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Abstract

Dirac showed that in a (k — 1)-connected graph there is a path through
each k vertices. The path k-connectivity m(G) of a graph G, which is a
generalization of Dirac’s notion, was introduced by Hager in 1986. Recently,
Mao introduced the concept of path k-edge-connectivity wi(G) of a graph
G. Denote by G o H the lexicographic product of two graphs G and H. In
this paper, we prove that we(G o H) > wa(G)| 2% | for any two graphs
G and H. Moreover, the bound is sharp.

Keywords: Edge-connectivity; Steiner tree; packing; path edge-connectivity;
lexicographic product.
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1 Introduction

All graphs considered in this paper are undirected, finite and simple. We refer
to [2] for graph theoretical notation and terminology not described here. For a
graph G, let V(G), E(G) and §(G) denote the set of vertices, the set of edges and
the minimum degree of G, respectively. For S C V(G), we denote by G — S the
subgraph obtained by deleting from G the vertices of S together with the edges
incident with them.

In [8], Dirac showed that in a (k — 1)-connected graph there is a path through
each k vertices; see [34]. In [16], Hager revised this statement to the question of
how many internally disjoint paths P; with the exception of a given set S of k
vertices exist such that S C V/(P;). The path connectivity of a graph G, intro-
duced by Hager [16], is a natural specialization of the generalized connectivity
and is also a natural generalization of the ‘path’ version definition of connectiv-
ity, For a graph G = (V,E) and a set S C V(G) of at least two vertices, a
path connecting S (or simply, an S-path) is a subgraph P = (V', E’) of G that
is a path with S C V', Note that a path connecting S is also a tree connect-
ing S. Two paths P and P’ connecting S are said to be internally disjoint if
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E(PYNEP)=2and V(P)NV(P)=S. For § C V(G) and |S| > 2,
the local path connectivity m¢(S) is the maximum number of internally disjoint
paths connecting S in G, that is, we search for the maximum cardinality of edge-
disjoint paths which contain .S and are vertex-disjoint with the exception of the
vertices in S. For an integer k with 2 < k < n, the path k-connectivity is defined
as m(G) = min{rg(S)|S C V(G),|S| = k}, that is, mc(G) is the minimum
value of m(S) when S runs over all k-subsets of V(G). Clearly, 71(G) = §(G)
and m2(G) = &(G). For k > 3, m(G) < ki(G) holds because each path is also
a tree. Another tree-connectivity parameter, called generalized connectivity, are
studied in [4, 25, 26, 28, 31].

As a natural counterpart of path k-connectivity, Mao [30] recently introduced
the concept of path k-edge-connectivity. Two paths P and P’ connecting S are
said to be edge-disjoint if E(P) N E(P') = @. For § C V(G) and |S| > 2,
the local path edge-connectivity we(S) is the maximum number of edge-disjoint
paths connecting S in G. For an integer k with 2 < k < n, the path k-edge-
connectivity is defined as wi(G) = min{wg(S)|S C V(G),|S| = k}, that is,
wi(G) is the minimum value of wg(S) when S runs over all k-subsets of V (G).
Clearly, we have

Wk
Wi
Wk

The path k-(edge-)connectivity and generalized k-(edge-)connectivity can be
motivated by their interesting interpretation in practice. For example, suppose
that G represents a network. If one considers to connect a pair of vertices of G,
then a path is used to connect them. However, if one wants to connect a set S of
vertices of G with | S| > 3, then a tree has to be used to connect them. This kind of
tree for connecting a set of vertices is usually called a Steiner tree, and popularly
used in the physical design of VLSI circuits (see (10, 11, 32]). In this application,
a Steiner tree is needed to share an electric signal by a set of terminal nodes.
Usually, one wants to consider how tough a network can be, for the connection
of a set of vertices. Then, the number of totally independent ways to connect
them is a measure for this purpose. The k-path-connectivity and generalized k-
connectivity can serve for measuring the capability of a network G to connect any
k vertices in G.

Product networks were proposed based upon the idea of using the cross prod-
uct as a tool for “combining” two known graphs with established properties to
obtain a new one that inherits properties from both [7]. Recently, there has been
an increasing interest in a class of interconnection networks called Cartesian prod-
uct networks; see [7, 22]. Lexicographic product is also studied extensively; see
[17]. Some applications in networks of the lexicographic product were studied;
see[1, 9, 23, 27].

Recently, Li and Mao [27] investigated the sharp upper and lower bounds of
k3(G o H), i.e., the lexicographic product of G and H. For generalized 3-edge-
connectivity, Sun (28] got a sharp lower bound of A3(G o H). Mao [29] obtained
upper and lower bounds of wz(Go H). Here we will study upper and lower bounds
of ws(G o H).

G) = AG), fork=2;

G§ =6(Q), fork=1;
G) < Me(B), fork >3 (1)




The lexicographic product of two graphs G and H, written as G o H, is
defined as follows: V(G o H) = V(G) x V(H), and two distinct vertices (u, v)
and (u’, v’) of G o H are adjacent if and only if either (u,u’) € E(G) oru = u’
and (v,v’) € E(H). Note that unlike the Cartesian product, the lexicographic
%oducct is a non-commutative product since G o H is usually not isomorphic to

oG.

Observation 1 (1) Let G be a connected graph. Then m4(G) < wy(G) < §(G).

(2) Let G be a connected graph with minimum degree 6. If G has two adjacent
vertices of degree 6, then wi(G) < § — 1.

In this paper, we obtain the following lower bound of w4(G o H).

Theorem 2 Let G and H be two graphs. Then

wa(G o H) > wy(G) [EL‘%EHJ

Moreover, the bound is sharp.
The following observation is immediate.

Observation 3 For any connected graph G, if wa(G) > 4, then 6(G) > ¢ and
there are at most two vertices with degree £.

Example 1: Set G = P, and H = 2K,. Clearly, w4(G) = 1 and |V (H)| = 2.
From Theorem 2, we obtain that w, (P, 0 2K;) > 1. Note that there are at least 4
vertices with minimum degree 2. From Observation 3, we have wy(P,02K,) < 1.
So wy(P, 0 2K,) = 1. So the bound in Theorem 2 is sharp.

2 Proof of Theorem 2

In this section, let G and H be two connected graphs with V(G) = {uy, ua,
.. un}and V(H) = {vy,ve,...,vm}, respectively. Then V(GoH) = {(ui,v;)
[1<i<n 1<j<m} Forve V(H), we use G(v) to denote the sub-
graph of G o H induced by the vertex set {(u;,v)|1 < i < n}. Similarly, for
u € V(G), we use H(u) to denote the subgraph of G o H induced by the vertex
set {(u,v;)|1 < j < m}. In the sequel, let K,, and P, denote the complete
graph of order n and path of order n, respectively. If G is a connected graph and
z,y € V(G), then the distance dg(x,y) between z and y is the length of a short-
est path connecting = and y in G. The degree of a vertex v in G is denoted by
dc(‘v).

We now introduce the general idea of the proof of Theorem 2. In Section 2.1,
we first study the path 4-edge-connectivity of the lexicographic product of a path

P and a graph H and show wy(P o H) > [wlj After this preparation, we
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consider the graph G o H and prove wy(G o H) > wy(G)| 24 | in Subsection
2.2.

