On the path edge-connectivity of graphs*

Shumin Zhang[†]

School of Computer Technology, Qinghai Normal University, Xining, Qinghai 810008, China

Abstract

Dirac showed that in a (k-1)-connected graph there is a path through each k vertices. The path k-connectivity $\pi_k(G)$ of a graph G, which is a generalization of Dirac's notion, was introduced by Hager in 1986. Recently, Mao introduced the concept of path k-edge-connectivity $\omega_k(G)$ of a graph G. Denote by $G \circ H$ the lexicographic product of two graphs G and G. In this paper, we prove that $\omega_4(G \circ H) \geq \omega_4(G) \lfloor \frac{3|V(H)|}{5} \rfloor$ for any two graphs G and G. Moreover, the bound is sharp.

Keywords: Edge-connectivity; Steiner tree; packing; path edge-connectivity; lexicographic product.

AMS subject classification 2010: 05C05, 05C40, 05C70, 05C76.

1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer to [2] for graph theoretical notation and terminology not described here. For a graph G, let V(G), E(G) and $\delta(G)$ denote the set of vertices, the set of edges and the minimum degree of G, respectively. For $S \subseteq V(G)$, we denote by G - S the subgraph obtained by deleting from G the vertices of G together with the edges incident with them.

In [8], Dirac showed that in a (k-1)-connected graph there is a path through each k vertices; see [34]. In [16], Hager revised this statement to the question of how many internally disjoint paths P_i with the exception of a given set S of k vertices exist such that $S \subseteq V(P_i)$. The path connectivity of a graph G, introduced by Hager [16], is a natural specialization of the generalized connectivity and is also a natural generalization of the 'path' version definition of connectivity. For a graph G = (V, E) and a set $S \subseteq V(G)$ of at least two vertices, a path connecting S (or simply, an S-path) is a subgraph P = (V', E') of G that is a path with $S \subseteq V'$. Note that a path connecting S is also a tree connecting S. Two paths P and P' connecting S are said to be internally disjoint if

^{*}Supported by the National Science Foundation of China (Nos. 11161037, 11461054) and the Science Found of Qinghai Province (Nos. 2014-ZJ-907,2016-ZJ-775).

 $E(P)\cap E(P')=\varnothing$ and $V(P)\cap V(P')=S$. For $S\subseteq V(G)$ and $|S|\geq 2$, the local path connectivity $\pi_G(S)$ is the maximum number of internally disjoint paths connecting S in G, that is, we search for the maximum cardinality of edge-disjoint paths which contain S and are vertex-disjoint with the exception of the vertices in S. For an integer k with $2\leq k\leq n$, the path k-connectivity is defined as $\pi_k(G)=\min\{\pi_G(S)\,|\,S\subseteq V(G),|S|=k\}$, that is, $\pi_k(G)$ is the minimum value of $\pi_G(S)$ when S runs over all k-subsets of V(G). Clearly, $\pi_1(G)=\delta(G)$ and $\pi_2(G)=\kappa(G)$. For $k\geq 3$, $\pi_k(G)\leq \kappa_k(G)$ holds because each path is also a tree. Another tree-connectivity parameter, called generalized connectivity, are studied in [4,25,26,28,31].

As a natural counterpart of path k-connectivity, Mao [30] recently introduced the concept of path k-edge-connectivity. Two paths P and P' connecting S are said to be edge-disjoint if $E(P) \cap E(P') = \varnothing$. For $S \subseteq V(G)$ and $|S| \ge 2$, the local path edge-connectivity $\omega_G(S)$ is the maximum number of edge-disjoint paths connecting S in G. For an integer k with $2 \le k \le n$, the path k-edge-connectivity is defined as $\omega_k(G) = \min\{\omega_G(S) \mid S \subseteq V(G), |S| = k\}$, that is, $\omega_k(G)$ is the minimum value of $\omega_G(S)$ when S runs over all k-subsets of V(G). Clearly, we have

$$\begin{cases} \omega_k(G) = \delta(G), & \text{for } k = 1; \\ \omega_k(G) = \lambda(G), & \text{for } k = 2; \\ \omega_k(G) \le \lambda_k(G), & \text{for } k \ge 3. \end{cases}$$
 (1)

The path k-(edge-)connectivity and generalized k-(edge-)connectivity can be motivated by their interesting interpretation in practice. For example, suppose that G represents a network. If one considers to connect a pair of vertices of G, then a path is used to connect them. However, if one wants to connect a set S of vertices of G with $|S| \geq 3$, then a tree has to be used to connect them. This kind of tree for connecting a set of vertices is usually called a *Steiner tree*, and popularly used in the physical design of VLSI circuits (see [10, 11, 32]). In this application, a Steiner tree is needed to share an electric signal by a set of terminal nodes. Usually, one wants to consider how tough a network can be, for the connection of a set of vertices. Then, the number of totally independent ways to connect them is a measure for this purpose. The k-path-connectivity and generalized k-connectivity can serve for measuring the capability of a network G to connect any k vertices in G.

Product networks were proposed based upon the idea of using the cross product as a tool for "combining" two known graphs with established properties to obtain a new one that inherits properties from both [7]. Recently, there has been an increasing interest in a class of interconnection networks called Cartesian product networks; see [7, 22]. Lexicographic product is also studied extensively; see [17]. Some applications in networks of the lexicographic product were studied; see [1, 9, 23, 27].

Recently, Li and Mao [27] investigated the sharp upper and lower bounds of $\kappa_3(G \circ H)$, i.e., the lexicographic product of G and G. For generalized 3-edge-connectivity, Sun [28] got a sharp lower bound of $\lambda_3(G \circ H)$. Mao [29] obtained upper and lower bounds of $\omega_3(G \circ H)$. Here we will study upper and lower bounds of $\omega_4(G \circ H)$.

The lexicographic product of two graphs G and H, written as $G \circ H$, is defined as follows: $V(G \circ H) = V(G) \times V(H)$, and two distinct vertices (u,v) and (u',v') of $G \circ H$ are adjacent if and only if either $(u,u') \in E(G)$ or u=u' and $(v,v') \in E(H)$. Note that unlike the Cartesian product, the lexicographic product is a non-commutative product since $G \circ H$ is usually not isomorphic to $H \circ G$.

Observation 1 (1) Let G be a connected graph. Then $\pi_4(G) \leq \omega_4(G) \leq \delta(G)$.

(2) Let G be a connected graph with minimum degree δ . If G has two adjacent vertices of degree δ , then $\omega_k(G) \leq \delta - 1$.

In this paper, we obtain the following lower bound of $\omega_4(G \circ H)$.

Theorem 2 Let G and H be two graphs. Then

$$\omega_4(G \circ H) \ge \omega_4(G) \left\lfloor \frac{3|V(H)|}{5} \right\rfloor.$$

Moreover, the bound is sharp.

The following observation is immediate.

Observation 3 For any connected graph G, if $\omega_4(G) \ge \ell$, then $\delta(G) \ge \ell$ and there are at most two vertices with degree ℓ .

Example 1: Set $G=P_n$ and $H=2K_1$. Clearly, $\omega_4(G)=1$ and |V(H)|=2. From Theorem 2, we obtain that $\omega_4(P_n\circ 2K_1)\geq 1$. Note that there are at least 4 vertices with minimum degree 2. From Observation 3, we have $\omega_4(P_n\circ 2K_1)\leq 1$. So $\omega_4(P_n\circ 2K_1)=1$. So the bound in Theorem 2 is sharp.

2 Proof of Theorem 2

In this section, let G and H be two connected graphs with $V(G) = \{u_1, u_2, \ldots, u_n\}$ and $V(H) = \{v_1, v_2, \ldots, v_m\}$, respectively. Then $V(G \circ H) = \{(u_i, v_j) \mid 1 \leq i \leq n, \ 1 \leq j \leq m\}$. For $v \in V(H)$, we use G(v) to denote the subgraph of $G \circ H$ induced by the vertex set $\{(u_i, v) \mid 1 \leq i \leq n\}$. Similarly, for $u \in V(G)$, we use H(u) to denote the subgraph of $G \circ H$ induced by the vertex set $\{(u, v_j) \mid 1 \leq j \leq m\}$. In the sequel, let K_n and P_n denote the complete graph of order n and path of order n, respectively. If G is a connected graph and $x, y \in V(G)$, then the distance $d_G(x, y)$ between x and y is the length of a shortest path connecting x and y in G. The degree of a vertex v in G is denoted by $d_G(v)$.

We now introduce the general idea of the proof of Theorem 2. In Section 2.1, we first study the path 4-edge-connectivity of the lexicographic product of a path P and a graph H and show $\omega_4(P \circ H) \geq \left\lfloor \frac{3|V(H)|}{5} \right\rfloor$. After this preparation, we

consider the graph $G \circ H$ and prove $\omega_4(G \circ H) \ge \omega_4(G) \left\lfloor \frac{3|V(H)|}{5} \right\rfloor$ in Subsection 2.2.

