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Abstract

A graph G is 1-planar if it can be embedded in the plane R? so
that each edge of G is crossed by at most one other edge. In this
paper, we show that each 1-planar graph of maximum degree A at
least 7 with neither intersecting triangles nor chordal 5-cycles admits
a proper edge coloring with A colors.
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1 Introduction

In this paper, we only consider finite and simple graphs. Let G be a
graph. We use V(G), E(G) and A(G) to denote the vertex set, edge set,
and the maximuin degree of G, respectively. If G is a plane graph, we use
F(G) to denote the face set of G.

A proper edge coloring of a graph is a mapping assigning colors to the
edges of the graph so that any two adjacent edges receive different colors.
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The edge chromatic number of a graph G, denoted by x/(G), is the least
number of colors such that G has an edge coloring. The celebrated Vizing
Edge-Coloring Theoremn [6] states that every graph satisfies A < x' < A+1.
For planar graphs, Vizing [7] proved that every planar graph with A > 8
satisfies x'(G) = A and asked whether it holds for 6 < A < 7. The case
A =7 of this problem was settled by Sanders and Zhao [5], and by Zhang
[12] independently. For A = 6, it remains open, but it has been settled for
some special classes of graphs (see {1, 2, 3, 9, 11]). A graph G is said to be
of class one if x'(G) = A(G), and to be of class two otherwise. A class two
graph G of maximum degree A is said to be A-critical if x'(G —e) = A for
every e € E(G).

A graph is 1-planar if it can be drawn on the plane such that each edge
is crossed by at most one other edge. Ringel [4] first introduced the notion
of 1-planar graphs while trying to simultaneous coloring adjacent/incident
vertices and faces of plane graphs. In [14], Zhang and Wu studied the edge
coloring of 1-planar graphs and proved that every 1-planar graph with
A{G) 2 10 is of class one. There are also some partial results while the
maximumn degree is at most 9: a 1-planar graph of maximum degree A is
of class one if (1) it has no chordal 5-cycles and A > 9 [16], or (2) it has no
adjacent triangles and A > 8 [17], or (3) it has no triangle and A > 7 [13].
Recently, Zhang [15] constructed class two 1-planar graphs of maximum
degree 6 or 7 with adjacent triangles.

In this paper, we study the edge chromatic number of 1-planar graph
of maximum degree 7, and prove that every l-planar graph of maximum
degree 7 with neither intersecting triangles nor chordal 5-cycles is of class
one.

Theorem 1. Let G be a I-planar graph with neither intersecting triangles
nor chordal 5-cycles. If A(G) 2 7, then X' (G) = A(G).

The following theorem will be used in our proof.

Theorem 2. (Vizing’s Adjacency Lemma) [8] Let G be a A-critical graph
and let v and w be adjacent vertices of G with dg(v) = k. Then, w 1is
adjacent to at least (A — k + 1) vertices of mazimum degree if k < A, and
adjacent to at least two vertices of maximum degree otherwise.

2 Basic definitions and lemmas
In this section, we introduce some notations and lemmas used in our
proof. For any 1-planar graph, we always assume that it has been embedded

on a plane such that every edge is crossed by at most one other edge and
subject to this has the minimum number of crossings. The associated plane
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graph G* of a l-plane graph G is the plane graph obtained from G by
modifying all crossings of G into new 4-vertices. A false verter of G*
corresponds to a crossing of G, while a true verter of G* belongs to G. A
face in G* is false if it is incident with at least one false vertex, and is true
otherwise. A vertex of degree k is simply called a k-vertex. A k*-vertex
(resp. k~vertex) is a vertex of degree at least (resp. at most) k. k-face,
k*-face and k~-face are defined analogously. In [14, 16, 17], Zhang et al.
proved some structure properties on a 1-plane graph G and its associated
plane graph G*.

Lemma 3. [14] Let G be a 1-planar graph. Then the following hold:

(1) For any two false vertices u and v in G*, uv ¢ E(G*) .
(2) No false 3-face may be incident with 2-vertez.

(3) If dg(u) =3 and v is a false vertez in G* , then either uv ¢ E(G*)
or wv is not incident with two 3-faces.

(4) If a 3-vertez v in G is incident with two 3-faces and adjacent to two
false vertices in G* , then v must also be incident with a 5% -face.