Before realizing the above two steps, we introduce the following two well-
known lemmas, which will be used later.

Given a vertex = and a set U of vertices, an (z, U)-fan is a set of paths from
x to U such that any two of them share only the vertex z. The size of a (z, U)-fan
is the number of internally disjoint paths from z to U.

Lemma 1 (Fan Lemma, [33], p-170) A graph is k-connected if and only if it has
at least k + 1 vertices and, for every choice of x, U with |\U| > k, it has an
(z,U)-fan of size k.

Lemma 2 (Expansion Lemma, [33], p-162) If G is a k-connected graph, and G’
is obtained from G by adding a new vertex y with at least k neighbors in G, then
G’ is k-connected.

Let G be a k-connected graph. Choose U C V(G) with |U| = k. Then the graph
G' is obtained from G by adding a new vertex y and joining each vertex of U and
the vertex y. We call this operation an expansion operation at y and U. Denote
the resulting graph G’ by G’ = G Vv {y,U}.

2.1 Lexicographic product of a path and a connected graph

To start with, we show the following proposition, which is a preparation of
the next subsection.

Proposition 1 Let H be a connected graph and P, be a path with n vertices.
Then wy(P, o H) > le Moreover, the bound is sharp.

Let V(H) = {v1,v2,...,vm} and V(P,) = {uj,us,...,un}. Without
loss of generality, let u; and u; be adjacent if and only if [ — j| = 1, where
1 €1 # j < n Itsuffices to show that wy(P, o H)(S) > [Q-s'ﬂj for any
S = {x,y,2,t} C V(P, o H), that is, there exist | 3| edge-disjoint S-Steiner
paths in P, o H. We proceed our proof by the following four lemmas.

Lemma 3 Ifz,y, z,t belong to the same V (H (u;)) (1 < i < n), then there exist
|32 | edge-disjoint S-Steiner paths.

Proof. Without loss of generality, we assume z,y,2,t € V(H(u,)). For any
five vertices in H (u3), we say (ua,vj,), (u2,v5,), (u2,vjs), (u2,v5,), (U2, V55 ),
where j; € {1,2,...,m} and 1 < i < 5. For any vertex in H(u;) — {z,v, z,t},
we say (u1,v;, ). Then the path induced by the edges in {z(u2,v;,),

(‘U-g, Vi, )(u'l s Uiy )’ (ul » Vi, )(U2, vj:,)a (u2, 'Ujs)yt y(u21 'vj:;)" (u2a Vjs )tv t(’u'z, vjz),
(u2,v;,)z} and the path induced by the edges in {z(u2,vj,), (v2,vj,)2,

54



z(ug, vy, ), (ua, vj, )t, t{uz, vy, ), (u2, vy, )y }and the path induced by the edges in
{z(u2,vy,), (w2, vj, )z, x(u2, vj), (u2,v5,)y, y(us, vj,), (u2, vy, )t} are 3 edge-
disjoint S-Steiner paths. For the arbitrariness of the five vertices in H(us) and
the vertex (uy,v;,) in H(uy) — {x,y,z,t}, we can obtain | 3| edge-disjoint
S-Steiner paths; see Figure 2.1.

H(wy) Huy)

Figure 2.1 The graph for Lemma 3.

Lemma 4 [fthree vertices of {x,y, z,t} belong to some copy H (u;) (1 <1 < n),
then there exist [%j edge-disjoint S-Steiner paths.

Proof.  Without loss of generality, we may assume z,y,z € V(H(u1)) and
t e V(H(u;)) (2 <1 < n). In the following argument, we can see that this
assumption has no impact on the correctness of our proof. We distinguish the
following two cases to show this lemma.

Case 1.1 = 2.

Without loss of generality, we assume t € V/(H (uz)). Let 2',y', 2’ be the
vertices corresponding to x, vy, z in H(u2) and t’ be the vertex corresponding to ¢
in H(u).

Suppose t' & {x,y, z}. Without loss of generality, let

{2y, 2.t} = {(ur,v;) |1 < j < 4}

and {2',y",2".t} = {(u2,v;)|1 < j < 4}. Then the path @, induced by
the edges in {xt, t(uy, vs), (w1, vs)z’, 2'y, yy’, y'z}, the path 2 induced by the
edges in {zt,tt',t'z’, 2’2, x(ua,vs), (us, v5)y} and the path Q3 induced by the
edges in {ty,yz',z'z, za',2'x} are 3 edge-disjoint S-Steiner paths; see Figure
2.2 (a).

For any five vertices in H (u;) — {x, 9, z,t', (w1, v5)}, we say (u1,vs, ),
(w1, v4,), (U1, viy), (w1, v, ), (U1, 4, ), where i, € {6,7,...,m}and1 <r < 5.
For any five vertices in H (us)—{z', ', 2/, t, (uz, vs) }, we say (us, v;,), (u2,v;,),
(uz2,vj,), (u2,v5,), (u2, vj, ), where j» € {6,7,...,m}and 1 < r < 5. Then we
can get the path induced by the edges in {z(us,v;,), (ug, v, )y, y(uz, vy, ),
(w2, v, (1, Vi, ), (w1, 04y )t B(ug, vy ), (w1, w3, ) (U2, v5,), (w2, v, )2} and the path
induced by the edges in {z(ug, vy, ). (w2, vy, ) (ur, vi,), (w1, viy ) (ua, vy, ),
(uz, Ujs)za z(ua, Uy )s ('—"'2» Vs, }(UL 'Ui:,), (w1, Uiy )t*t(uls Ui5)1 (ul» Uis)(u2!vj4)v

n
n



H{m) Hiuy) H(uy) H{ug)

( n) (b)

Figure 2.2 The graphs for Lemma 4.

(u2,v;, )y} and the the path induced by the edges in {#(u1,vs,), (u1, vi, ) (u2,v5,),
(u2,v),)y, y(uz, vy,), (U, v, )z, T(ug, vj,), (w2, vy, )2} are 3 edge-disjoint S-
Steiner paths; see Figure 2.2 (b).

Note that the arbitrariness of the five vertices in H (u,) —{z, v, 2, t/, (u1,v5)}
and the five vertices in H (uz) — {z',y', 2’, t, (u2,vs)}, we can obtain [MJ
edge-disjoint S-Steiner paths. These paths together with @1, Q2, Q3 are |32
edge-disjoint S-Steiner paths, as desired.

Suppose t' € {x,y, z}. Without loss of generality, lett’ = z and {z,y, 2} =
{(w1,v1), (u1,v2), (w1, v3)} and {z’, y', t} = {(uz,v1), (uz, v2), (u2,v3)}. Then
the path @, induced by the edges in {zt,ty, yz’, 2z}, the path Q2 induced by
the edges in {xy’,y'z, z(u2, va), (uz, v4)y, y(ua, vs), (U2, vs)(u1, va), (U1, va)t}
and the path (3 induced by the edges in {yy’, y' (w1, vs), (uy, vs)t, tz, z(ug, vs),
(ug,vs)x} are 3 edge-disjoint S-Steiner paths; see Figure 2.3 (a).