Before realizing the above two steps, we introduce the following two well-known lemmas, which will be used later.

Given a vertex x and a set U of vertices, an (x, U)-fan is a set of paths from x to U such that any two of them share only the vertex x. The size of a (x, U)-fan is the number of internally disjoint paths from x to U.

Lemma 1 (Fan Lemma, [33], p-170) A graph is k-connected if and only if it has at least k+1 vertices and, for every choice of x, U with $|U| \ge k$, it has an (x, U)-fan of size k.

Lemma 2 (Expansion Lemma, [33], p-162) If G is a k-connected graph, and G' is obtained from G by adding a new vertex y with at least k neighbors in G, then G' is k-connected.

Let G be a k-connected graph. Choose $U \subseteq V(G)$ with |U| = k. Then the graph G' is obtained from G by adding a new vertex y and joining each vertex of U and the vertex y. We call this operation an expansion operation at y and U. Denote the resulting graph G' by $G' = G \vee \{y, U\}$.

2.1 Lexicographic product of a path and a connected graph

To start with, we show the following proposition, which is a preparation of the next subsection.

Proposition 1 Let H be a connected graph and P_n be a path with n vertices. Then $\omega_4(P_n \circ H) \geq \left\lfloor \frac{3|V(H)|}{5} \right\rfloor$. Moreover, the bound is sharp.

Let $V(H)=\{v_1,v_2,\ldots,v_m\}$ and $V(P_n)=\{u_1,u_2,\ldots,u_n\}$. Without loss of generality, let u_i and u_j be adjacent if and only if |i-j|=1, where $1\leq i\neq j\leq n$. It suffices to show that $\omega_4(P_n\circ H)(S)\geq \lfloor\frac{3m}{5}\rfloor$ for any $S=\{x,y,z,t\}\subseteq V(P_n\circ H)$, that is, there exist $\lfloor\frac{3m}{5}\rfloor$ edge-disjoint S-Steiner paths in $P_n\circ H$. We proceed our proof by the following four lemmas.

Lemma 3 If x, y, z, t belong to the same $V(H(u_i))$ $(1 \le i \le n)$, then there exist $\left| \frac{3m}{5} \right|$ edge-disjoint S-Steiner paths.

Proof. Without loss of generality, we assume $x,y,z,t \in V(H(u_1))$. For any five vertices in $H(u_2)$, we say $(u_2,v_{j_1}), (u_2,v_{j_2}), (u_2,v_{j_3}), (u_2,v_{j_4}), (u_2,v_{j_5}),$ where $j_i \in \{1,2,\ldots,m\}$ and $1 \le i \le 5$. For any vertex in $H(u_1) - \{x,y,z,t\}$, we say (u_1,v_{i_1}) . Then the path induced by the edges in $\{x(u_2,v_{j_1}), (u_2,v_{j_1}), (u_1,v_{i_1}), (u_1,v_{i_1}), (u_2,v_{j_5}), (u_2,v_{j_5})y, y(u_2,v_{j_3}), (u_2,v_{j_3})t, t(u_2,v_{j_2}), (u_2,v_{j_2})z\}$ and the path induced by the edges in $\{z(u_2,v_{j_4}), (u_2,v_{j_4})x, (u_2,v_{j_4})x, (u_2,v_{j_4})x, (u_2,v_{j_4})x, (u_2,v_{j_4})x, (u_2,v_{j_4})x, (u_2,v_{j_4})x, (u_2,v_{j_4})x\}$

 $x(u_2,v_{j_5}),(u_2,v_{j_5})t,t(u_2,v_{j_1}),(u_2,v_{j_1})y\}$ and the path induced by the edges in $\{z(u_2,v_{j_3}),(u_2,v_{j_3})x,x(u_2,v_{j_2}),(u_2,v_{j_2})y,y(u_2,v_{j_4}),(u_2,v_{j_4})t\}$ are 3 edge-disjoint S-Steiner paths. For the arbitrariness of the five vertices in $H(u_2)$ and the vertex (u_1,v_{i_1}) in $H(u_1)-\{x,y,z,t\}$, we can obtain $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths; see Figure 2.1.

Figure 2.1 The graph for Lemma 3.

Lemma 4 If three vertices of $\{x, y, z, t\}$ belong to some copy $H(u_i)$ $(1 \le i \le n)$, then there exist $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths.

Proof. Without loss of generality, we may assume $x,y,z\in V(H(u_1))$ and $t\in V(H(u_i))$ $(2\leq i\leq n)$. In the following argument, we can see that this assumption has no impact on the correctness of our proof. We distinguish the following two cases to show this lemma.

Case 1. i = 2.

Without loss of generality, we assume $t \in V(H(u_2))$. Let x', y', z' be the vertices corresponding to x, y, z in $H(u_2)$ and t' be the vertex corresponding to t in $H(u_1)$.

Suppose $t' \notin \{x, y, z\}$. Without loss of generality, let

$$\{x, y, z, t'\} = \{(u_1, v_j) | 1 \le j \le 4\}$$

and $\{x',y',z',t\}=\{(u_2,v_j)\,|\,1\leq j\leq 4\}$. Then the path Q_1 induced by the edges in $\{xt,t(u_1,v_5),(u_1,v_5)x',x'y,yy',y'z\}$, the path Q_2 induced by the edges in $\{zt,tt',t'z',z'x,x(u_2,v_5),(u_2,v_5)y\}$ and the path Q_3 induced by the edges in $\{ty,yz',z'z,zx',x'x\}$ are 3 edge-disjoint S-Steiner paths; see Figure 2.2 (a).

For any five vertices in $H(u_1)-\{x,y,z,t',(u_1,v_5)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3}),(u_1,v_{i_4}),(u_1,v_{i_5})$, where $i_r\in\{6,7,\ldots,m\}$ and $1\leq r\leq 5$. For any five vertices in $H(u_2)-\{x',y',z',t,(u_2,v_5)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3}),(u_2,v_{j_4}),(u_2,v_{j_5})$, where $j_r\in\{6,7,\ldots,m\}$ and $1\leq r\leq 5$. Then we can get the path induced by the edges in $\{x(u_2,v_{j_1}),(u_2,v_{j_1})y,y(u_2,v_{j_3}),(u_2,v_{j_3}),(u_1,v_{i_2}),(u_1,v_{i_2})t,t(u_1,v_{i_1}),(u_1,v_{i_1})(u_2,v_{j_2}),(u_2,v_{j_2})z\}$ and the path induced by the edges in $\{x(u_2,v_{j_3}),(u_1,v_{i_4}),(u_1,v_{i_4}),(u_1,v_{i_4}),(u_2,v_{j_5}),(u_2,v_{j_5})z,z(u_2,v_{j_1}),(u_2,v_{j_1}),(u_1,v_{i_3}),(u_1,v_{i_3})t,t(u_1,v_{i_5}),(u_1,v_{i_5}),(u_2,v_{j_4}),$

Figure 2.2 The graphs for Lemma 4.

 $(u_2,v_{j_4})y\}$ and the the path induced by the edges in $\{t(u_1,v_{i_4}),(u_1,v_{i_4})(u_2,v_{j_2}),(u_2,v_{j_2})y,y(u_2,v_{j_5}),(u_2,v_{j_5})x,x(u_2,v_{j_4}),(u_2,v_{j_4})z\}$ are 3 edge-disjoint S-Steiner paths; see Figure 2.2 (b).

Note that the arbitrariness of the five vertices in $H(u_1) - \{x,y,z,t',(u_1,v_5)\}$ and the five vertices in $H(u_2) - \{x',y',z',t,(u_2,v_5)\}$, we can obtain $\lfloor \frac{3(m-5)}{5} \rfloor$ edge-disjoint S-Steiner paths. These paths together with Q_1,Q_2,Q_3 are $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Suppose $t' \in \{x,y,z\}$. Without loss of generality, let t' = z and $\{x,y,z\} = \{(u_1,v_1),(u_1,v_2),(u_1,v_3)\}$ and $\{x',y',t\} = \{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$. Then the path Q_1 induced by the edges in $\{xt,ty,yx',x'z\}$, the path Q_2 induced by the edges in $\{xy',y'z,z(u_2,v_4),(u_2,v_4)y,y(u_2,v_5),(u_2,v_5)(u_1,v_4),(u_1,v_4)t\}$ and the path Q_3 induced by the edges in $\{yy',y'(u_1,v_5),(u_1,v_5)t,tz,z(u_2,v_5),(u_2,v_5)x\}$ are 3 edge-disjoint S-Steiner paths; see Figure 2.3 (a).

