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Abstract

In this study, by using Jacobsthal and Jacobsthal Lucas matriz sc-
quences we define k-Jacobsthal, k-Jacobsthal Lucas matrir sequences de-
pending on one parameter k. After that by using two parameters (s,t), we
define (s,t) Jucobsthal and (s, t)-Jacobsthal Lucas matrix sequences. And
then, we establish combinatoric representations of all of these matrices.

Keywords: Jacobsthal numbers, Jacobsthal Lucas numbers, matrix
sequences, generalized sequences.

AMS Classifications: 11B39, 11B83, 156A24, 15B36

1 Introduction and Preliminaries

There are many articles in the literature that study on the different number
sequences. There are a lot of identities of number sequences described in all our
references. From these sequences, Jacobsthal and Jacobsthal Lucas numbers
are given by the recurrence relations j,, = ju-1 + 2jn—-2, jo =0, 51 =1 and
Cn = Cn—y+2¢,-2, co =2, ¢; =1 for n > 2, respectively. We can generalize the
sequences depending on one parameter. For any positive real numbers k; the k-
Jacobsthal {ji .} nen and the k-Jacobsthal Lucas {éx,.},y number sequences
are defined in [7] recurrently by

ne

jk,n = kjk,n—l + 2jk,1z—'21 jk,() = 0; jk.l = 1» n 2> 2' (1)
Ckn = kérpo1 +26ku-2, E0=2 1=k n22

If we generalize the sequences depending on two parameters we obtain the
(s,t)-Jacobsthal and (s,t)-Jacobsthal Lucas sequences are defined recurrently
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sjn—l (s:t) + 2tjn—‘2 (3’ t) ) j()(stt) = O;jl(sy t) =1 (2)
8y (8,1) + 2té_2(5,t), Co(s,t) =2, éi(s,t) =5

Jn(s,t)
&, (5,t)

where s >0, t #0, s* +8t >0, n > 1 any integer [6].

1

1.1 The Jacobsthal and Jacobsthal Lucas Matrix Sequences

Jacobsthal {J,.},,cn and Jacobsthal Lucas {Cy. },,cn matrix sequences are defined
as given by the recurrence relations

1 2
J1L+1=Ju+2Jn—lv J()=(él) ?)1 J1=(1 0), (3)

and

1 4
Cu+l=Cu+2Cy—h CO=(2 _l)ucl=(? i)t (4)

respectively in (3].
The relation between Jacobsthal and Jacobsthal Lucas number and matrix
sequences is given as in [4]

ju+ 1 2511 én+ 1 2611
Ju= - « C.= . R .
" ( In 2]1)-1 )’ " ( Cn 26,1 >
k—Jacobsthal {Ji .}, cn 8nd k—Jacobsthal Lucas {Ck,.},,cn matrix sequences
are defined as given by the recurrence relations

10 k
Jk,n+1 = ka,n + 2Jk,n—11 Jk,O = ( 0 1 ) 3 Jk,l = ( 1 (2) ) » (5)

kE 4 K +4
Ckns1 = kCr,p + 2Ck n-1,Cro = ( 9 _k ) Gk = ( : 2f ) , (6)

respectively in [7].
The relation between k—Jacobsthal and k—Jacobsthal Lucas number and
matrix sequences is given as in [7]

Jk,n = ( Trint 2]k,n ) ,Ck,u = ( Ck,n+1 2ck,n ) )

jk,n 2jk,u—l ék,n 2ék,n—l

(s,t) Jacobsthal and (s,t) Jacobsthal Lucas matrix sequences are defined as
given by the recurrence relations

Jugr(s,t) = sy (s,t) +2tJ,—1 (s,t), (7)
Jo(svt) = ((::l’ ?)$ Jl(syt)=( : g):
Cn+l (3, t) = sC, (S,t) + 2tcﬂ—l (3a t): (8)
244t 2
G = (b %) oteme (2 1),
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respectively in[5].
The relation between (s,t) Jacobsthal and (s,t) Jacobsthal Lucas number
and matrix sequences is given as in [5]

— A" (s! t) 2"1 (S, t) — éu (3, t) 2én (S, t)
J1l (sy t) = ( th-:!(s’ t) 2tj‘171—l (S,t) ) ¥ Cn (S, t) = ( téﬁl(s,t) 2tén—l (3' t) )

1.2 Combinatorial Represantations of Jacobsthal, Jacob-

sthal Lucas and Their Generalized Matrix Sequences

Lemma 1 Forn € N the sequence of { yn}, 5o 8 defined as follows provides
the recurrence relation y,41 = Yn + 2Un-1,

y,.=%(",.‘")2'l (9)

=0

Proof. For n € N, it is obtained that

L) ki) . (4 Ee1—i\
Yi + 2yk- Z( i )2‘-*' Z ( i )2’“
i=0 =0

_ g(’“;")zwlg(f_‘f)zﬁ
If k is an even integer, then |k/2] = |(k + 1)/2] and
()« (%) (50

l+l§J(k+:—i)2i

L2434
2

Yk + 2Yr—1

1

(k+1—i

i ) 2" = Yry1-

i=()