For any five vertices in H (u;)—{x, y, z, (u1,v4), (uy,vs)}, we say (uy, vy, ),
(w1, vi,), (w1, viy), (U, viy ), (U1,05, ), where i € {6,7,...,m}and 1 <r <5.
For any five vertices in H (ug) — {z', ¥, t, (u2, v4), (uz, vs)}, we say (uz, v4, ),
(u2, v, ), (U2, v5,). (w2, v5,), (u1,v;, ), where . € {6,7,...,m}and1 < r < 5.
Similarly to the proof of the above case, we can get 3 edge-disjoint S-Steiner
paths; see Figure 2.3(b).

H{uy) Huz)

(a)

Figure 2.3 The graphs for Lemma 4.



Note that the arbitrariness of the five vertices in H(u;) — {z,y, z, (u1, v4),
(uy,v5)} and five vertices in H (up) — {z',¥', t, (uz, v4), (u2, vs)}, we can obtain
['3—(-";;;'” edge-disjoint S-Steiner paths. These path together with (1, @2, Q3 are
L%J edge-disjoint S-Steiner paths, as desired.

Case 2.1 > 3.

Let P/ = wugus---u,. Clearly, s(P' o H) > m. From Lemma 1, there
is at,U-fan in P’ o H, where U = V(H = {(u2,v;)|1 € 7 £ m}.
Thus, there exist m internally disjoint paths Pl, Pg, -+, Py such that P; (1 <
J < m) is a path connecting ¢ and (ug,v;). Without loss of generality, let
{z,y.2} = {(u1,v;)|1 < 7 < 3} and any five vertices in H(uy), we say
(ug,vy), (ua,va), (ua,v3), (ua, vq), (uz,vs). Then the path @, induced by the
edges in {z(uo,v1), (ua, v1)y, y(us, v2), (e, v2)z, z(ug, va)} U E(P;) the path
Q- induced by the edges in {y(ug,v4), (uz, vs)z, z(us,v2)} U E(P) UE(P)U
{(u2,v1)z} and the path Q3 induced by the edges in {z(uz,v4)} U E(Py) U
E(Ps)U{(ua,vs)z, x(ua, va), (uz,v3)y} are 3 edge-disjoint S-Steiner paths; see
Figure 2.4(a).

For any five vertices in H (u)—{z,y, z, (u1,v4), (u1,vs) }, we say (ug, vy ),
(ur,vi,), (w1, viy), (wy, vi,), (w1, v, ), where i, € {6,7,...,m}and1 <r < 5.
For any five vertices in H(u2) — {(uz2,v1), (u2, va), (u2,v3), (uz, v4), (v, vs)},
wesay (ug,vj, ), (u2, vi, ), (w2, vj,), (u2,v5,), (u1, v, ),where 5. € {6,7,...,m}
and 1 <7 < 5. Similarly to the proof of the above case, we can get 3 edge-disjoint
S-Steiner paths. They are the path induced by the edges in {x(u2, v}, ), (u2, v;, )y,
Y(ug, vy, ), (U2, v4, )z, 2(u2, v, )} U E(P},) and the path induced by the edges in
{x(uz,v5,), (uz,vn)(uhvu) (w1, vi, )(uz, v5,), (w2, vi, )y, y(ua, vs, ),

(u2, v, )z, (ug, uJ2 }UE P;,) and the path induced by the edges in {z(u2, v;,)}
UE(PR;,)U %5 )} U{ (w2, vj, )z, x(u2, vj,), (u2, vj, )y }; see Figure 2.4 (b).

Hin) Hiug) Hu,) H{uy) H (1) H(ny)

(#) (h)

Figure 2.4 The graph for Lemma 4

Note that the arbitrariness of the five vertices in H (u;) — {x, v, 2, (uy, v4),
(u1,vs)} and the five vertices in H(uz2) — {(ua, v1), (ug,va2), (w2, v3), (uz, v4),
(u2,v5)}, we can obtain [$J edge-disjoint S-Steiner paths. These path to-
gether with 1, Q2, Q3 are [3;”J edge-disjoint S-Steiner paths, as desired. 0
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Lemma 5 [f two vertices of {z,y, z,t} belong to some copy H(u;) (1 < i < n),
then there exist [%’—‘J edge-disjoint S-Steiner paths.

Proof. We have the following cases to be considered.

Case 1. z,y € V(H(w;)), z € V(H(u;)) and t € V(H (ux)), where i < j < k,
1<i<n-22<j<n-1,3<k<n.

Without loss of generality, we may assume that z,y € V(H(u;)) and z €
V(H(u;)) (2<j<n-1).

Subcase 1.1 z € V(H(up)) and t € V(H(ug)), where3 < k < n.

Consider the case k > 4. Let P/ = uguy---u,. Clearly, (P’ o H) >
m. From Lemma 1, there is a t,U-fan in P’ o H, where U = V(H(u3)) =
{(us,v:) |1 < 7 < m}. Thus, there exist m internally disjoint paths P, Py, - - ,
P, such that P, (1 < r < m) is a path connecting ¢ and (u3,v;).

Without loss of generality, we may assume that z = (u3,v1),y = (u1,v2)
and z = (ug, v1). Then we can get the path Q; induced by the edges in {zz, zy,
y(ug, v2), (u2,v2) (u3,v1)} U E(P1) and the path Q2 induced by the edges in
E(P,) U {(ua,va2)z, z(u1, va), (u1,v3)(uz,va), (u2, vo)x, (u2, vs), (u2,v3)y}.
For any three vertices in H(u;) — {z,y, (u1,v3)}, we say (u1,v;,), (v1,vi,),
(u1,vi,), where i, € {4,5,...,m} and 1 < r < 3. For any three vertices in
H(“Z) - {Z, (u2a U2)7 (‘ll.2, US)}' we say (uZy v.‘il)v (u'hvje)v (u2: vjs)v where j. €
{4,5,...,m}and 1 < r < 3. Forany three vertices in H (u3)—{(us, v1), (u3, v2),
(ua,v3)}, we say (us, vk, ), (us, Vk, ), (u3, vk, ), where k. € {4,5,...,m} and
1 < r < 3. Similarly to the proof of the above case, we can get 2 edge-disjoint S-
Steiner paths. They are the path induced by the edges in {z(u2,v;, ), (v2,v;,)y,
y(uz, vj, ), (w2, vj,) (w1, v3,), (u1,vi,) 2, 2(u3, vk, )} U E(P,) and the path in-
duced by the edges in E(sz) U {(u3a vk?)z) z(ul ’ viz)v (uh vi?)(u2v vjz))
(u2,vj, )T, T(uz, vjy), (u2,v5,)y}-

Note that the arbitrariness of the three vertices in H(u;) — {z,y, (v1,v3)},
the three vertices in H(up) — {z,{u2,v2),(u2,v3)} and the three vertices in
H(us) — {(us, v1), (u3, v2), (us, v3)}, we can obtain | 2Z=3) | edge-disjoint S-
Steiner paths. These path together with Q;, Q2 are [%’lj edge-disjoint S-Steiner
paths, as desired.

