|B|+2$, which contradicts to $R_5(K_4)=7$. If b=1, then $9=-2-3+2R_5(K_4)+|B|+1$, which also contradicts to $R_5(K_4)=7$. If b=2, then $9=-2-3+2R_5(K_4)+|B|+1$, which also contradicts to $R_5(K_4)=7$. If b=2, then $a=-2-3+2R_5(K_4)+|B|+1$, which also contradicts to a=-20 and a=-21. From Lemma 2.9 and (1) of Lemma 3.8, a=-22 and (1) of Lemma 3.8, a=-23 by (3) of Lemma 3.9.

If $\sum_{i=2}^{3}(q(G_i)-p(G_i))=3$, then $G_2\cong K_4$, $G_3\in \psi$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$ by (4) of Lemma 2.6 and (4.5). If b=0, then $9=-2-3+R_5(K_4)+R_5(G_3)+|B|+1$ and hence $R_5(G_3)=6-|B|\leq 6$, which contradicts to Corollary 3.2. If b=1, then $9=-2-3+R_5(K_4)+R_5(G_3)+|B|$ and hence $R_5(G_3)=7-|B|\leq 7$, which also contradicts to Corollary 3.2.

Suppose $\sum_{i=2}^{3} (q(G_i) - p(G_i)) = 2$. From Lemma 2.6 and (4.5), we know that $G_i \in \psi(i=2,3)$ and $a=b=|T_1|=|T_2|=|T_3|=0$. Combining this with (4.22), $9=-2-3+R_5(G_2)+R_5(G_3)+|B|$ and hence $R_5(G_2)+R_5(G_3)=14-|B|\leq 14$, which contradicts to $G_3\in \psi$ by Corollary 3.2.

Subcase 3.4: $s_4 = s_3 = s_2 = 0$, $s_1 = 4$. Without loss of generality, let

$$G = P_3 \cup (\cup_{i=1}^5 G_i) \cup (\cup_{i \in A} C_i) \cup (\cup_{j \in B} D_j) \cup f D_4 \cup a K_1 \cup b T_{1,1,1} \cup (\cup_{T \in \mathcal{T}_0} T_{l_1,l_2,l_3}), \tag{4.23}$$

where $G_1 \in \{P_4, C_3\}$, $R_1(G_i) = -1(i = 2, 3, 4, 5)$. Applying Theorems 3.4 and 3.5, we get that

$$R_5(G) = R_5(\psi_n^3(n-3,1)) = 9 = -2 + \sum_{i=1}^5 R_5(G_i) + |B| + a + |T_1| + 2|T_2| + 3|T_3|$$

$$(4.24)$$

Suppose $G_1\cong P_4$. Using (1) of Lemma 2.7 and (4.5), we have $3\leq\sum_{i=2}^5(q(G_i)-p(G_i))\leq 4$. If $\sum_{i=2}^5(q(G_i)-p(G_i))=4$, then $G_i\cong F_m(i=2,3,4,5)$ and $a+b+|T_1|+2|T_2|+3|T_3|=1$ by Lemmas 2.6 and 4.2. If b=0, then $9=-2-2+4R_5(F_m)+|B|+1$, which contradicts to $R_5(F_m)=4$. If b=1, then $9=-2-2+4R_5(F_m)+|B|$, which also contradicts to $R_5(F_m)=4$. If $\sum_{i=2}^5(q(G_i)-p(G_i))=3$, then $G_i\cong F_m$ (i=2,3,4), $G_5\in \xi$ and $a=b=|T_1|=|T_2|=|T_3|=0$ by Lemmas 2.6 and 4.2. Hence $9=-2-2+3R_5(F_m)+R_5(G_5)+|B|$ and hence $R_5(G_5)=1-|B|\leq 1$, which contradicts to $G_5\in \xi$ by Corollary 3.1.

Suppose $G_1\cong C_3$. Recall that q(G)=p(G)+1. Then $2\leq \sum_{i=2}^5 (q(G_i)-p(G_i))\leq 4$ by Lemma 2.7. If $\sum_{i=2}^5 (q(G_i)-p(G_i))=4$, then $G_i\cong F_m$ (i=2,3,4,5) and $a+|T_1|+2|T_2|+3|T_3|=2$. Combining this with (4.24), if b=0, then $9=-2-3+4R_5(F_m)+|B|+2$, which contradicts to $R_5(F_m)=4$. We can get a contradiction for b=1 and b=2. If $\sum_{i=2}^3 (q(G_i)-p(G_i))=3$, then $G_i\cong F_m$ (i=2,3,4), $G_5\in \xi$ and $a+|T_1|+2|T_2|+3|T_3|=1$ by Lemmas 2.6 and 4.2. If b=0, then it follows from (4.24) that $9=-2-3+3R_5(F_m)+R_5(G_5)+|B|+1$ and hence $R_5(G_5)=1-|B|\leq 1$, which contradicts to $G_5\in \xi$. If b=1, then $9=-2-3+3R_5(F_m)+R_5(G_5)+|B|$ and hence $R_5(G_5)=2-|B|\leq 2$, which also contradicts to $G_5\in \xi$. If $\sum_{i=2}^3 (q(G_i)-p(G_i))=2$, then $G_i\cong F_m$ (i=2,3), $G_i\in \xi$ (i=4,5) and $a=b=|T_1|=|T_2|=|T_3|=0$ by Lemmas 2.6, 4.2 and (4.23). From this together with (4.24), $9=-2-3+|B|+2R_5(F_m)+R_5(G_4)+R_5(G_5)$. By Corollary 3.1, $R_5(G_3)\geq 4$. Hence $R_5(G_4)+R_5(G_5)=6-|B|\leq 6$, which contradicts to $G_4,G_5\in \xi$ by Corollary 3.1.