For any five vertices in $H(u_1) - \{x, y, z, (u_1, v_4), (u_1, v_5)\}$, we say (u_1, v_{i_1}) , $(u_1, v_{i_2}), (u_1, v_{i_3}), (u_1, v_{i_4}), (u_1, v_{i_5})$, where $i_r \in \{6, 7, \ldots, m\}$ and $1 \le r \le 5$. For any five vertices in $H(u_2) - \{x', y', t, (u_2, v_4), (u_2, v_5)\}$, we say $(u_2, v_{j_1}), (u_2, v_{j_2}), (u_2, v_{j_3}), (u_2, v_{j_4}), (u_1, v_{j_5})$, where $j_r \in \{6, 7, \ldots, m\}$ and $1 \le r \le 5$. Similarly to the proof of the above case, we can get 3 edge-disjoint S-Steiner paths; see Figure 2.3(b).

Figure 2.3 The graphs for Lemma 4.

Note that the arbitrariness of the five vertices in $H(u_1)-\{x,y,z,(u_1,v_4),(u_1,v_5)\}$ and five vertices in $H(u_2)-\{x',y',t,(u_2,v_4),(u_2,v_5)\}$, we can obtain $\lfloor \frac{3(m-5)}{5} \rfloor$ edge-disjoint S-Steiner paths. These path together with Q_1,Q_2,Q_3 are $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Case 2. i > 3.

Let $P'=u_2u_3\cdots u_n$. Clearly, $\kappa(P'\circ H)\geq m$. From Lemma 1, there is a t,U-fan in $P'\circ H$, where $U=V(H(u_2))=\{(u_2,v_j)\,|\,1\leq j\leq m\}$. Thus, there exist m internally disjoint paths P_1,P_2,\cdots,P_m such that P_j $(1\leq j\leq m)$ is a path connecting t and (u_2,v_j) . Without loss of generality, let $\{x,y,z\}=\{(u_1,v_j)\,|\,1\leq j\leq 3\}$ and any five vertices in $H(u_2)$, we say $(u_2,v_1),(u_2,v_2),(u_2,v_3),(u_2,v_4),(u_2,v_5)$. Then the path Q_1 induced by the edges in $\{x(u_2,v_1),(u_2,v_1)y,y(u_2,v_2),(u_2,v_2)z,z(u_2,v_3)\}\cup E(P_3)$ the path Q_2 induced by the edges in $\{y(u_2,v_4),(u_2,v_4)x,x(u_2,v_2)\}\cup E(P_2)\cup E(P_1)\cup \{(u_2,v_1)z\}$ and the path Q_3 induced by the edges in $\{z(u_2,v_4)\}\cup E(P_4)\cup E(P_5)\cup \{(u_2,v_5)x,x(u_2,v_3),(u_2,v_3)y\}$ are 3 edge-disjoint S-Steiner paths; see Figure 2.4(a).

For any five vertices in $H(u_1)-\{x,y,z,(u_1,v_4),(u_1,v_5)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3}),(u_1,v_{i_4}),(u_1,v_{i_5})$, where $i_r\in\{6,7,\ldots,m\}$ and $1\leq r\leq 5$. For any five vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3),(u_2,v_4),(u_2,v_5)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3}),(u_2,v_{j_4}),(u_1,v_{j_5})$, where $j_r\in\{6,7,\ldots,m\}$ and $1\leq r\leq 5$. Similarly to the proof of the above case, we can get 3 edge-disjoint S-Steiner paths. They are the path induced by the edges in $\{x(u_2,v_{j_2}),(u_2,v_{j_2})y,y(u_2,v_{j_1}),(u_2,v_{j_1})z,z(u_2,v_{j_3})\}\cup E(P_{j_3})$ and the path induced by the edges in $\{x(u_2,v_{j_1}),(u_2,v_{j_1}),(u_1,v_{i_1}),(u_1,v_{i_1}),(u_2,v_{j_4}),(u_2,v_{j_4})y,y(u_2,v_{j_5}),(u_2,v_{j_5})z,z(u_2,v_{j_2})\}\cup E(P_{j_2})$ and the path induced by the edges in $\{z(u_2,v_{j_4})\}\cup E(P_{j_4})\cup E(P_{j_5})\}\cup \{(u_2,v_{j_5})x,x(u_2,v_{j_3}),(u_2,v_{j_3})y\}$; see Figure 2.4 (b).

Figure 2.4 The graph for Lemma 4

Note that the arbitrariness of the five vertices in $H(u_1) - \{x, y, z, (u_1, v_4), (u_1, v_5)\}$ and the five vertices in $H(u_2) - \{(u_2, v_1), (u_2, v_2), (u_2, v_3), (u_2, v_4), (u_2, v_5)\}$, we can obtain $\lfloor \frac{3(m-5)}{5} \rfloor$ edge-disjoint S-Steiner paths. These path together with Q_1, Q_2, Q_3 are $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Lemma 5 If two vertices of $\{x, y, z, t\}$ belong to some copy $H(u_i)$ $(1 \le i \le n)$, then there exist $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths.

Proof. We have the following cases to be considered.

Case 1. $x, y \in V(H(u_i)), z \in V(H(u_j))$ and $t \in V(H(u_k))$, where i < j < k, $1 < i < n - 2, 2 \le j \le n - 1, 3 \le k \le n$.

Without loss of generality, we may assume that $x, y \in V(H(u_1))$ and $z \in V(H(u_1))$ $(2 \le j \le n-1)$.

Subcase 1.1 $z \in V(H(u_2))$ and $t \in V(H(u_k))$, where $3 \le k \le n$.

Consider the case $k \geq 4$. Let $P' = u_3u_4\cdots u_k$. Clearly, $\kappa(P'\circ H) \geq m$. From Lemma 1, there is a t, U-fan in $P'\circ H$, where $U=V(H(u_3))=\{(u_3,v_r)\,|\,1\leq r\leq m\}$. Thus, there exist m internally disjoint paths P_1,P_2,\cdots,P_m such that P_r $(1\leq r\leq m)$ is a path connecting t and (u_3,v_j) .

Without loss of generality, we may assume that $x=(u_1,v_1),y=(u_1,v_2)$ and $z=(u_2,v_1)$. Then we can get the path Q_1 induced by the edges in $\{xz,zy,y(u_2,v_2),(u_2,v_2),(u_3,v_1)\}\cup E(P_1)$ and the path Q_2 induced by the edges in $E(P_2)\cup\{(u_3,v_2),z(u_1,v_3),(u_1,v_3)(u_2,v_2),(u_2,v_2)x,x(u_2,v_3),(u_2,v_3)y\}$. For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. For any three vertices in $H(u_2)-\{z,(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. For any three vertices in $H(u_3)-\{(u_3,v_1),(u_3,v_2),(u_3,v_3)\}$, we say $(u_3,v_{k_1}),(u_3,v_{k_2}),(u_3,v_{k_3})$, where $k_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. Similarly to the proof of the above case, we can get 2 edge-disjoint S-Steiner paths. They are the path induced by the edges in $\{x(u_2,v_{j_1}),(u_2,v_{j_1})y,y(u_2,v_{j_2}),(u_2,v_{j_2}),(u_1,v_{i_1}),(u_1,v_{i_1})z,z(u_3,v_{k_1})\}\cup E(P_{k_1})$ and the path induced by the edges in $E(P_{k_2})\cup\{(u_3,v_{k_2})z,z(u_1,v_{i_2}),(u_1,v_{i_2})(u_2,v_{j_2}),(u_2,v_{j_3}),(u_2,v_{j_3})y\}$.

Note that the arbitrariness of the three vertices in $H(u_1) - \{x,y,(u_1,v_3)\}$, the three vertices in $H(u_2) - \{z,(u_2,v_2),(u_2,v_3)\}$ and the three vertices in $H(u_3) - \{(u_3,v_1),(u_3,v_2),(u_3,v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These path together with Q_1,Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Consider the case k=3. We may assume that $t\in V(H(u_3))$ and $x=(u_1,v_1),y=(u_1,v_2)$ and $z=(u_2,v_1)$ and $t=(u_3,v_1)$. Then we can get the path Q_1 induced by the edges in $\{y(u_2,v_2),(u_2,v_2)x,xz,zt\}$ and the path Q_2 induced by the edges in $\{x(u_2,v_3),(u_2,v_3)y,yz,z(u_3,v_2),(u_3,v_2)(u_2,v_2),(u_2,v_2)t\}$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. For any three vertices in $H(u_2)-\{z,(u_2,v_2),(u_2,v_3\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. For any three vertices in $H(u_3)-\{(u_3,v_1),(u_3,v_2),(u_3,v_3)\}$

 $\begin{array}{l} (u_3,v_3\}, \text{ we say } (u_3,v_{k_1}), (u_3,v_{k_2}), (u_3,v_{k_3}), \text{ where } k_r \in \{4,5,\ldots,m\} \text{ and } 1 \leq r \leq 3. \text{ Similarly to the proof of the above case, we can get 2 edge-disjoint } S\text{-Steiner paths. They are the path induced by the edges in } \{t(u_2,v_{j_1}), (u_2,v_{j_1}), (u_3,v_{k_1}), (u_3,v_{k_1})z, z(u_1,v_{i_1}), (u_1,v_{i_1})(u_2,v_{j_2}), (u_2,v_{j_2})x, x(u_2,v_{j_3}), (u_2,v_{j_3})y\} \text{ and the path induced by the edges in } \{t(u_2,v_{j_3}), (u_2,v_{j_3}), (u_3,v_{k_2}), (u_3,v_{k_2})z, z(u_1,v_{i_2}), (u_1,v_{i_2})(u_2,v_{j_2}), (u_2,v_{j_2})y, y(u_2,v_{j_1}), (u_2,v_{j_1})x\}. \end{array}$

Note that the arbitrariness of the three vertices in $H(u_1) = \{x,y,(u_1,v_3)\}$, the three vertices in $H(u_2) = \{z,(u_2,v_2),(u_2,v_3)\}$ and the three vertices in $H(u_3) = \{(u_3,v_1),(u_3,v_2),(u_3,v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These path together with Q_1,Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Subcase 1.2 $z \in V(H(u_j))$ and $t \in V(H(u_k))$, where $3 \le j \le n-1$, $4 \le k \le n$.