Consider the case k = 3. We may assume that ¢ € V(H(u3)) and x =
(uy,v1),y = (uy,v2) and z = (up,v1) and t = (u3,v;). Then we can get the
path Q; induced by the edges in {y(uz,v2), (u2,v2)Z, 2, 2t} and the path Q
induced by the edges in {z(u2, v3), (u2,v3)y, yz, 2(u3, va), (u3, vo)(uz, v2),

(uz, v2)t}.

For any three vertices in H(u;)— {z, v, (u1,v3)}, we say (u1, v;,), (1, Vi, ),
(w1,vyy), where i, € {4,5,...,m} and 1 < r < 3. For any three vertices in
H(uy) — {z, (uz, v2), (ua, vs}, we say (u2,v;,), (u2,vj,), (u2,v;;), where j. €
{4,5,...,m}and 1 < r < 3. For any three vertices in H (u3)—{(us3,v1), (u3, v2),
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(u3,v3}, we say (us,k,), (u3, Uk, ), (us, Uk, ), where k. € {4,5,...,m} and
1 < r < 3. Similarly to the proof of the above case, we can get 2 edge-disjoint
S-Steiner paths. They are the path induced by the edges in {t(u2,v;,),

(1"'2’ Vs, )(u& Vi, )’ (‘U.3, Vi, )z’ z(ulv Uiy )a (ul) Vi, )(u2s ‘sz), (u2$ Vjp ):L‘, x(u% ng),
(u2,v;,)y} and the path induced by the edges in {t(u2,v;, ), (u2, vj,)(us, vk, ),
(u31 vkz)z5 Z('Uq, 'Uig)a (ula Uiz)(u2, ’sz), (U2, vjz)y) y(U2, vj) )) ('UQ, V5, )x}

Note that the arbitrariness of the three vertices in H(v;) — {z,v, (21,v3)},
the three vertices in H(uz) — {z, (u2,v2), (u2,v3)} and the three vertices in
H(uz) — {(u3,v1), (u3,v2), (us,v3)}, we can obtain [g’"a;?'lj edge-disjoint S-
Steiner paths. These path together with Q1, Q2 are | 2 | edge-disjoint S-Steiner
paths, as desired.

TSlubcase 122 € V(H(uj))andt € V(H(u)), where3<j<n—-1,4<k<

Consider the case |j — k| > 2 and j > 4. Let P’ = uguy---u;. Clearly,
k(P o H) > m. From Lemma 1, there is a z, U’-fan in P’ o H, where U’ =
V(H(u2)) = {(u2,v,) |1 £ r < m}. Thus there exist m pairwise internally dis-
joint paths P{, P}, --- , P} such thateach P} (1 < r < m) is a path connecting z
and (ug,vy). Let P’ = ujjujyo - - - uk. Clearly, K(P” o H) > m. From Lemma
1, thereis at, U"-fan in P” o H, where U" = V(H(uj41)) = {(¥j+1,vr) |1 <
r < m}. Thus there exist m pairwise internally disjoint paths P{’, Py,--- , P%
such that each P}’ (1 < r < m) is a path connecting ¢ and (u;j41,v-). Without
loss of generality, let z = (u3,v1),y = (u3,v2) and z = (u;,v;). Then we
can get the path Q; induced by the edges in {y(u2, v2), (u2, v2)z, z{uz,v1)} U
E(P{)U{z(vj41,v1) }UE(P{') and the path Q, induced by the edges in {z(ug, v3),
(u2, v3)y, y(uz, v1), (uz, v1) (w1, v3), (u1, v3)(uz, v2) JUE(P)U{2(uj41,v2) }U
E(Py).

For any three vertices in H(u;)—{z, y, (v1,v3)}, we say (u1,v;, ), (u1,vi,),
(u1,vi,), any three vertices in H(u2) — {(u2,v1), (u2,v2), (u2,v3)}, we say
(u2,v5,), (u2,v5,), (u2, vj,), any three vertices in H(u;) — {(u;, v1), (v;,v2),
(uj,v3)}, we say (uj, vk, ), (uj, Uk, ), (25, Uk, ), any three vertices in H(uj41) —
{(uj+1,v1), (wi41,v2), (U541, v3)}, wesay (U1, Vs, ), (Ui, Vsg )y (Uga1, Vg )s
where ir, jr, kr,sr € {4,5,...,m}and 1 < 7 < 3. Then we can get 2 edge-
disjoint S-Steiner paths. They are the path induced by the edges in {y(u2,v},),
(u2, v, ), z(u2, v, )} U E(P} YU {2(t;+1,vs,) } UE(P;)) and the path induced
by the edges in {x(u% Vjs )1 (u2, Vjs )yv y(u21 Uiy )) (Ug, Yj, )(ula via)a
(w1, vy )(u2, v5,) } U E(P},) U {2(uj41,5,)} U E(Py,).

Note that the arbitrariness of the three vertices in H(u;) — {z,y, (u1,v3)},
the three vertices in H(uz) — {z, (u2,v2), (u2,v3)}, the three vertices in H (u;) —
{(uj,v1), (uj, v2), (v, v3)} and the three vertices in H(u;j41) — {(wj4+1,v1),
(¥j+1,v2), (j41,v3)}, we can obtain [3("'3—':’1] edge-disjoint S-Steiner paths.
These path together with Q,, Q2 are Lgaﬂj edge-disjoint S-Steiner paths, as de-
sired.

59



Consider the case |[j — k| > 2 and j = 3. Let P = wqug- - ug. Clearly,
k(P' o H) > m. From Lemma 1, there is a t,U-fan in P’ o H, where U =
V(H(us)) = {(uq,vr)|1 < r < m}. Thus there exist m pairwise internally
disjoint paths Py, Py, - - - , Py, such thateach P, (1 < r < m) is a path connecting
t and (u4,v,). Without loss of generality, let z = (u3,v1),y = (u3,v2) and
z = (us, v1). Then we can get 2 edge-disjoint S-Steiner paths. They are the path
Q) induced by the edges in {x(uz,v1), (ug, 1)y, y(u2, va), (u2,v2)z,
z(uq, v1) }JUE(P;) and the path Q2 induced by the edges in {y(uz, v3), (u2, v3)z,
z(ug, v2), (u2, v2)(us, v2), (s, v2)(uz, v1), (U2, v1)z, 2(u4,v2)} U E(P2).