Let G be a l-planar graph. We say that two cycles of G are adjacent
(resp. intersecting) if they have an edge (resp. a vertex) in common.
It is proved in [17] that every 5%-vertex v of G is incident with at most
| $dc(v)) 3-faces in G* if G has no adjacent triangles. If dg(u) € {3,4} and
u is incident with dg(u) 3-faces in G*, then one can easily find adjacent
triangles or multiedges in G. So, we restate the conclusion in the following
lemma.

Lemma 4. [17] Let G be a 1-planar graph without adjacent triangles. Then,
every 3% -vertez v is incident with at most | #dg(v)] 3-faces in G*.

The following conclusion is implicitly contained in the proof of Lemnina 4
in [17]. For completeness, we list it as a lemma and present its proof here.

Lemma 5. [17] Let G be a 1-planar graph without adjacent triangles. Then
every 5% -vertez is incident with at most four consecutive 3-faces in G*.

Proof. Let v be a 5*-vertex of G. We only prove the case that dg(v) > 6
and leave the case dg(v) = 5 to interested readers. Suppose that dg(v) > 6,
and that v is incident with five consecutive 3-faces, say vv;v;4 v in G*,
where 1 < 7 < 5. Suppose v, is true. If vg is true, then vs is false, as
otherwise two adjacent triangles occur in G. It follows that vy is true, and
then two adjacent triangles vvyvev and vvgugv exist. Thus v, must be false
and vz is true. By the same argument, v4 must be false and vs is true.



Again two adjacent triangles vv v3v and vvzvsv exist in G. So v; must be
false. Thus v, is true. Similarly, we get that v4 and vg are true, and v3
and vs are false. Then vvyvsv and vvgvsv are adjacent triangles in G. This
contradiction completes the proof. a

Let T = uvwu be a triangle with dg(v) > 4, and let vz be an edge
crossing uw in G. We call the configuration consisting of the triangle and
the edge vz as an umbrella, and call v the head of this umbrella. We show
that any three consecutive false 3-faces incident with a same vertex will
produce an umbrella.

Lemma 6. Let G be a 1-planar graph without intersecting triangles, and
let C be a configuration of G* consisting of a vertex v incident with 1
consecutive 3-faces, say T1,T»...,T.

(1) Ifl =3, then either Th, Ty and T3 are all false and C has an umbrella
with v being its head, or Ty is true.

(2) Ifl =4, then each T; is false, and T> and T3 form an umbrella with
v being its head.

Proof. Let vv;viy v, for i € {1,2,...,1}, be the boundary of T;.

First suppose that | = 3 and 73,72 and T3 are all false. If v, is true,
then vo must be false because of the false 3-face vv vyv. It follows that vs
is true, otherwise contradicting Lemma 3(1), and so we obtain an umbrella
of G, where the triangle is vv,v3v and the head is v (see Figure 1(a)). So,
suppose that v is false. Then vy is trivially true. By the same argument, v3
must be false and v4 shall be true. Another umbrella occurs with triangle
vvgugav and head v.

Figure 1: Some consecutive 3-faces incident with a vertex

Now, suppose ! = 3 and one of T}, T, and T3 is true. If T} is true, then
vy and vy are true. Thus v3 is false and v, is true, two adjacent triangles
vu vev and vugugv occurs in G, which is a contradiction. Thus T is false
and similarly T3 is also false. Therefore, T must be true (see Figure 1(b)).
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Finally suppose that [ = 4. Since G has no intersecting triangles, T
(resp. T3) cannot be true by considering the three consecutive 3-faces 71, T
and T3 (resp. T3, T3 and Ty) as above. By symmetry, neither T3 nor T can
be true. It follows directly from (1) of the current lemma that vavy € E(G)
and vvpvgv and vuz form an umbrella as desired (see Figure 1(c)). g

A 3*-vertex v of G is said to be saturated if v is incident with | $dg(v)]
3-faces in G*, and unsaturated otherwise.

Lemma 7. Let G be a 1-planar graph of maximum degree 7 with neither
intersecting triangles nor chordal 5-cycles, and let v be a saturated 7-vertex
of G*. Then, v is incident with a triangle of G which either is a 3-face in
G* or forms an umbrella, and incident with two 5*-faces in G* of which
each is incident with at least one false verter.