Consider the case $|j-k|\geq 2$ and $j\geq 4$. Let $P'=u_2u_4\cdots u_j$. Clearly, $\kappa(P'\circ H)\geq m$. From Lemma 1, there is a z,U'-fan in $P'\circ H$, where $U'=V(H(u_2))=\{(u_2,v_r)\,|\,1\leq r\leq m\}$. Thus there exist m pairwise internally disjoint paths P'_1,P'_2,\cdots,P'_m such that each P'_r $(1\leq r\leq m)$ is a path connecting z and (u_2,v_r) . Let $P''=u_{j+1}u_{j+2}\cdots u_k$. Clearly, $\kappa(P''\circ H)\geq m$. From Lemma 1, there is a t,U''-fan in $P''\circ H$, where $U''=V(H(u_{j+1}))=\{(u_{j+1},v_r)\,|\,1\leq r\leq m\}$. Thus there exist m pairwise internally disjoint paths P''_1,P''_2,\cdots,P''_m such that each P''_r $(1\leq r\leq m)$ is a path connecting t and (u_{j+1},v_r) . Without loss of generality, let $x=(u_1,v_1),y=(u_1,v_2)$ and $z=(u_j,v_1)$. Then we can get the path Q_1 induced by the edges in $\{y(u_2,v_2),(u_2,v_2)x,x(u_2,v_1)\}\cup E(P'_1)\cup\{z(u_{j+1},v_1)\}\cup E(P''_1)$ and the path Q_2 induced by the edges in $\{x(u_2,v_3),(u_2,v_3)y,y(u_2,v_1),(u_2,v_1)(u_1,v_3),(u_1,v_3)(u_2,v_2)\}\cup E(P'_2)\cup\{z(u_{j+1},v_2)\}\cup E(P''_2)$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, any three vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, any three vertices in $H(u_j)-\{(u_j,v_1),(u_j,v_2),(u_j,v_3)\}$, we say $(u_j,v_{k_1}),(u_j,v_{k_2}),(u_j,v_{k_3})$, any three vertices in $H(u_{j+1})-\{(u_{j+1},v_1),(u_{j+1},v_2),(u_{j+1},v_3)\}$, we say $(u_{j+1},v_{s_1}),(u_{j+1},v_{s_2}),(u_{j+1},v_{s_3})$, where $i_r,j_r,k_r,s_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. Then we can get 2 edge-disjoint S-Steiner paths. They are the path induced by the edges in $\{y(u_2,v_{j_2}),(u_2,v_{j_2})x,x(u_2,v_{j_1})\}\cup E(P'_{j_1})\cup \{z(u_{j+1},v_{s_1})\}\cup E(P''_{s_1})$ and the path induced by the edges in $\{x(u_2,v_{j_3}),(u_2,v_{j_3})y,y(u_2,v_{j_1}),(u_2,v_{j_1})(u_1,v_{i_3}),(u_1,v_{i_3})\}\cup E(P''_{j_2})\cup \{z(u_{j+1},v_{s_2})\}\cup E(P''_{s_2}).$

Note that the arbitrariness of the three vertices in $H(u_1) = \{x,y,(u_1,v_3)\}$, the three vertices in $H(u_2) = \{z,(u_2,v_2),(u_2,v_3)\}$, the three vertices in $H(u_j) = \{(u_j,v_1),(u_j,v_2),(u_j,v_3)\}$ and the three vertices in $H(u_{j+1}) = \{(u_{j+1},v_1),(u_{j+1},v_2),(u_{j+1},v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These path together with Q_1,Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Consider the case $|j-k|\geq 2$ and j=3. Let $P=u_4u_5\cdots u_k$. Clearly, $\kappa(P'\circ H)\geq m$. From Lemma 1, there is a t,U-fan in $P'\circ H$, where $U=V(H(u_4))=\{(u_4,v_r)\,|\,1\leq r\leq m\}$. Thus there exist m pairwise internally disjoint paths P_1,P_2,\cdots,P_m such that each P_r $(1\leq r\leq m)$ is a path connecting t and (u_4,v_r) . Without loss of generality, let $x=(u_1,v_1),y=(u_1,v_2)$ and $z=(u_3,v_1)$. Then we can get 2 edge-disjoint S-Steiner paths. They are the path Q_1 induced by the edges in $\{x(u_2,v_1),(u_2,v_1)y,y(u_2,v_2),(u_2,v_2)z,z(u_4,v_1)\}\cup E(P_1)$ and the path Q_2 induced by the edges in $\{y(u_2,v_3),(u_2,v_3)x,x(u_2,v_2),(u_2,v_2),(u_3,v_2),(u_3,v_2)(u_2,v_1),(u_2,v_1)z,z(u_4,v_2)\}\cup E(P_2)$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_3)-\{z,(u_3,v_2),(u_3,v_3\},$ we say $(u_3,v_{k_1}),(u_3,v_{k_2}),(u_3,v_{k_3})$, where $k_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$ and any three vertices in $H(u_4)-\{(u_4,v_1),(u_4,v_2),(u_4,v_3)\},$ we say $(u_4,v_{s_1}),(u_4,v_{s_2}),(u_4,v_{s_3}),$ where $s_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. Then we can get 2 edge-disjoint S-Steiner paths. They are the path induced by the edges in $\{x(u_2,v_{j_1}),(u_2,v_{j_1})y,y(u_2,v_{j_2}),(u_2,v_{j_2})z,z(u_4,v_{s_1})\}\cup E(P_{s_1})$ and the path induced by the edges in $\{y(u_2,v_{j_3}),(u_2,v_{j_3})z,z(u_4,v_{s_1})\}\cup E(P_{s_1})$ and the path induced by the edges in $\{y(u_2,v_{j_3}),(u_2,v_{j_3})z,z(u_4,v_{s_2})\}\cup E(P_{s_2})$.

Note that the arbitrariness of the three vertices in $H(u_1) - \{x, y, (u_1, v_3)\}$, the three vertices in $H(u_2) - \{z, (u_2, v_2), (u_2, v_3)\}$, the three vertices in $H(u_3) - \{(u_3, v_1), (u_3, v_2), (u_3, v_3)\}$ and the three vertices in $H(u_4) - \{(u_4, v_1), (u_4, v_2), (u_4, v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These paths together with Q_1, Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Consider the case |j-k|=1 and $j\geq 4$. Let $P=u_2u_3\cdots u_j$. Clearly, $\kappa(P'\circ H)\geq m$. From Lemma 1, there is a z,U-fan in $P'\circ H$, where $U=V(H(u_2))=\{(u_2,v_r)\,|\,1\leq r\leq m\}$. Thus there exist m pairwise internally disjoint paths P_1,P_2,\cdots,P_m such that each P_r $(1\leq r\leq m)$ is a path connecting z and (u_2,v_r) . Without loss of generality, let $x=(u_1,v_1),y=(u_1,v_2)$ and $z=(u_j,v_1),t=(u_{j+1},v_1)$. Then we can get 2 edge-disjoint S-Steiner paths, the path Q_1 induced by the edges in $\{x(u_2,v_2),(u_2,v_2)y,y(u_2,v_1)\}\cup E(P_1)\cup \{zt\}$ and the path Q_2 induced by the edges in $\{y(u_2,v_3),(u_2,v_3)x,x(u_2,v_1),(u_2,v_1)(u_1,v_3),(u_1,v_3)(u_2,v_2)\}\cup E(P_2)\cup \{z(u_{j+1},v_2),(u_{j+1},v_2)(u_j,v_2),(u_j,v_2)t\}$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_j)-\{z,(u_j,v_2),(u_j,v_3)\}$, we say $(u_j,v_{k_1}),(u_j,v_{k_2}),(u_3,v_{k_3})$, where $k_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$ and any three vertices in $H(u_{j+1})-\{(u_{j+1},v_1),(u_{j+1},v_2),(u_{j+1},v_3)\}$, we say $(u_{j+1},v_{s_1}),(u_{j+1},v_{s_2}),(u_{j+1},v_{s_3})$, where $s_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, we can get 2 edge-disjoint S-Steiner paths, the path induced by the edges in $\{x(u_2,v_{j_2}),(u_2,v_{j_2}),y(u_2,v_{j_1})\}\cup E(P_{j_1})\cup \{z(u_{j+1},v_{s_1}),(u_{j+1},v_{s_1}),(u_{j},v_{k_1}),v_{s_1}\}$