For any three vertices in H (u3) —{z,y, (u1,v3)}, we say (u1,vi, ), (v1,vs,),
(u1,viy), where ¢, € {4,5,...,m} and 1 < r < 3, any three vertices in H(uz)—
{(u27v1)y (‘U,Q, ’02), (uzy v3)}: we say (uz’ AT )) (UZ, vjz)! (Uz, ng)v where jr €
{4,5,...,m}and1 < r < 3, any three vertices in H (u3) — {2, (us, v2), (u3, v3},
we say (u3, Uk, ), (3, Uk, ), (U3, Uk, ), where k. € {4,5,...,m}and1 <r <3
and any three vertices in H (u4) — {{u4, v1), (¢4, v2), (u4,v3)}, we say (uqg,vs,),
(u4,Vs,), (U4,Vs,), where s, € {4,5,...,m} and 1 < r < 3. Then we can
get 2 edge-disjoint S-Steiner paths. They are the path induced by the edges in
{-’L’(U2,'Ujl), (u27vjl )ya y('U.g, 'sz), (uz’ ’sz)z, z(“‘lv”&x)} U E(Psl) and the path
induced by the edges in {y(uz,vj;), (u2, v, T, T(u2, vj5,), (2, v, ) (us, Uk, ),
(u3v vkz)(uil’ Vs )v (u2, Vi1 )z’ Z(U4, vsz)} U E(Psz)'

Note that the arbitrariness of the three vertices in H (u;) — {z,y, (v1,v3)},
the three vertices in H (u2) — {z, (u2, v2), (u2,v3)}, the three vertices in H (u3) —
{(ua,v1), (u3,v2), (us, v3} and the three vertices in H(uq) — {(u4,v1), (u4, v2),
(u4,v3)}, we can obtain [3393%32] edge-disjoint S-Steiner paths. These paths
together with Q;, Q- are [-’%"—j edge-disjoint S-Steiner paths, as desired.

Consider the case |j — k| = 1 and j > 4. Let P = uguz---u;. Clearly,
k(P' o H) > m. From Lemma 1, there is a z,U-fan in P’ o H, where U =
V(H(u2)) = {(u2,vr)|1 < r < m}. Thus there exist m pairwise internally
disjoint paths Py, P,, - - - , Py, such thateach P, (1 < r < m) is a path connecting
z and (ug,v,). Without loss of generality, let z = (uy,v1),y = (u1,v2) and
z = (uj,v1),t = (¢j41,v1). Then we can get 2 edge-disjoint S-Steiner paths, the
path Q; induced by the edges in {x(ug, v2), (u2,v2)y, y(ug, v1)} UE(P)U {2t}
and the path Q- induced by the edges in {y(u2, v3), (ug, v3)z, (us, v1),
(u2,v1)(u1, va), (u1, v3)(u2, v2)} U E(P2) U {z(uj41,v2), (w41, v2)(uj, va2),
(uj,v2)t}.

For any three vertices in H(u;) — {z,y, (u1,v3)}, we say (u1,v;, ), (u1,vi,),
(u1,vi,), where i, € {4,5,...,m}and 1 <r < 3, any three vertices in H (up) —
{(u2,v1), (uz, v2), (u2, v3)}, we say (uz, vjt)v (u2, vjz)v (u2, vj,), where jr €
{4,5,...,m}and 1 < r < 3, any three vertices in H (u;)—{z, (u;, v2), (uj,v3)},
we say (u;, Uk, ), (4, Uk, ), (u3, Uk, ), Where k, € {4,5,...,m}and1 <r <3
and any three vertices in H (uj+1) — {(%;41,v1), (4j+1,2), (4541, v3)}, we say
(41, Vs, )s (Wj41,Vsy ), (U415 Vs, ), Where s, € {4,5,...,m}and 1 < 7 < 3,
we can get 2 edge-disjoint S-Steiner paths, the path induced by the edges in
{z(ue, sz)’ (u2,vj, )y, yluz, vj, )}UE(PJ: )U{z(uj+17 Vs, )s (uj+1’ Usy )(uj’ Uk, )s
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(5, vk, )t} and the path induced by the edges in {y(u2, vj,), (u2, vj, )z,
z(u2,vj; ), (U2, 05, ) (U1, vig ), (U1, Vi), (w2, v55)} U E(Pyy) U {2(2)41,vs,),
(uj+l’ ‘U,,a)(Uj, 'Uk;,), (uj? Vks )t} U E(P32)'

Note that the arbitrariness of the three vertices in H(u,) — {z,y, (v1,v3)},
the three vertices in H (u2) — {z, (u2,v2), (u2,v3)}, the three vertices in H (u;) —
{(uj,v1), (uj,v2), (uj,v3)} and the three vertices in H(u;4+1) — {(uj+1,21),
(uj+1,v2), (441, v3)}, we can obtain [-21'"3—':’-2] edge-disjoint S-Steiner paths.
These paths together with @, Q2 are [%’-’lj edge-disjoint S-Steiner paths, as de-
sired.

Consider the case |j — k| = 1 and j = 3. Without loss of generality, we
may assume that z € V(H(u3)) andt € V(H(uq)) and z = (u;,v1),y =
(u1,v2),z = (u3,v1),t = (u4,v1). Then we can get 2 edge-disjoint S-Steiner
paths, the path @, induced by the edges in {z(uz, v1), (u2,v1)y, y(uz, v2),
(ug,v2)z, zt} and the path Q induced by the edges in {y(ug, v3), (uz,v3)z,
x(uZa v2)a (U2, 'Ug)(’l.n, ’03), (uli U3)(u21 U3), (UQ, v3)za Z(’U.4, 'U2), (U4, 'U2)(U3, 'U2),
(us, ‘Uz)t}.

For any three vertices in H(u;) — {z,y, (u1,v3)}, we say (uy,v;, ), (v1,v,),
(u1,v4,), where i, € {4,5,...,m}and 1 < r < 3, any three vertices in H (uz) —
{(ug,vl), ('UQ,’!)Q), (‘U,g,v;;)}, we say (UQ,’U]"), (ug,v_,-z), (‘ng,vjs), where Jr €
{4,5,...,m}and1 < r < 3, any three vertices in H (u3)—{2, (us, v2), (us, v3)},
we say (u3,Vk, ), (u3, Uk, ), (U3, vk, ), where kr € {4,5,...,m}and1 <r <3
and any three vertices in H (uq) — {(u4,v1), (us,v2), (uq, v3)}, we say (ug,vs,),
(ua, Vs, ), (uq, vsy ), Where s, € {4,5,...,m} and 1 < r < 3. Then we can get 2
edge-disjoint S-Steiner paths, the path induced by the edges in {z(u2,v;,),
(u2,v;, )y, y(uz, vi,), (w2, vs5,)2, 2(u4, vs, ), (4, vs, ) (us, vk, ), (u3, vk, )t} and the
path induced by the edges in {y(u2, vj, ), (u2, vj, )z, z(ug, vy,), (u2, vj, Yuy,vi,),
(uh vis)(uzv vJ'a)a (u27 Uja)z’ Z(u49 Usg)v (u‘h ‘U,,)('u;:,, vkz): (u31 vkz)t}'

Note that the arbitrariness of the three vertices in H(u;) — {z,v, (v1,v3)},
the three vertices in H(ug) — {z, (u2,v2), (u2,v3)}, the three vertices in H (u3) —
{(u3,v1), (u3,v2), (ua, v3)} and the three vertices H (uq) — {(uq,v1), (14, v2),
(uaq,v3)}, we can obtain I_MJ edge-disjoint S-Steiner paths. These paths
together with @1, Q2 are I_%J edge-disjoint S-Steiner paths, as desired.

Case 2. z,y € V(H(w;)), z,t € V(H(uy)), wherei < k,1 < i< n-1,
2<k<n.

Without loss of generality, we may assume that x,y € V(H(u;)), 2,t €
V(H (ug)).