Proof. By Lemmas 4 and 5, v is incident with five 3-faces in G* and the two
4t_faces incident with v cannot be adjacent. So, the first statement follows
immediately from Lemma 6. To prove the latter, we need only considering
two possible configurations about the five 3-faces around v: one consists of
four consecutive 3-faces and a single 3-face, and the other consists of three
consecutive 3-faces and two adjacent 3-faces (see Figure 2).

Let f1,f2 be the two 4% -faces incident with v in G*. Now we label the
neighbors of v in G as v; for 1 < ¢ £ 7 in clockwise order. In the case that
the triangle of G incident with v forms an umbrella, we always suppose
that vve is an edge crossed by vvs.

v, (¥ SR

Case 1 Case 2

Figure 2: Three cases of saturated 7-vertices in G*

Case 1: First suppose that v is incident with four consecutive 3-faces.
Then, we have a configuration as shown in Case 1 of Figure 2 by Lem-
ma 6(2). We denote by v1v] the edge crossed by edge vvq, by v3v; the edge
crossed by edge vv,, and by vevg the edge crossed by edge vvs. Let the cross-
ings be ¢j, €2, c3 respectively. If f; is a 4-face of G*, then vjvs € E(G*),
and the 4-cycle vvyvjvsv and the triangle vv vgv in G form a chordal 5-
cycle, a contradiction. If f; is a 4-face of G*, then v§ = v, and the 4-cycle



vuzvivev and the triangle vvjvgy in G form a chordal 5-cycle, also a con-
tradiction. Therefore both f, and f, are 5t-faces incident with at least
one false vertex in G*.

Case 2: Now we consider the case that v is incident with exact three
consecutive false 3-faces. Then, we have a configuration as shown in Case
2 of Figure 2 by Lemma 6(1). We denote by v;v] the edge crossed by edge
vvg, by v4v) the edge crossed by edge vvs, and by v4v} the edge crossed by
edge vvs. Let the crossings be ¢y, ¢z, c3 respectively. If f; is a 4-face of G*,
then v] = v}, the 4-cycle vv vjvsv and the triangle vv,vsv form a chordal
5-cycle in G. If f, is a 4-face of G*, then v{vg € E{(G*), and the 4-cycle
vuyvvev and the triangle vv vgv form a chordal 5-cycle in G. So, both f;
and fo are 5*-faces incident with at least one false vertex in G*.

Case 3: Finally, we suppose that v is incident with a true 3-face. Then,
we have a configuration as shown in Case 3 of Figure 2. Suppose that
vv1v7v is the true 3-face incident with v. Let v,v] be the edge crossed by
vvy, v4v) the edge crossed by vus, v4vy the edge crossed by vus, and v7v7
the edge crossed by vvg. Let the crossings be ¢y, ¢z, c3, c4 respectively. If f;
is 4-face of G*, then v| = v}, the 4-cycle vv;vjv4v and the triangle vvv7v
form a chordal 5-cycle in G. If fs is 4-face of G*, then vj = v, the 4-cycle
vugviurv and the triangle vvjv7v form a chordal 5-cycle in G. It follows
that both f; and f; are 5*-faces incident with two false vertices in G*. O

3 Proof of Theorem 1

Now, we are ready to prove our theorem.

If A > 8, the conclusion is a consequence of the theorem of [17] asserting
that every 1-planar graph H with no adjacent triangles is of class one if
A(H) > 8. So, we need only to prove the case that A = 7.

Without loss of generality, we may suppose that G is a A-critical 1-
planar graph. It follows that § > 2 by Theorem 2.

To derive a contradiction, we use a discharging method. Note that G*
is a plane graph. The Euler’s formula induces that

2 (de(v)-4)+ X )(dax(f)—4)

veV(G) fEF(Gx
= 3 (dex(v)-4)+ 2 (dgx(f)-4)=-8
veV(GX) feF(GX)

We define the initial weight function w(v) = dg(v) — 4 for each v €
V(G) and w(f) = dex(f) — 4 for each f € F(G*). The total sumn of
weights is equal to —8. We will transfer the weights between elements of
V(G)UF(GX), and then deduce a contradiction by showing that w'(z) > 0
for each z € V(G) U F(G*), where w'(z) is the resulting weight of x. For
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convenience, we simply call a k-vertex adjacent to a vertex v as a k-neighbor
of v. The discharging rules are defined as follows:

R1. A false 3-face receives -;- from each of its incident true vertices.