 $\{u_j,v_{k_1}\}t\}$ and the path induced by the edges in $\{y(u_2,v_{j_3}),(u_2,v_{j_3})x, x(u_2,v_{j_2}),(u_2,v_{j_2})(u_1,v_{i_3}),(u_1,v_{i_3}),(u_2,v_{j_2})\} \cup E(P_{j_2}) \cup \{z(u_{j+1},v_{s_3}),(u_{j+1},v_{s_3}),(u_{j},v_{k_3}),(u_{j},v_{k_3})t\} \cup E(P_{s_2}).$

Note that the arbitrariness of the three vertices in $H(u_1) - \{x, y, (u_1, v_3)\}$, the three vertices in $H(u_2) - \{z, (u_2, v_2), (u_2, v_3)\}$, the three vertices in $H(u_j) - \{(u_j, v_1), (u_j, v_2), (u_j, v_3)\}$ and the three vertices in $H(u_{j+1}) - \{(u_{j+1}, v_1), (u_{j+1}, v_2), (u_{j+1}, v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These paths together with Q_1, Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Consider the case |j-k|=1 and j=3. Without loss of generality, we may assume that $z\in V(H(u_3))$ and $t\in V(H(u_4))$ and $x=(u_1,v_1),y=(u_1,v_2),z=(u_3,v_1),t=(u_4,v_1)$. Then we can get 2 edge-disjoint S-Steiner paths, the path Q_1 induced by the edges in $\{x(u_2,v_1),(u_2,v_1)y,y(u_2,v_2),(u_2,v_2)z,zt\}$ and the path Q_2 induced by the edges in $\{y(u_2,v_3),(u_2,v_3)x,x(u_2,v_2),(u_2,v_2)(u_1,v_3),(u_1,v_3)(u_2,v_3),(u_2,v_3)z,z(u_4,v_2),(u_4,v_2)(u_3,v_2),(u_3,v_2)t\}$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_3)-\{z,(u_3,v_2),(u_3,v_3)\}$, we say $(u_3,v_{k_1}),(u_3,v_{k_2}),(u_3,v_{k_3})$, where $k_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$ and any three vertices in $H(u_4)-\{(u_4,v_1),(u_4,v_2),(u_4,v_3)\}$, we say $(u_4,v_{s_1}),(u_4,v_{s_2}),(u_4,v_{s_3})$, where $s_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. Then we can get 2 edge-disjoint S-Steiner paths, the path induced by the edges in $\{x(u_2,v_{j_1}),(u_2,v_{j_1})y,y(u_2,v_{j_2}),(u_2,v_{j_2})z,z(u_4,v_{s_1}),(u_4,v_{s_1})(u_3,v_{k_1}),(u_3,v_{k_1})t\}$ and the path induced by the edges in $\{y(u_2,v_{j_3}),(u_2,v_{j_3})x,x(u_2,v_{j_2}),(u_2,v_{j_2})(u_1,v_{i_3}),(u_1,v_{i_3}),(u_1,v_{i_3}),(u_2,v_{j_3}),(u_2,v_{j_3})z,z(u_4,v_{s_2}),(u_4,v_{s_2})(u_3,v_{k_2}),(u_3,v_{k_2})t\}$.

Note that the arbitrariness of the three vertices in $H(u_1) - \{x,y,(u_1,v_3)\}$, the three vertices in $H(u_2) - \{z,(u_2,v_2),(u_2,v_3)\}$, the three vertices in $H(u_3) - \{(u_3,v_1),(u_3,v_2),(u_3,v_3)\}$ and the three vertices $H(u_4) - \{(u_4,v_1),(u_4,v_2),(u_4,v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These paths together with Q_1,Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Case 2. $x, y \in V(H(u_i)), z, t \in V(H(u_k)), \text{ where } i < k, 1 \le i \le n-1, 2 \le k < n.$

Without loss of generality, we may assume that $x, y \in V(H(u_1)), z, t \in V(H(u_k))$.

At first, we consider the case $k\geq 5$. Let $P'=u_2u_3\cdots u_j$ and $P''=u_ju_{j+1}\cdots u_{k-1}$, where i< j< k and $|i-j|\geq 2$ and $|k-j|\geq 2$. Clearly, $\kappa(P'\circ H)\geq m$ and $\kappa(P''\circ H)\geq m$. From Lemma 1, there is a $(u_j,v_1),U'$ -fan in $P'\circ H$ and $(u_j,v_1),U''$ -fan in $P''\circ H$, respectively, where $U'=V(H(u_2))=\{(u_2,v_r)\text{ and }U''=V(H(u_{k-1}))=\{(u_{k-1},v_r)\mid 1\leq r\leq m\}$. Thus there exist m pairwise internally disjoint paths P_1',P_2',\cdots,P_m' such that each P_r' $(1\leq r\leq m)$ is

a path connecting (u_j, v_1) and (u_2, v_r) and there exist m pairwise internally disjoint paths $P_1'', P_2'', \cdots, P_m''$ such that each P_r'' $(1 \le r \le m)$ is a path connecting (u_j, v_1) and (u_{k-1}, v_r) . Without loss of generality, let $x = (u_1, v_1), y = (u_1, v_2)$ and $z = (u_k, v_1), t = (u_k, v_2)$. Then we can get 2 edge-disjoint S-Steiner paths, the path Q_1 induced by the edges in $\{x(u_2, v_2), (u_2, v_2)y, y(u_2, v_1)\} \cup E(P_1') \cup E(P_1'') \cup \{(u_{k-1}, v_1)z, z(u_{k-1}, v_2), (u_{k-1}, v_2)t\}$ and the path Q_2 induced by the edges in $\{y(u_2, v_3), (u_2, v_3)x, x(u_2, v_1), (u_2, v_1)(u_1, v_3), (u_1, v_3)(u_2, v_2)\} \cup E(P_2'') \cup E(P_2'') \cup \{(u_{k-1}, v_2)(u_k, v_3), (u_k, v_3)(u_{k-1}, v_1), (u_{k-1}, v_1)t, t(u_{k-1}, v_3), (u_{k-1}, v_3)z\}.$

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_{k-1})-\{(u_{k-1},v_1),(u_{k-1},v_2),(u_{k-1},v_3)\}$, we say $(u_{k-1},v_{a_1}),(u_{k-1},v_{a_2}),(u_{k-1},v_{a_3})$, where $a_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$ and any three vertices in $H(u_k)-\{z,t,(u_k,v_3)\}$, we say $(u_k,v_{s_1}),(u_k,v_{s_2}),(u_k,v_{s_3})$, where $s_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. Then we can get 2 edge-disjoint S-Steiner paths, the path induced by the edges in $\{x(u_2,v_{j_2}),(u_2,v_{j_2})y,y(u_2,v_{j_1})\}\cup E(P'_{(k-1)_1})\cup E(P'_{(k-1)_1})\cup \{(u_{k-1},v_{a_1})z,z(u_{k-1},v_{a_2}),(u_{k-1},v_{a_2})t\}$ and the path induced by the edges in $\{y(u_2,v_{j_3}),(u_2,v_{j_3})x,x(u_2,v_{j_1}),(u_2,v_{j_1})(u_1,v_{i_3}),(u_1,v_{i_3})(u_2,v_{j_2})\}\cup E(P'_{j_2})\cup E(P'_{(k-1)_2})\cup \{(u_{k-1},v_{a_2})(u_k,v_{s_3}),(u_k,v_{s_3})(u_{k-1},v_{a_1}),(u_{k-1},v_{a_1})t,t$ $t(u_{k-1},v_{a_3}),t(u_{k-1},v_{a_3})z\}$