At first, we consider the case £k > 5. Let P’ = wuyuz---u; and P’ =
Ujujqq - - Uk—1, Where i < j < kand |i—j| > 2and |k—j| = 2. Clearly, k(P’o
H) > mand x(P"oH) > m. From Lemma 1, thereis a (u;, v, ), U’'-fanin P'o H
and (u;,v1), U”-fan in P" o H, respectively, where U’ = V(H (ug)) = {(u2,vy)
and U” = V(H(uk-1)) = {(ug-1,vr) |1 £ 7 < m}. Thus there exist m pair-
wise internally disjoint paths P[, P;,- -, Py, such thateach P! (1 <r < m)is
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a path connecting (u;,v;) and (u2,v,) and there exist m pairwise internally dis-
joint paths P{’, Py, - - - , P} such that each P/ (1 < r < m) is a path connecting
(uj,v1) and (uk—1,v,). Without loss of generality, let z = (u1,v1),y = (u1,v2)
and z = (ux, v1),t = (ux, v2). Then we can get 2 edge-disjoint S-Steiner paths,
the path Q; induced by the edges in {z(ug,v2), (ug,v2)y, y(ug,v1)} U E(P]) U
E(P{) U {(uk-1,v1)z, z(uk—1,v2), (uk—1,v2)t} and the path Q2 induced by
the edges in {y(uZa 'U3)) (u21 ’Ua)x, I(u27 Ul)a (u2, vl)(ula 'U3), (uls ‘U3)(U2, 02)} U
E(P2,) U E(P2") U {(uk—l) 'UQ)('U.[:, U3)) (uks v3)(uk—ly 'Ul), (uk—ls vl)t’
t(uk—1,v3), (uk—1,v3)z}.

For any three vertices in H (u;) — {z, v, (u1,v3)}, we say (u1,v;,), (u1,vi,),
(u1,vi,), where i, € {4,5,...,m}and 1 <r < 3, any three vertices in H(uz) —
{(u2,v1), (uz,v2), (u2,v3)}, we say (u2,v;,), (u2,vj,), (u2,vj,), where j, €
{4,5,...,m} and 1 < r < 3, any three vertices in H(ug—_1) — {(ux-1,v1),
(uk—1,v2), (uk—1,v3)}, we say (Uk—1,Va, ), (Uk—1,Va,)s (Uk—1, Vas ), Where a, €
{4,5,...,m} and 1 <7 < 3 and any three vertices in H(ux) — {2,t, (ux,v3)},
we say (Uk, Vs, ), (Uk, Vs, )s (Uk, Vs, ), Where s € {4,5,...,m}and1 <7 < 3.
Then we can get 2 edge-disjoint S-Steiner paths, the path induced by the edges in
{.’E(UQ, vjz)) (’U.2, Vj, )yv y(U2, vy )} U E(})_')ll) U E( (’i":—]_)l ) U {(uk—l? Va, )Z,
z(Uk—1,Vaz)s (Uk—1,Va, )} and the path induced by the edges in {y(u2,vj;),
(u2, vy )T, T(uz, vj; ), (u2, V3, ) (w1, Vig ), (U1, Vi) (w2, v3,) } U E(P,

U E(P(Illg_l)z) U {(uk—l ) vaz)(uka vsa)$ (uka Us;;)(“’k—l’ Va, ), (uk—].’vax )ti
t(uk-—l f Ua:;)v t(Uk_ 15 Vas )z}

Note that the arbitrariness of the three vertices in H(u;) — {z,y, (v1,v3)},
any three vertices H (u2) — {{uz,v1), (u2,v2), (u2,v3)}, H(uk—1)—{(uk-1,%1),
(uk—1,v2), (uk—1,v3)} and any three vertices in H (ux) — {2, ¢, (ux, v3)}, we can
obtain [&'%'—Qj edge-disjoint S-Steiner paths. These paths together with Q1, Q2
are | & | edge-disjoint S-Steiner paths, as desired.

Now, we consider the case ¥ = 4. Without loss of generality, we may as-
sume that z,y € V(H (u,)) and z,t € V(H(u4)), especially, z = (uq,v1),y =
(u1,v2) and z = (u4,v1),t = (u4, v2). Then we can get 2 edge-disjoint S-Steiner
paths, the path @Q; induced by the edges in {z(u2, v1), (u2, v1)y, y(uz, v2),
(ug,v2)(us, n), (us, v1)2, 2(us, v2), (u3,v2)t} and the path Q2 induced by the
edges in {y(uZ, 1)3), (uZa 1)3)-'1:7 IB(UQ, '02), (‘U.2, UZ)(ul» '03)’ (uh 'U3)(’LL2, vl))

(u2, v1)(uz, v1), (u3, v1)t, t(ua, va), (u3, v3)z}.

For any three vertices in H (u1) —{z,y, (v1,v3)}, we say (u1, vy, ), (u1, vi,),
(u1,vi,), where i, € {4,5,...,m}and 1 < r < 3, any three vertices in H (ug2) —
{(ug,v1), (ug,v2), (ua,v3)}, we say (u’Zvvj]), (u2,vj,), (u2,v4,), where j. €
{4,5,...,m}and 1 < r < 3, any three vertices in H(u3) — {(u3,v1), (u3,v2),
(uz,v3)}, we say (us, vk, ), (ua, vk, ), (us, vk, ), where k, € {4,5,...,m} and
1 < r < 3 and any three vertices in H(uq) — {z,t, (u4,v3)}, we say (uq,vs, ),
(44, Vs, ), (U4, Vsy ), Where s, € {4,5,...,m}and 1 < r < 3. Then we can get 2
edge-disjoint S-Steiner paths, the path induced by the edges in {z(uz, v}, ),

('Uz» Vi, )ya y(u27 vjz)a (u21 'sz)(’u:;, Vi, )1 (u3$ Vi, )Z, Z(Ua, vkg)a (U3, Vk, )t} and the
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path induced by the edges in {y(u2, vj, ), (¥2, vj, T, z(u2, v, ), (2, vj, ) (U1, vig),
(ula Ui:;)(u2v Yy, )1 (u2’ Vi )(u3‘ Uk, )s (u3’ vk; )t: t(U3, Vi, )a ('U'L’n vkg)z

Note that the arbitrariness of the three vertices in H(u1) — {z,y, (u1,v3)},
the three vertices in H(ua) — {(u2,v1), (u2, v2), (u2,v3)}, the three vertices in
H(uz) — {(ua,v1), (u3,v2), (u3, v3)} and the three vertices in H(u4) — {2z,¢,
(u4,v3)}, we can obtain [2 m-3) J edge-disjoint S-Steiner paths. These paths
together with @, Q> are [2’" J edge-disjoint S-Steiner paths, as desired.

Now, we consider the case & = 3. Without loss of generality, we may assume
that z,y € V(H(u;)) and z,t € V(H(u3)), especially, let z = (u1,v1),y =
(u1,v7) and z = (ugz,v;),t = (us, vz). Then we can get 2 edge-disjoint S-Steiner
paths, the path Q, induced by the edges in {z(uz, v2), (u2,v2)y, y(usz, v1),
(u2,v1)z, z(uz, v3), (ug, v3)t} and the path Q; induced by the edges in {z(u2, v2),
(w2, vo)t, t(ug, v1), (v, v1)x, T(uz,v3), (u2,va)y}.