If k is an odd integer, then |k/2] = [(k —1)/2]

Yo+ 2yh-1 = lg:( ko )2i+[j§](k—;-i )2‘4,

|15 142

(6)+ 5 ()2 (¥50)2

= =1

I



l§J( k+1-i

1

) 2! = Y1
i=0

In the following theorem we give a combinatoric presentation of Jacobsthal
matrix and the relation between { y.},.5¢ -

Theorem 2 Let n > 1,and be integer, then it is obtained that

0 2
In "_‘an'z + Yn-1 [ 1 -1 ] . (10)

Proof. We use induction method for the proof. Because of yo =1, y; =1 the
assertion is true for n =1,

2
J1=yxfz+yu[(1] -1 ]

We assume that the assertion is true for n < k. For n = k + 1, we have

Je+ 20y = (yk12+yk-1 [ (1) _21 ])

+2 (yk—lI‘z + Yr-2 [ (1) _21 ])

2
Wk + 200m1) T + (@o + 206-2) [ 02 ]

Jkt1

0o 2
Yr+1l2 + Yk [ 1 -1 ] .
(]

Corollary 3 For Jacobsthal sequences we obtain

L# n—1i i
Jn+r = Z ( i )2‘ = Yns n21l

i=0

Proof. By the equality of the matrices in the Theorem 2, it is easily seen. ®

Corollary 4 Let n > 1,and integer

5 2 2 8
Cn+l =Yn [ 1 4 ] + Yu-1 [ 4 -2 ] (11)
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Proof. By the product of matrices, it is clearly seen

5 2 0 2
ClJn = [ 1 4 ] (y1112+yn—1'[ 1 -1 ])

5Yn + 2yn-1 10yp-1 + 4yn—2
Yn + 4yn—ll 2yn—l + 8yu—2

5Yn + 2Yn—1  2Yn + 8yn-1
Yn + 4:’/".—] 1 4yu - 2yn—l ’

1l

Cn.+ 1

Corollary 5 For Jacobsthal Lucas sequences we obtain

e ()

i=0

Proof. By the definition of {y.}, it is seen that

Cntl = j1|+l + 4jn =Yn + 4yn-1 = Yu4l + 2y7.-|
(=) : L2
_ n+l-1 i n—-1-—1 i+l
TR (SR}
1=() i=0
L) |

1+ Z ("+1_’)2“+ 3 (:‘__1')2'

2] 1 :1 |
SE )Gl

Now we want to use these results for k—Jacobsthal and k— Jacobsthal Lucas
sequences by using the same procedure.

]

Lemma 6 The sequence of { yk,m},,>n i defined as follows provides the recur-
rence relation Yen+1 = kY + k-1,

&7 IV .
Yen = Z ( i )km-st‘
i=0

Proof. For m € N, by using the definition of { y&,m},,,, we have

L% :
Q kyk,vu +2yk,m—l = Z ( mi_i ) knl-l-l—'lizi

i=0
+L§J ( m—il -t )km—2i2i+1
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For m is an even integer, then [m/2| = [(m + 1)/2]

= e S0 (1 e

m l

et Z ( m+ 1 - )km+l—2i2i

l—-’
[5] .
- Z ( m+i1 -1 )km+l—2i2i = Ykant1-
=0
For k is an odd integer, then |k/2] = |(k - 1)}/2]
&) m—1i 1-2
— w4l —230i
Q= 3 ( ; )k 2
=0
g m—l—i) 1=2igi+]
+ . fmi-digit
...-nj
= km+l + Z ( )km+1-2i2i
! i -
1 it
+) ( 1 )k 2

i=}

m m=1

- km+l + Z ( m+1 -1 )km+l—2:'2i

(b
=]
>

Il

m+1_i tl—2igt _
( i ) k 2= Yk,m+1-

i=0
a

Theorem 7 Forn > 1, n € N, it’s obtained that
0 2
Jk,n = yk,ul'l + Ykn-1 [ 1 —k ] .
Proof. The assumption is true for » = 1 because of yr0 = 1, yx,1 =k,

0 2
Jea = yradz + yeo [ 1 —k } . (12)
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Let the statement is true for n < m. For n = m + 1, we have

i

Jk,m+l ka.m + 2Jk,m—l =k (ylc:,m-h + Yk, m—-1 [ (1] _zk ])

0 2
+2 (yk,m—lI‘z + Yi,m-2 [ 1 —k ])

0 2
(kyk,m + 23/::,1"—1) 12 + (kyk.m—l + zyk,vn—2) [ 1 —k ]

Il

0 2
Ykmt1L2 + Yk,m [ 1 -k ] ‘
»