Note that the arbitrariness of the three vertices in $H(u_1) - \{x, y, (u_1, v_3)\}$, any three vertices $H(u_2) - \{(u_2, v_1), (u_2, v_2), (u_2, v_3)\}$, $H(u_{k-1}) - \{(u_{k-1}, v_1), (u_{k-1}, v_2), (u_{k-1}, v_3)\}$ and any three vertices in $H(u_k) - \{z, t, (u_k, v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These paths together with Q_1, Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Now, we consider the case k=4. Without loss of generality, we may assume that $x,y\in V(H(u_1))$ and $z,t\in V(H(u_4))$, especially, $x=(u_1,v_1),y=(u_1,v_2)$ and $z=(u_4,v_1),t=(u_4,v_2)$. Then we can get 2 edge-disjoint S-Steiner paths, the path Q_1 induced by the edges in $\{x(u_2,v_1),(u_2,v_1)y,y(u_2,v_2),(u_2,v_2)(u_3,v_1),(u_3,v_1)z,z(u_3,v_2),(u_3,v_2)t\}$ and the path Q_2 induced by the edges in $\{y(u_2,v_3),(u_2,v_3)x,x(u_2,v_2),(u_2,v_2)(u_1,v_3),(u_1,v_3)(u_2,v_1),(u_2,v_1)(u_3,v_1),(u_3,v_1)t,t(u_3,v_3),(u_3,v_3)z\}$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_3)-\{(u_3,v_1),(u_3,v_2),(u_3,v_3)\}$, we say $(u_3,v_{k_1}),(u_3,v_{k_2}),(u_3,v_{k_3})$, where $k_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$ and any three vertices in $H(u_4)-\{z,t,(u_4,v_3)\}$, we say $(u_4,v_{s_1}),(u_4,v_{s_2}),(u_4,v_{s_3})$, where $s_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. Then we can get 2 edge-disjoint S-Steiner paths, the path induced by the edges in $\{x(u_2,v_{j_1}),(u_2,v_{j_1}),(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_2}),(u_3,v_{k_1}),(u_3,v_{k_1}),z,z(u_3,v_{k_2}),(u_3,v_{k_2})t\}$ and the

path induced by the edges in $\{y(u_2, v_{j_3}), (u_2, v_{j_3}x, x(u_2, v_{j_2}), (u_2, v_{j_2})(u_1, v_{i_3}), (u_1, v_{i_3})(u_2, v_{j_1}), (u_2, v_{j_1})(u_3, v_{k_1}), (u_3, v_{k_1})t, t(u_3, v_{k_3}), (u_3, v_{k_3})z\}.$

Note that the arbitrariness of the three vertices in $H(u_1) - \{x, y, (u_1, v_3)\}$, the three vertices in $H(u_2) - \{(u_2, v_1), (u_2, v_2), (u_2, v_3)\}$, the three vertices in $H(u_3) - \{(u_3, v_1), (u_3, v_2), (u_3, v_3)\}$ and the three vertices in $H(u_4) - \{z, t, (u_4, v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These paths together with Q_1, Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Now, we consider the case k=3. Without loss of generality, we may assume that $x,y\in V(H(u_1))$ and $z,t\in V(H(u_3))$, especially, let $x=(u_1,v_1),y=(u_1,v_2)$ and $z=(u_3,v_1),t=(u_3,v_2)$. Then we can get 2 edge-disjoint S-Steiner paths, the path Q_1 induced by the edges in $\{x(u_2,v_2),(u_2,v_2)y,y(u_2,v_1),(u_2,v_1)z,z(u_2,v_3),(u_2,v_3)t\}$ and the path Q_2 induced by the edges in $\{z(u_2,v_2),(u_2,v_2)t,t(u_2,v_1),(u_2,v_1)x,x(u_2,v_3),(u_2,v_3)y\}$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_2)-\{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$, we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3})$, where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, any three vertices in $H(u_3)-\{u_3,v_1),(u_3,v_2),(u_3,v_3)\}$, we say $(u_3,v_{k_1}),(u_3,v_{k_2}),(u_3,v_{k_3})$, where $k_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$. Then we can get 2 edge-disjoint S-Steiner paths, the path induced by the edges in $\{x(u_2,v_{j_2}),(u_2,v_{j_2})y,y(u_2,v_{j_1}),(u_2,v_{j_1})z,z(u_2,v_{j_3}),(u_2,v_{j_3})t\}$ and the path Q_2 induced by the edges in $\{z(u_2,v_{j_2}),(u_2,v_{j_2}),(u_2,v_{j_2}),(u_2,v_{j_2}),(u_2,v_{j_2}),(u_2,v_{j_1})\}$, $(u_2,v_{j_1})x,x(u_2,v_{j_3}),(u_2,v_{j_3})y\}$.

Note that the arbitrariness of the three vertices in $H(u_1) - \{x,y,(u_1,v_3)\}$, the three vertices in $H(u_2) - \{(u_2,v_1),(u_2,v_2),(u_2,v_3)\}$ and the three vertices in $H(u_3) - \{z,t,(u_3,v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-disjoint S-Steiner paths. These paths together with Q_1,Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Finally, we consider the case k=2. Without loss of generality, we may assume that $x,y\in V(H(u_1))$ and $z,t\in V(H(u_2))$ and $x=(u_1,v_1),y=(u_1,v_2),z=(u_2,v_1),t=(u_2,v_2)$. Then we can get 2 edge-disjoint S-Steiner paths, the path Q_1 induced by the edges in $\{xz,zy,yt\}$ and the path Q_2 induced by the edges in $\{y(u_2,v_3),(u_2,v_3)x,xt,t(u_1,v_3),(u_1,v_3)z\}$.

For any three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$, we say $(u_1,v_{i_1}),(u_1,v_{i_2}),(u_1,v_{i_3})$, where $i_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$ and any three vertices in $H(u_2)-\{z,t,(u_2,v_3\},$ we say $(u_2,v_{j_1}),(u_2,v_{j_2}),(u_2,v_{j_3}),$ where $j_r\in\{4,5,\ldots,m\}$ and $1\leq r\leq 3$, we can get 2 edge-disjoint S-steiner paths, the path induced by the edges in $\{x(u_2,v_{j_1}),(u_2,v_{j_1})y,y(u_2,v_{j_2}),(u_2,v_{j_2})(u_1,v_{i_1}),(u_1,v_{i_1})z,z(u_1,v_{i_2}),(u_1,v_{i_2})t\}$ and the path Q_2 induced by the edges in $\{y(u_2,v_{j_3}),(u_2,v_{j_3})x,x(u_2,v_{j_2}),(u_2,v_{j_2})(u_1,v_{i_2}),(u_1,v_{i_2})(u_2,v_{j_1}),(u_2,v_{j_1}),(u_2,v_{j_1}),(u_1,v_{i_1}),(u_1,v_{i_1})t,t(u_1,v_{i_3}),(u_1,v_{i_3})z\}.$

Note that the arbitrariness of the three vertices in $H(u_1)-\{x,y,(u_1,v_3)\}$ and the three vertices in $H(u_2)-\{z,t,(u_2,v_3)\}$, we can obtain $\lfloor \frac{2(m-3)}{3} \rfloor$ edge-

disjoint S-Steiner paths. These paths together with Q_1, Q_2 are $\lfloor \frac{2m}{3} \rfloor$ edge-disjoint S-Steiner paths, as desired.

Lemma 6 If x, y, z, t are contained in distinct $H(u_i)s$, then there exist m-1 edge-disjoint S-Steiner paths.

Proof. The following cases will be considered.

Case 1.
$$d_{P_n \circ H}(x, y) = d_{P_n \circ H}(y, z) = d_{P_n \circ H}(z, t) = 1$$
.

Without loss of generality, we may assume that $x \in V(H(u_1)), y \in V(H(u_2)), z \in V(H(u_3)), t \in V(H(u_4))$ and $x = (u_1, v_1), y = (u_2, v_1), z = (u_3, v_1), t = (u_4, v_1)$. Then the path P_1 induced by the edges in $\{xy, yz, zt\}$, the paths Q_j induced by the edges in $\{x(u_2, v_{2j}), (u_2, v_{2j})(u_1, v_{2j+1}), (u_1, v_{2j+1})y, y(u_3, v_{2j}), (u_3, v_{2j})(u_2, v_{2j+1}), (u_2, v_{2j+1})z, z(u_4, v_{2j}), (u_4, v_{2j})(u_3, v_{2j+1}), (u_3, v_{2j+1})t\}\{1 \le j \le \lfloor \frac{m-1}{2} \rfloor\}$ the paths Q_j' induced by the edges in $\{x(u_2, v_{2j+1}), (u_2, v_{2j+1}), (u_1, v_{2j}), (u_1, v_{2j})y, y(u_3, v_{2j+1}), (u_3, v_{2j+1}), (u_3, v_{2j+1}), (u_2, v_{2j}), (u_2, v_{2j})z, z(u_4, v_{2j+1}), (u_4, v_{2j+1})(u_3, v_{2j}), (u_3, v_{2j}t)\}$ $(1 \le j \le \lfloor \frac{m-1}{2} \rfloor)$ are m-1 or m edge-disjoint S-Steiner paths.

Case 2.
$$d_{P_n \circ H}(x, y) = d_{P_n \circ H}(y, z) = 1$$
 and $d_{P_n \circ H}(z, t) \ge 2$.