A true 3-face receives % from each of its incident 5+-vertices.

R2. Let f be a 5*-face of G* and let T be the set of true vertices incident
with f except unsaturated 7-vertices. Then each element of T receives

—q—m—d x4 fom f.

R3. For 2 < k < 3, a k-vertex of G receives k—il from each of its neighbors
in G.

R4. For 4 < k < 6, a k-vertex of G receives k—{—l fromn each of its 7-
neighbors in G.

R5. A 4-vertex of G receives % from each of its 6-neighbors in G, and
receives é from each of its 5-neighbors in G.

It remains to show that w'(z) > 0 for all z € V(G) U F(G*).

Let f be a k-face in F(G*), where k > 3.

If k =3, then w(f) =3 —4=-1. If f is true, then f is incident with
at least two 5%-vertices by Theorem 2. If f is false, then f is incident with
two true vertices by Lemma 3(1). So, we have w'(f) > -1+ % x2=0hy
R1.

If k = 4, then W'(f) = w(f) = 0, since 4-faces don't participate in whole
rules.

If k > 5, then w'(f) = dgx (f) — 4 - |T| x “=3{=* =0 by R2.

Next, we estimate the weights of vertices. Let v be a d-vertex of G,
where d > 2.

If d = 2, then w(v) = 2 -4 = —2. By Lemma 3(2), v is incident
with no false 3-face in G*, and hence send out nothing by R1. Therefore,
w'(v)=-2+1x2=0byR3.

¥, v, v

Figure 3: Saturated 3-vertex
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Suppose that d = 3. Then, w(v) =3 -4 = -1 Ifvis unsaturated
or saturated but incident with a unique false 3-face, then v receives 3 x -2-
from 1ts nelghbor by R3, and sends out at most § by R1, and thus w'(v) >
-1- - +3x — =0.

So we suppose that v is saturated and incident with two false 3-faces.
Then, v cannot be the head of an umbrella by Lemma 3(3), and is adjacent
to two false vertices, and so is incident with a 5%-face, say f, in G* by
Lemma 3(4). Let v; be the neighbor of v in G for 1 <7 < 3 in a clockwise
order, let vovh be the edge of G crossed by edge vv), vov; the edge of G
crossed by edge VU3 (see Figure 3). By Theorem 2, dg(v2) > 6, and at
least one of vj and vy is a 7-vertex. Without loss of genera.lity, we suppose
that dg(vh) = 7. If v5 is unsaturated, then v receives at least from f by
R2. We consider that v is saturated. If f is a 5-face, then v2v € E(G)
and voujv5 U2 is the unique the triangle incident with 02 that contradicts
Lemma 7. So, dg(f) = 6 and v also recelves at least from f by R2. In
both cases, w'(v) > -1 -2 x 3 +3x + = 0.

Figure 4: Saturated 4-vertex

Now, let d = 4. Then w(v) =4 —4 = 0. Let v, v2,v3 and vsbe the
neighbors of v in G in clockwise order.

First we consider the situation that v is saturated and incident with
three false 3-faces. By Lemma 6(1), we may suppose that v;v; € E(G)
which together with vv, forms an umbrella in G, let v3v; be the edge of G
crossed by edge vv, with a crossing c1, and let f be the 4*-face incident
with v in G* (see Figure 4) Then, v5 must be true by Lemma 3(1), and
dg(f) = 5 as otherwise v1v; € E(G) formmg a trlangle adjacent to vvjuzv.

If f is a 67-face, then v receives at least from fbyR2 If fis
a 5-face, let the boundary of f be vive vze2 (see Flgure 4), then ¢; must be
false (otherwise ‘U‘03U302'Ul'v forms a chordal 5-cycle of G), and so v receives
at least 5"—4 = 1 from f by R2. In either case, v receives at least § from

f. By Rl v transfers Ix sz L to these false 3-faces.
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By Theorem 2, we may suppose, without loss of generality, that 5 <
de(v1) € de(ve) < de(vs) £ dg(vs), and dg(vy) = 5 implying that
dg(v2) = dg(v3) = dg(vs) = 7, and dg(v1) > 6 implying that dc(vz) 26
and dg(v3) = dg(vq) = 7. By R4 and RS, w’(v) >-343xi+3+3=0
if dg(v1) =5, and w'(v) > -3 +2x 3+2x 3 +3—01fda('vl)>6