Corollary 8 For k—Jacobsthal sequences, we obtain

Jknt1 = Z ( )k"_z'T

i=0

Corollary 9 For k— Jacobsthal Lucas matriz sequences we obtain
K +4 2k 2k 8
Crnt1 = Ykn [ & 4 ] + Yk,n-1 [ 4 -2 ] . (13)

Proof. By using the product matrices it is seen that

k*+4 2k 2
Crt1 = Ci1Jin = ( ;’ 4 ) (anz +Yn-1. [ (t) —s ])

Corollary 10 For k—Jacobsthal Lucas sequences we have

L=)

Crntl = JRE Z [( n+l—z )+( 11_—11 )] fn+1-2igi

i=0
Proof. By using the relation between k—Jacobsthal Lucas sequences and
{yx,}, we have
élc,n-ﬁ-l = 3jk,n+l + 4tjk,1| = 8Yk,n + 4tyk,n-l = Yk,ntt T Ztyk,u—l
L] .
Z ( n+ 1 -1 ) k-2
2
=0

n—1—=1% \, . 1-2init+1
+ Z ( ; )k 2

i=0)

L)
= gl Z (n+l )kn+l—2i2i

=1

I

=]

M=%\ ntl-2igi
+; (i_l)k 2,
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Therefore we complete the proof. =

Now we want to use these results for (s,t) Jacobsthal and (s,t) Jacobsthal
Lucas sequences by using the same procedure.

Lemma 11 Forn € N, the sequence of { 37,.}"20 is defined as follows provides
the recurrence relation §n4+1 = Un + 2Un-1,

L%) e o
‘gu = g ( i ) S"—2'(2t)'.
Proof. Fors,t€C andne€N
N N L&) k=% k+1-2ip00i
S + 2Py = . ( i ) s (20)
gy

i
( k—i )sk+l—2i(2t)i

+y ( ’.‘_'li )s"“'""(zt)‘

For k is an even integer, it is true that |k/2] = |(k +1)/2] and we have

4]

DY [( k:i ) +( f_—lt )] hH1=2i(pyi
i=1

g .
= skl lZJ ( k'f':—‘ )8k+l-2i(2t)i
=1

L=

_ Z ( k+ 1-i )sk+l-—2i(2t)i = as1-

?

[ k-1-i o
+ Z ( . >3k+l—2t(2t)t+l

Yk + 2tgr-1

i=0
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For k is an odd integer, it is true that [k/2| = |(k — 1)/2] and we have

. R k-1 —2igogi
S + 2Py = ( ; t )s"'“ %(2t)

+|.§ ( k- 1-4 ) gk—1-2i(gg)i+1

)

i=0
[ .
o gkl z (ki—l )sk+l—2i(2t)i
Eop
+ Z ( zk:; )3k+1—2i(2t)i
i=]
ikl ™
+( ’f%_,lﬁ_{ )(2t)l—1—J

2 e o
( i1 )3“1—2‘(%)' = Jiet1-

]
Theorem 12 Forn > 1,n € N, it is obtained that
-5

. N 2
Jn(syt) = anZ + Yn-1 [ ‘t) ] . (14)

Proof. The assumption is true for n = 1 because of §jp = 1, 7, = s then we
have

R .10 2
Jl(s,t)=y112+yo[ t s ]

Assume that the statement is true for n < k. For n = £+ 1, we have

Jit+1(s,t) = sJe(s,t) + 2tJi_ (s, t)

. . 0 2 . . 0 2
= 3(yk12+yk-l[t —s ])+2t(yk-112+yk-2[t —s ])

. . . . 2
= (sgk + 2tge—1) I + (sr-1 + 2tjs—2) [ 2 s ]

. .10 2
= yk+1I‘2+yk[t _s]-

Corollary 13 For (s,t) Jacobsthal sequences we have

L4 .
jn+1(3,t) = Z ( ni—z ) svz-2i(2t)i.

i=0
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Corollary 14 For (s,t) Jacobsthal Lucas matriz sequences we have

Cn+l(3x t) C'l (51 t)Jn(sa t) (15)
[ s*+4t 2s o 2st 8t
= Ul s g [TV a2 —2st |

Corollary 15 For (s,t)— Jacobsthal Lucas sequences we have

bnyi(s,t) =s"t 4 L%J.J [( n+3 - ) + ( :’:1' )] stH1=2i(9g)i,

i=0

Proof. By using the relation between (s,t) —Jacobsthal Lucas sequences and
{@n}, we have

énsi(s,t) = Sins1(s,t) + 4t5,(8,t) = 5Gn + 4thn—1 = Gns1 + 2T
=] .
- Z ( "l+i1 -t )su+1—2i(2t)i
=0

+l§ ( n _.il -1 ) §"=1%(gg)i+1

L] ( n+}—i )srn+1-2i(2t)i

|
h"
+
+
™%

+3 ( ’.’__li )s"*’“zi(Zt)‘.

i=1

The proof is completed. =
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