Without loss of generality, we may assume that $x \in V(H(u_1)), y \in (H(u_2)), z \in V(H(u_3)), t \in V(H(u_i))$ ($5 \le i \le n$) and $x = (u_1, v_1), y = (u_2, v_1), z = (u_3, v_1)$. Let $P = u_4u_5 \cdots u_i$. Clearly, $\kappa(P' \circ H) \ge m$. From Lemma 1, there is a t, U-fan in $P' \circ H$, where $U = V(H(u_4)) = \{(u_4, v_r) \mid 1 \le r \le m\}$. Thus there exist m pairwise internally disjoint paths P_1, P_2, \cdots, P_m such that each P_r ($1 \le r \le m$) is a path connecting t and (u_4, v_r) . Then the path P_1' induced by the edges in $\{xy, yz, z(u_4, v_1)\} \cup E(P_1)$, the paths Q_j induced by the edges in $\{x(u_2, v_{2j}), (u_2, v_{2j})(u_1, v_{2j+1}), (u_1, v_{2j+1})y, y(u_3, v_{2j}), (u_3, v_{2j})(u_2, v_{2j+1}), (u_2, v_{2j+1})z, z(u_4, v_{2j})\} \cup E(P_{2j})(1 \le j \le \lfloor \frac{m-1}{2} \rfloor)$ the paths Q_j' induced by the edges in $\{x(u_2, v_{2j+1}), (u_2, v_{2j+1}), (u_2, v_{2j+1}), (u_2, v_{2j+1}), (u_2, v_{2j+1})\} \cup E(P_{2j+1})(1 \le j \le \lfloor \frac{m-1}{2} \rfloor)$ are m-1 or m edge-disjoint S-Steiner paths.

The other cases $d_{P_n \circ H}(y,z) = d_{P_n \circ H}(z,t) = 1$ and $d_{P_n \circ H}(x,y) \geq 2$ can be proved with similar arguments.

Case 3.
$$d_{P_n \circ H}(x, y) = 1$$
, $d_{P_n \circ H}(y, z) \ge 2$ and $d_{P_n \circ H}(z, t) \ge 2$.

Without loss of generality, We may assume that $x \in V(H(u_1)), y \in V(H(u_2)), z \in V(H(u_i))$ and $t \in V(H(u_j))$, where $3 < i < j, |j-i| \ge 2$, $4 \le i \le n-2$, $6 \le j \le n$. Let $P' = u_3u_4\cdots u_i$. Clearly, $\kappa(P'\circ H) \ge m$. From Lemma 1, there is a z, U-fan in $P'\circ H$, where $U=V(H(u_3))=\{(u_3,v_r)|1\le r\le m\}$. Thus there exist m pairwise internally disjoint paths P'_1,P'_2,\cdots,P'_m such that each P'_r $(1\le r\le m)$ is a path connecting z and (u_3,v_r) . Furthermore, let $P''=u_{i+1}u_{i+2}\cdots u_j$. Then P'' is the path of order

at least 2. Since $\kappa(P''\circ H)\geq m$, it follows from Lemma 2 that, if we add the vertex z to $P''\circ H$ and join an edge from z to each (u_{i+1},v_r) $(1\leq r\leq m)$, then $\kappa((P''\circ H)\vee\{z,V(H(u_{i+1}))\})\geq m$. From Menger's Theorem, there exist m internally disjoint paths connecting z and t in $(P''\circ H)\vee\{z,V(H(u_{i+1}))\}$, say P_1'',P_2'',\cdots,P_m'' . We may assume that $x=(u_1,v_1)$ and $y=(u_2,v_1)$. Then the paths Q_1 induced by the edges in $\{xy,y(u_3,v_1)\}\cup E(P_1')\cup E(P_1'')$ and the paths Q_r induced by the edges in $\{x(u_2,v_r),(u_2,v_r)(u_1,v_r),(u_1,v_r)y,y(u_3,v_r)\}\cup E(P_r')\cup E(P_r'')$ $(2\leq r\leq m)$ are m edge-disjoint S-Steiner paths, as desired.

The other cases $d_{P_n \circ H}(y,z) = 1$, $d_{P_n \circ H}(x,y) \ge 2$ and $d_{P_n \circ H}(z,t) \ge 2$ or $d_{P_n \circ H}(z,t) = 1$, $d_{P_n \circ H}(x,y) \ge 2$ and $d_{P_n \circ H}(y,z) \ge 2$ can be discussed similarly.

Case 4. $d_{P_n \circ H}(x, y) \ge 2$, $d_{P_n \circ H}(y, z) \ge 2$ and $d_{P_n \circ H}(z, t) \ge 2$.

Without loss of generality, we may assume that $x \in V(H(u_1)), y \in$ $V(H(u_i)), z \in V(H(u_i))$ and $t \in V(H(u_k))$, where $i < j < k, |j-i| \ge 2$, $|k-j| \ge 2, 3 \le i \le n-4, 5 \le j \le n-2$ and $7 \le k \le n$. Let $P' = u_2 u_3 \cdots u_i$. Clearly, $\kappa(P' \circ H) \geq m$. From Lemma 1, there is a y, U-fan in $P' \circ H$, where $U=V(H(u_2))=\{(u_2,v_r)|1\leq r\leq m\}$. Thus there exist m pairwise internally disjoint paths P_1',P_2',\cdots,P_m' such that each P_r' $(1\leq r\leq m)$ is a path connecting y and (u_2,v_r) . Furthermore, let $P''=u_i,u_{i+1},\cdots,u_{j-1}$ and $P'''=u_{j+1},u_{j+2},\cdots,u_k$. Then P'' are two paths with order at least 2. Since $\kappa(P'' \circ H) \geq m$, it follows from Lemma 2, if we add the vertex z to $P'' \circ H$ and join an edge from z to each of (u_{j-1}, v_r) $(1 \le r \le m)$, then $\kappa((P'' \circ H) \vee \{z, V(H(u_{j-1}))\}) \geq m$. By the same reason, if we add the vertex z to $P''' \circ H$ and join an edge from z to each of (u_{j+1}, v_r) $(1 \le r \le m)$, then $\kappa((P''' \circ H) \vee \{z, V(H(u_{j+1}))\}) \geq m$. From Menger's Theorem, there exist m internally disjoint paths connecting z and y in $(P'' \circ H) \vee \{y, V(H(u_{j-1}))\}$, and we say $P_1'', P_2'', \dots, P_m''$. And there exist m internally disjoint paths connecting z and t in $(P''' \circ H) \vee \{z, V(H(u_{j+1}))\}$, and we say $P_1''', P_2''', \cdots, P_m'''$. Note that the union of any path in $\{P_r'' \mid 1 \le r \le m\}$ with any path in $\{P_r''' \mid 1 \le r \le m\}$ is a S-Steiner path. Then the paths Q_r induced by the edges in $\{x(u_2, v_r)\} \cup$ $E(P_r') \cup E(P_r'') \cup E(P_r''')$ $(1 \le r \le m)$ are m edge-disjoint S-Steiner paths, as desired.

From Lemmas 3, 4, 5 and 6, we conclude that, for any $S \subseteq V(P_n \circ H)$, there exist $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths, and hence $\omega_{P_n \circ H}(S) \geq \lfloor \frac{3m}{5} \rfloor$. From the arbitrariness of S, we have $\omega_4(P_n \circ H) \geq \lfloor \frac{3m}{4} \rfloor$. The proof of Proposition 1 is complete.

2.2 Lexicographic product of two general graphs

After the above preparations, we are ready to prove Theorem 2 in this subsection.

Proof of Theorem 2: Set $\omega_4(G) = \ell$. Recall that $V(G) = \{u_1, u_2, \dots, u_n\}$,

 $V(H)=\{v_1,v_2,\ldots,v_m\}$. From the definition of $\omega_4(G\circ H)$, we need to prove that $\omega_{G\circ H}(S)\geq \ell\lfloor\frac{3m}{5}\rfloor$ for any $S=\{x,y,z,t\}\subseteq V(G\circ H)$. Furthermore, it suffices to show that there exist $\ell\lfloor\frac{3m}{5}\rfloor$ edge-disjoint S-Steiner paths in $G\circ H$. Clearly, $V(G\circ H)=\bigcup_{i=1}^n V(H(u_i))$. Without loss of generality, let $x\in V(H(u_i))$, $y\in V(H(u_j))$, $z\in V(H(u_k))$ and $t\in V(H(u_r))$, where $i\leq j\leq k\leq r$.

Suppose that x,y,z,t belong to the same $V(H(u_i))$ $(1 \le i \le n)$. Without loss of generality, let $x,y,z,t \in V(H(u_1))$. Since $\lambda(G) \ge \omega_4(G) = \ell$, it follows that the vertex u_1 has ℓ neighbors in G, say $u_2,u_3,\cdots,u_{\ell+1}$. From Proposition 1, there exist $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths in $P_i \circ H$ where $P_i = u_1u_i$ $(2 \le i \le \ell+1)$. So there are $\ell \lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths in $G \circ H$, as desired.