For any three vertices in H (u;)—{z,y, (v1,v3)}, we say (u1, vy, ), (u1,vs,),
(w1, vi, ), where i, € {4,5,...,m}and 1 < r < 3, any three vertices in H (uz) —
{(U2, vl)v (’U.2, 'Ug), (’U.g, ‘Ug)}, we say (u21 vj; )’ ('U,g, vjz)’ (UQ, vja)r where jr €
{4,5,...,m} and 1 < r < 3, any three vertices in H(u3) — {us,v1), (u3, v2),
(us,v3)}, we say (us,vg, ), (us, Uk, ), (U3, Uk, ), where k, € {4,5,...,m} and
1 < r < 3. Then we can get 2 edge-disjoint S-Steiner paths, the path induced by
the edges in {z(ug,v;,), (w2, v, )y, ¥(u2,v5,), (u2,v;,) 2, 2(u2, vj,), (u2, vj, )t}
and the path Q) induced by the edges in {z(u2,v;,), (u2, v}, )t, t(u2,v;,),

(u% Vi, ).'t, x(u% Uj )a ('uz, ng)y}-

Note that the arbitrariness of the three vertices in H(u1) — {z,y, (u1,v3)},
the three vertices in H(u2) — {(u2,v1), (uz,v2), (u2,v3)} and the three vertices
in H(u3) — {2,¢, (us, v3}, we can obtain [%ﬂj edge-disjoint S-Steiner paths.
The;e paths together with Q1, Q2 are | 2| edge-disjoint S-Steiner paths, as de-
sired.

Finally, we consider the case k = 2. Without loss of generality, we may
assume that 2,y € V(H(u1)) and z,t € V(H(ug)) and z = (u1,v1),y =
(u1,v2),z = (ug,v1),t = (ugz,vs). Then we can get 2 edge-disjoint S-Steiner
paths, the path Q, induced by the edges in {xz, zy, yt} and the path Q; induced
by the edges in {y(‘U,z, ‘03), (UQ, Ug)x, xt, t(ul, ’03), (ul, ‘Ua)z}.

For any three vertices in H(u1) —{z,y, (u1,v3)}, we say (u1, v;, ), (u1,v4,),
(uy,vi,), where 7, € {4,5,...,m} and 1 < r < 3 and any three vertices in
H(u‘Z) - {Z, t1 (u2a vS}s we€ say ('U.2, vjl ), (u29 Ujg)y (‘U,2, vj3)9 where jr € {41 51
...,m} and 1 < 7 < 3, we can get 2 edge-disjoint S-Steiner paths, the path
induced by the edges in {z(u2, vj,), (u2, vj, )y, y(u2,vj,), (u2, vj,)(u1,vi,),
(u1,vi,)z, 2(uy, i, ), (w1, v, )t} and the path Q, induced by the edges in
{y(u2» vj:s): (UQ’ Vjy )'T» z(u% 'sz)v (u% sz)(ula viz)s (ula viz)(u2: Vs, )’

(’UQ, Ujl )(ulv Vi, )1 (ula vi] )t, t(“’l, via): (ul! Uia)z}-

Note that the arbitrariness of the three vertices in H(u;) — {z,y, (u1,v3)}
and the three vertices in H(u2) — {2, ¢, (u2, v3)}, we can obtain [3("‘3—_3“ edge-



disjoint S-Steiner paths. These paths together with Q;, Q2 are [27"‘] edge-disjoint
S-Steiner paths, as desired.

Lemma 6 If z,y, z,t are contained in distinct H(u;)s, then there exist m — 1
edge-disjoint S-Steiner paths.

Proof. The following cases will be considered.

Case 1. dp op(z,y) = dp, ot (y,2) =dp,on(2,t) = 1.

Without loss of generality, we may assume that z € V(H(u1)), y €
V(H(u2)), 2 € V(H(ua)), ¢ € V(H(uq)) and z = (u1,01),y = (uz, v1), 2 =
(u3,v1),t = (uq,vy). Then the path P, induced by the edges in {zy, yz, zt}, the
paths Q; induced by the edges in {z(u2, va;), (u2,v2;)(¥1, V2541), (¥1,V254+1)Y,
y(us, vo;), (ua, vay) (U2, voj41), (U2, V2j41)2, 2(us, v25), (ua, v25)(u3, v2541),
(u3, va541)t}(1 < 5 < | 252 ]) the paths Q] induced by the edges in
{z(u2, vaj+1), (U2, vaj41) (1, vo;), (U1, v2;)y, y(us, v2541),

(ua, voj+1)(u2, v2;), (U2, v2;)z, 2(ua, vaj41), (4, v241)(us, v2;), (u3, va;t) }
(1 <j < |271])arem — 1 or m edge-disjoint S-Steiner paths.

Case2.dp oy(z,y) =dp,on(y,2) =1landdp oa(z,t) > 2.

Without loss of generality, we may assume that z € V(H (u1)), ¥ €

(H(ug)), z € V(H(ua)),t € V(H(w))) (5 £ i <n)andz = (u,v1),y =
(u2,v1),2z = (uz,v;). Let P = uqug -+ u;. Clearly, &(P' o H) > m. From
Lemma 1, there is a t, U-fan in P’ o H, where U = V(H(u4)) = {(u4,v;)|1 <
r < m}. Thus there exist m pairwise internally disjoint paths Py, P,,--- , Py,
such that each P, (1 < 7 < m) is a path connecting ¢ and (u4, v,). Then the path
P} induced by the edges in {zy, yz, z(u4,v1)} U E(Py), the paths Q; induced by
the edges in {z(uz, vo;), (u2, v2j)(u1, vaj41), (¥1, v24+1)y, Y(us, vo5),
(u, v2;)(uz, Vaj41), (U2, V241)2, 2(ua, v25)} U E(Py;)(1 < § < [Z52]) the
paths @, induced by the edges in {z(u2, va;j+1), (2, v2j4+1) (U1, v2;), (u1, v2;)y,
y(ua, v2;41), (43, v2j+1)(u2, v2;), (U2, v2;5)2, 2(us, v2541) JUE(P2j1)(1 < 5 <
| 251 ]) are m — 1 or m edge-disjoint S-Steiner paths.

The other cases dp, oy (y, 2) = dp,or(z,t) = 1and dp,op(z,y) > 2 can
be proved with similar arguments.

Case 3. dp,ony(z,y) =1,dp,on(y,2) 2 2and dp,om(z,t) > 2.