So, suppose that v is unsaturated or saturated but incident with a true
3-face. Then v transfers at most 2 x -21- = 1 to the false 3-faces incident
with v by R1. With the same a.rgument as above, either dg(v1) = 5
implying w "(v) 2 —1 + 3 x — + & > 0, or dg(vy) > 6 implying w’'(v) >
—-1+2x +2x 1 i >O(bothbyR4andR5)

Figure 5: Saturated 5-vertex

Next, suppose that d = 5. Then, w(v) = 5 — 4 = 1. Let v; be the
neighbor of v in G for 1 < i < 5 in a clockwise order. If v is saturated,
then v is incident with four 3-faces. By Lemia 6(2), each of these 3-faces
is false. We denote by vav5 the edge of G crossed by edge vvy, and denote
by v4v} the edge of G crossed by edge vvs. Let the crossings be ¢; and
co respectively. Let f be the 4%-face incident with v (see Figure 5). If
dex(f) = 4 or 5, then either v = v} producing two adjacent triangles
vav4vV2 and vau4vpY2, OF v is adjacent to vy in G producing a chordal 5-
cycle on vouavvy and vovavjvyve. Therefore, dgx (f) > 6, and furthermore,
f is incident with two false vertices ¢; and c3. Thus, v receives at least
&=% = 1 from f by R2, and transfers 4 x 1 = 2 to these false 3-faces by
R1. By Theorem 2, v has elther a 4-ne1ghbor and four 7-neighbors implying
that w'(v) 2 1-2—3+4x +3 = 1 > 0by R4 and R5, or two 5-ne1ghhors
and three 7—ne1ghbors unplymg that Www)>21-2+2x — + 2 =0 by R4
and R5.

If v is unsaturated, then v is incident with at most three false 3-faces,
and thus transfers 3 x -2- = - to these false 3-faces by R1. With the same
argument as ahove, v has elther a 4-neighbor and four 7-neighbors implying
that w'(v) > 1 -3 - L +4x 1 =1>0, or two 5-neighbors and three 7-

neighbors implying thatw’/(v) > 1 — % +2x % =0.

If d = 6, then w(v) = 6 —4 = 2. By Lemma 4, v is incident with at
most four false 3-faces, and so transfers at most 4 x % = 2 to these faces
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by R1. By Theorem 2, v has no neighbor of degree 2. If v has a 3-neighbor
then it has five 7-neighbors, and so w'(v) 22—-2—-3+5x 3 =3 >0by
R3 and R4. If v has a 4-neighbor then it has at least four 7-neighbors, and
sow'(v) 22-2-2x 3+ +4x =% >0by R4 and R5. Otherwise, we
suppose that v has no neighbors of degree less than 5. Then, v has at least
two 7-neighbors by Theorem 2, and so w/(v) >2—-2+2x £ > 0.

Finally, we deal with the case that d = 7. Now, w(v) =7—-4=3. Ifv
is saturated then v is incident with two 5%-faces by Lemma 7 from which
v receives totally at least 2 x g ‘l‘ = -;- by R2. If v is unsaturated, then v
is incident with at most four false 3-faces. In either case, the weight of v
is at least 1 after rules R1 and R2. Let v; be the neighbor of v in G for
1 < i <7, and suppose that dg(v;) < dg(v;) while i < j. If dg(v1) = 2,
then dg(v;) = 7 for each i > 2 by Theorem 2, and w'(v) > 1 -1 =10
by R3. If dc(m) 3 then dg(v2) 2 3, de(v;) = 7 for ¢ > 3, and so

w'(w)=21-2x4=0hy R3 If dg(v1) = 4 then dg(v;)) = 7 for i > 4,
and thus w'(v) 2 1 -3 x -5 = 0 by R4. If dg(v1) = 5 then dg(vs) =
dc(ve) =dg(v7) =T, and w'(v) > 1 -4 x i = 0 by R4. If dg(v1) = 6 then
dg(vs) = dg(v7) = 7, and so w'(v) 2 1 — 5 x + =0by R4. If dg(v1) =7,

w'(v) > 1.

Now, we have proved that w'(z) > 0 for each x € V(G) U F(G*). This
completes the proof of Theorem 1.
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