Corollary 4.1. If $n \ge 7$, graph $\psi_n^3(n-3,1)$ is adjoint uniqueness if and only if $n \ne 8$.

Corollary 4.2. If $n \geq 7$, the chromatic equivalence class of $\psi_n^3(n-3,1)$ only contains the complements of graphs that are in Theorem 4.2.

Corollary 4.3. If $n \ge 7$, graph $\psi_n^3(n-3,1)$ is chromatic uniqueness if and only if $n \ne 8$.

Acknowledgement. The authors would like to thank the referee for helpful comments and suggestions.

References

- J.A. Bondy, U.S.R. Murty, Graph Theory with Application (North-Holland, Amsterdam, 1976).
- [2] F.M. Dong, K.M. Koh, K.L. Teo, C.H.C. Little, M.D. Hendy, Two invariants for adjoint equivalent graphs, Australasian J. Combin. 25(2002), 133-143.
- [3] F.M. Dong, K.L. Teo, C.H.C. Little, M.D. Hendy, Chromaticity of some families of dense graphs, Discrete Math. 258(2002), 303-321.
- [4] Q.Y. Du, The graph parameter $\pi(G)$ and the classification of graphs according to it, J. Qinghai Normal Univ. (Natur. Sci.) 4(1993), 29-33.

- [5] B.F. Huo, Relations between three parameters A(G), R(G) and $D_2(G)$, J. Qinghai Normal Univ. (Natur. Sci.) 2(1998), 1-6.
- [6] K.M. Koh, K.L. Teo, The search for chromatically unique graphs, Graphs and Combin. 6 (1990), 259-262.
- [7] K.M. Koh, K.L. Teo, The search for chromatically unique graphs (2), Discrete Math. 172 (1997), 57-78.
- [8] R.Y. Liu, A new method for proving uniqueness of graphs, Discrete Math. 171(1997), 169-177.
- [9] R.Y. Liu, Adjoint polynomials and chromatically unique graphs, Discrete Math. 172(1997), 85-92.
- [10] R.Y. Liu, Several results on adjoint polynomials of graphs (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 1(1992), 1-6.
- [11] J.S. Mao, On the second character R₂(G) of graphs (in Chinese), J. Qinghai Normal Univ. (Natur. Sci.) 1(2004), 18-22.
- [12] Y.P. Mao, C.F. Ye, S.M. Zhang, A complete solution to the chromatic equivalence class of graph $B_{n-8,1,4}$, J. Math. Res. with Appl. 32(3)(2012), 253-268.
- [13] Y.P. Mao, C.F. Ye, A complete solution to the chromatic equivalence class of graph ζ_n^1 , J. Combin. Math. Combin. Comput. **81**(2012), 33-63.
- [14] Y.P. Mao, C.F. Ye, The fifth coefficient of adjoint polynomial and a new invariant, Ars Combin., in press.
- [15] R.C. Read, W.T. Tutte, Chromatic polynomials, in: L.W. Beineke, R.T. Wilson(Eds), Selected Topics in Graph Theory (3)(Academiv Press, New York, 1998), 15-42.
- [16] H.Z. Ren, On the fourth coefficients of adjoint polynomials of some graphs, Pure and Applied Math. 19(2003), 213-218.
- [17] H.Z. Ren, A new family of graphs and its classification, J. Qinghai Normal Univ. (Natur. Sci.) 2(2002), 1-5.
- [18] H.Z. Ren, R.Y. Liu, The Minimum real roots of adjoint polynomials of a class of graphs with $R(G) \ge -1$, Math research and exposition. 5(2005), 601-604.
- [19] H.Z. Ren, R.Y. Liu, The Minimum real roots of adjoint polynomials of a class of connected graphs, Xiamen Univ. (Natur. Sci.) 26(2006), 391-392.
- [20] H.Z. Ren, R.Y. Liu, The characterization of the minimum real roots of adjoint polynomials of ζ graphs, Southwest Normal Univ. (Natur. Sci.) 3(2006), 1-4.
- [21] J.F. Wang, R.Y. Liu, C.F. Ye, Q.X. Huang, A complete solution to the adjoint equivalence class of graph $B_{n-7,1,3}$, Discrete Math. 308(2008), 3607-3623.
- [22] J.F. Wang, Q.X. Huang, R.Y. Liu, C.F. Ye, The chromatic equivalence class of graph $B_{n-6,1,2}$, Discussiones Math. Graph Theory **28**(2008), 189-218.
- [23] J.F. Wang, Q.X. Huang, K.L. Teo, F. Belardo, R.Y. Liu, C.F. Ye, Almost every complement of a tadpole graph is not chromatically unique, Ars Combin. 108(2013), 33-49.
- [24] C.F. Ye, The root of adjoint polynomial of the graphs containing trangles, Chin. Quart. J. Math. 19(2004), 280-285.
- |25| H.X. Zhao, Chromaticity and adjoint polynomials of graphs, The thesis for Docter Degree (University of Twente, 2005) The Netherland, Wöhrmann Print Service.