Without loss of generality, We may assume that z € V(H (u1)), y €
V(H(u2)), z € V(H(u;)) andt € V(H(uy)), where3 < i < j,|j — 1| > 2,
4<i<n-206<j<n LetP = uguy---u; Clearly, &(P' o H) >
m. From Lemma 1, there is a z,U-fan in P’ o H, where U = V(H(u3)) =
{(us,v,)|1 € r £ m}. Thus there exist m pairwise internally disjoint paths
P|,P},--- , P! such that each P/ (1 < r < m) is a path connecting z and
(us,vr). Furthermore, let P” = u;41%i42 -+ u;. Then P” is the path of order



at least 2. Since k(P” o H) > m, it follows from Lemma 2 that, if we add the
vertex z to P o H and join an edge from z to each (u;43,v) (1 < 7 < m), then
&((P" o H)V {2z, V(H(ui+1))}) = m. From Menger’ s Theorem, there exist m
internally disjoint paths connecting z and ¢ in (P” o H) V {2, V(H (u;+1))}, say
', Py, -+, P We may assume that * = (u;,v;) and y = (u2, ;). Then the
paths Q; induced by the edges in {zy, y(us,v;)} U E(P{)U E(FP;’) and the paths
Q- induced by the edges in {z(uz,vr), (u2,v,)(u1,,), (u1,vr)y, y(us, vr)} U
E(P!)U E(P") (2 < r < m) are m edge-disjoint S-Steiner paths, as desired.

The other cases dp, oy (¥,2) = 1, dp,on(z,y) 2 2and dp,op(z,t) = 2
ordp,on(z,t) = 1,dp,on(z,y) > 2 and dp,op(y, z) 2 2 can be discussed
similarly.

Cased. dp, on(z,y) 2 2,dp,on (v, z) > 2and dpnoH(Z,t) > 2.

Without loss of generality,we may assume that z € V(H(u,)),y €
V(H(ui)), z € V(H(u;)) and t € V(H(ug)), wherei < j < k, |j —i| > 2,
k-7l 223<i<n—-4,5<j<n—-2and7 <k <n. LetP =uguz-- u.
Clearly, (P’ o H) > m. From Lemma 1, there is a y, U-fan in P’ o H, where
U = V(H(uz)) = {(uz,vr)|1 € r < m}. Thus there exist m pairwise in-
ternally disjoint paths Py, Pj,---, P, such thateach P/ (1 < r < m)isa
path connecting y and (ug,v.). Furthermore, let P = u;, uit1,--- ,uj—1 and
P" = wuji1,uj42, -+ ,ux. Then P” and P"' are two paths with order at least
2. Since x(P” o H) > m, it follows from Lemma 2, if we add the vertex z
to P o H and join an edge from z to each of (u;_1,v,) (1 £ r < m), then
k((P"o H)V {z,V(H(uj-1))}) > m. By the same reason, if we add the vertex
z to P" o H and join an edge from z to each of (uj41,vr) (1 < 7 < m), then
K((P"oH)V{z,V(H(uj341))}) = m. From Menger’ s Theorem, there exist m
internally disjoint paths connecting z and y in (P o H) V {y, V(H(u;-1))}, and
we say P{’, Py/,--- , P! . And there exist m internally disjoint paths connecting z
and tin (P" o H)V {z,V(H(uj4+1))}, and we say P{", Py, - , P!. Note that
the union of any path in {P; |1 < r < m} with any path in {P)'|1 <r < m}
is a S-Steiner path. Then the paths Q. induced by the edges in {z(u2,v,)} U
f’(P,f) U E(P)U E(P!") (1 £ r £ m) are m edge-disjoint S-Steiner paths, as

esired. |

From Lemmas 3, 4, 5 and 6, we conclude that, for any S C V(P, o H), there
exist | 32 ] edge-disjoint S-Steiner paths, and hence wp,_og(S) > [32]. From
the arbitrariness of S, we have wq(P, 0 H) > | 3|, The proof of Proposition 1
is complete.

2.2 Lexicographic product of two general graphs

After the above preparations, we are ready to prove Theorem 2 in this sub-
section.

Proof of Theorem 2: Set w4(G) = £. Recall that V(G) = {u,us,...,un},
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V(H) = {v1,v2,...,vm}. From the definition of wy4(G o H), we need to prove
that weon (S) > €3] for any S = {z,y,2,t} C V(G o H). Furthermore,
it suffices to show that there exnst El_?’"‘J edge-disjoint S-Steiner paths in G o
H. Clearly, V(G o H) = |J;, V(H(u;)). Without loss of generality, let z €
V(H(u;)), y € V(H(uj)), 2 € V(H(uk)) andt € V(H(u,)), wherei <'j <
k<r.

Suppose that z,y, z, t belong to the same V(H(u;)) (1 < i £ n). Without
loss of generality, let z,y,2,t € V(H(u1)). Since A(G) 2 wy(G) = ¢, it
follows that the vertex u; has ¢ neighbors in G, say ug,us,--- ,ue+1. From
Proposition 1, there exist |32 | edge-disjoint S-Steiner paths in P; o H where
P, = uyu; (2 < i < €+ 1). So there are £| 32 | edge-disjoint S-Steiner paths in
G o H, as desired.

Suppose that three vertices of {z,y, z,t} belong to some copy H(u;) (1 <
i < n). Without loss of generality, let z,y,2 € H(u;) and t € H(uz). Note
that A(G) > w4(G) = £. Therefore, there exist £ edge-disjoint paths connecting
u; and ug in G, say Py, Py, - - - , P;. From Proposition 1, there exist [3—?-] edge-
dlsjoint S-Steiner paths in P; o H ((1 < j < £) by Proposition 1. Observe that
UJ =1 P; is a subgraph of G and (U —1 Pj) o H is a subgraph of G o H. So the
total number of the edge-disjoint S-Steiner paths is £ [3'"J as desired.

Suppose that two vertices of {z, y, z, t} belong to some copy H (u;) (1 < ¢ <
n).

Case 1. z,y € V(H(u;)), z € V(H(uJ)) and t € V(H(ug)), where i < j < k,
1<i<n-22<j<n-13<k

Without loss of generality, we may assume that z,y €
V(H(uy)),z € V(H(up)) and t € V(H(u3)).

Since wy(G) = ¢, it follows that there exist £ edge-disjoint Steiner paths
connecting {u1, u2,u3} in G, say P, P,,- -, P,. From Proposition 1, there exist
|32 ) edge-disjoint S-Steiner paths in P o H (1 < k < £) by Proposition 1.
Observe that U£=1 P, is a subgraph of G and (Ui=1 P,) o H is a subgraph of
G o H. Therefore, the total number of the edge-disjoint S-Steiner paths is £| 3% |,
as desired.

Case 2. z,y € V(H(ui)), z,t € V(H(u;)), wheret < j,1 < i <n-—1,
2<j<n.
The case can be discussed similarly.

Suppose that z,y, z, ¢ are contained in distinct H (u;)s. Without loss of gen-
erality, letx € H(ul) y € H(ug), z € H(uz) andt € H(uy). Since wy(G) = ¢,
it follows that there exist £ edge-disjoint Steiner paths connecting {u, u2, u3, 44}
in G, say Py, Py, , P,. From Proposition 1, there exist | 32 | edge-disjoint S-

Steiner paths in P, o H (1 < k < £) by Proposition 1. Observe that Ui=1 Py is
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a subgraph of G and (Ui=1 Pi) o H is a subgraph of G o H. Therefore, the total
number of the edge-disjoint S-Steiner paths is £| 32 |, as desired.

From the above argument, we conclude that, forany S C V(GoH), wgou (S)
Zwyr_, Pyor(S) 2 ¢| 32 |, which implies that wy(G o H) > K[s—s"—‘J =

wy(G) [ﬂzé—’ﬂj . The proof is now complete. ]
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