Suppose that three vertices of $\{x,y,z,t\}$ belong to some copy $H(u_i)$ $(1 \le i \le n)$. Without loss of generality, let $x,y,z \in H(u_1)$ and $t \in H(u_2)$. Note that $\lambda(G) \ge \omega_4(G) = \ell$. Therefore, there exist ℓ edge-disjoint paths connecting u_1 and u_2 in G, say P_1, P_2, \cdots, P_ℓ . From Proposition 1, there exist $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths in $P_j \circ H$ $(1 \le j \le \ell)$ by Proposition 1. Observe that $\bigcup_{j=1}^{\ell} P_j$ is a subgraph of G and $(\bigcup_{j=1}^{\ell} P_j) \circ H$ is a subgraph of $G \circ H$. So the total number of the edge-disjoint S-Steiner paths is $\ell \lfloor \frac{3m}{5} \rfloor$, as desired.

Suppose that two vertices of $\{x, y, z, t\}$ belong to some copy $H(u_i)$ $(1 \le i \le n)$.

Case 1. $x, y \in V(H(u_i)), z \in V(H(u_j))$ and $t \in V(H(u_k))$, where i < j < k, $1 \le i \le n-2, 2 \le j \le n-1, 3 \le k \le n$.

Without loss of generality, we may assume that $x, y \in V(H(u_1)), z \in V(H(u_2))$ and $t \in V(H(u_3))$.

Since $\omega_4(G)=\ell$, it follows that there exist ℓ edge-disjoint Steiner paths connecting $\{u_1,u_2,u_3\}$ in G, say P_1,P_2,\cdots,P_ℓ . From Proposition 1, there exist $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths in $P_k \circ H$ ($1 \leq k \leq \ell$) by Proposition 1. Observe that $\bigcup_{k=1}^\ell P_k$ is a subgraph of G and $(\bigcup_{k=1}^\ell P_k) \circ H$ is a subgraph of $G \circ H$. Therefore, the total number of the edge-disjoint S-Steiner paths is $\ell \lfloor \frac{3m}{5} \rfloor$, as desired.

Case 2. $x, y \in V(H(u_i)), z, t \in V(H(u_j)), \text{ where } i < j, 1 \le i \le n-1, 2 \le j \le n.$

The case can be discussed similarly.

Suppose that x,y,z,t are contained in distinct $H(u_i)$ s. Without loss of generality, let $x \in H(u_1), y \in H(u_2), z \in H(u_3)$ and $t \in H(u_4)$. Since $\omega_4(G) = \ell$, it follows that there exist ℓ edge-disjoint Steiner paths connecting $\{u_1,u_2,u_3,u_4\}$ in G, say P_1,P_2,\cdots,P_ℓ . From Proposition 1, there exist $\lfloor \frac{3m}{5} \rfloor$ edge-disjoint S-Steiner paths in $P_k \circ H$ $(1 \le k \le \ell)$ by Proposition 1. Observe that $\bigcup_{k=1}^{\ell} P_k$ is

a subgraph of G and $(\bigcup_{k=1}^{\ell} P_k) \circ H$ is a subgraph of $G \circ H$. Therefore, the total number of the edge-disjoint S-Steiner paths is $\ell \lfloor \frac{3m}{5} \rfloor$, as desired.

From the above argument, we conclude that, for any $S\subseteq V(G\circ H)$, $\omega_{G\circ H}(S)\geq \omega_{(\bigcup_{i=1}^r P_i)\circ H}(S)\geq \ell\lfloor\frac{3m}{5}\rfloor$, which implies that $\omega_4(G\circ H)\geq \ell\lfloor\frac{3m}{5}\rfloor=\omega_4(G)\lfloor\frac{3|V(H)|}{5}\rfloor$. The proof is now complete.

References

- [1] A. Blasiak, R. Kleinberg, E. Lubetzky, Lexicographic products and the power of non-linear network coding, arXiv: 1108.2489 [math.CO] 2013.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [3] G. Chartrand, S.F. Kappor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, Bull. Bombay Math. Colloq. 2(1984), 1-6.
- [4] G. Chartrand, F. Okamoto, P. Zhang, Rainbow trees in graphs and generalized connectivity, Networks 55(4)(2010), 360-367.
- [5] S.K. Das, S.R. Öhring, A.K. Banerjee, Embeddings Into Hyper Petersen Network: Yet Another Hypercube-Like Interconnection Topology, VLSI Design, 2(4)(1995), 335-351.
- [6] D.P. Day, O.R. Oellermann and H. C. Swart, The ℓ-connectivity function of trees and complete multipartite graphs, J. Combin. Math. Combin. Comput. 10(1991), 183–192.
- [7] K. Day, A.E. Al-Ayyoub, *The cross product of interconnection networks*, IEEE Trans. Parallel and Distributed Systems 8(2)(1997), 109-118.
- [8] G.A. Dirac, In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen, Math. Nach, 22(1960), 61-85.
- [9] M. Feng, M. Xu, K. Wang, *Identifying codes of lexicographic product of graphs*, Electron. J. Combin. 19(4)(2012), 56-63.
- [10] M. Grötschel, The Steiner tree packing problem in VLSI design, Math. Program. 78(1997), 265-281.
- [11] M. Grötschel, A. Martin, R. Weismantel, Packing Steiner trees: A cutting plane algorithm and commputational results, Math. Program. 72(1996), 125– 145.
- [12] D.L. Goldsmith, On the second-order edge-connectivity of a graph, Congressus Numerantium 29(1980), 479-484.
- [13] D.L. Goldsmith, On the nth order connectivity of a graph, Congressus Numerantium 32(1981), 375–382.
- [14] D.L. Goldsmith, B. Manval, V. Faber, Seperation of graphs into three components by removal of edges, J. Graph Theory 4(1980), 213-218.

- [15] M. Hager, Pendant tree-connectivity, J. Combin. Theory 38(1985), 179-189.
- [16] M. Hager, Path-connectivity in graphs, Discrete Math. 59(1986), 53-59.
- [17] R. Hammack, W. Imrich, Sandi Klavžr, Handbook of product graphs, Secend edition, CRC Press, 2011.
- [18] S.M. Hedetniemi, S.T. Hedetniemi, A.L. Liestman, A survey of gossiping and broadcasting in communication networks, Networks 18(1988), 1240– 1268.
- [19] A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter, *Hamilton Paths in Grid Graphs*, SIAM J. Comput. 11(4)(1982), 676-686.
- [20] K. Jain, M. Mahdian, M. Salavatipour, *Packing Steiner trees*, in: Proc. of the 14th ACM-SIAM symposium on Discterte Algorithms, Baltimore, 2003, 266-274.
- [21] S.L. Johnsson and C.T. Ho, Optimum broadcasting and personaized communication in hypercubes, IEEE Trans. Computers 38(9)(1989), 1249-1268.
- [22] S. Ku, B. Wang, T. Hung, Constructing edge- disjoint spanning trees in product networks, Parallel and Distributed Systems, IEEE Trans. Parallel and Disjoited Systems 14(3)(2003), 213-221.
- [23] F. Li, Z. Xu, H. Zhao, W. Wang, On the number of spanning trees of the lexicographic product of networks, Sci. China, Ser.F 42(2012), 949-959.
- [24] H. Li, X. Li, Y. Mao, On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices, Bull. Malays. Math. Sci. Soc. (2)37(3)(2014), 747-756.
- [25] X. Li, Y. Mao, Generalized Connectivity of Graphs, Springer Briefs in Mathematics, Springer, Switzerland, 2016.
- [26] X. Li, Y. Mao, On extremal graphs with at most ℓ internally disjoint Steiner trees connecting any n-1 vertices, Graphs & Combin. 31(6)(2015), 2231–2259.
- [27] X. Li, Y. Mao, The generalied 3-connectivity of lexigraphical product graphs, Discrete Math. Theor. Comput. Sci. 16(1)(2014), 339-354.
- [28] X. Li, Y. Mao, Y. Sun, On the generalized (edge-)connectivity of graphs, Australasian J. Combin. 58(2)(2014), 304–319.
- [29] Y. Mao, Path-connectivity of lexicographical product graphs, Int. J. Comput. Math. 93(1)(2016), 27–39.
- [30] Y. Mao, Constructing edge disjoint Steiner paths in lexicographic product graphs, submitted.
- [31] F. Okamoto, P. Zhang, The tree connectivity of regular complete bipartite graphs, J. Combin. Math. Combin. Comput. 74(2010), 279-293.
- [32] N.A. Sherwani, Algorithms for VLSI physical design automation, 3rd Edition, Kluwer Acad. Pub., London, 1999.

- [33] D. West, Introduction to Graph Theory (Second edition), Prentice Hall, 2001.
- [34] E.L. Wilson, R.L. Hemminger, M.D. Plimmer, A family of path properties for graphs, Math. Ann. 197(1972), 107-122.