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Abstract

In this paper, we first present a combinatorial proof of the re-
currence relation about the number of the inverse-conjugate com-
positions of 2n + 1,n > 1. And then we get some counting results
about the inverse-conjugate compositions for special composition-
s. In particular, we show that the number of the inverse-conjugate
compositions of 4k + 1,k > 0 with odd parts is 2%, and provide an
elegant combinatorial proof. Lastly, we give a relation between the
number of the inverse-conjugate odd compositions of 4k + 1 and the
number of the self-inverse odd compositions of 4k + 1.
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1 Introduction

A composition of a positive integer n is a representation of n as a
sequence of positive integers called parts which sum to n. For example,
the compositions of 4 are listed below:

(4), (3,1), (1,3), (2,2), (2,1,1), (1,2,1), (1,1,2), (1,1,1,1).

It is well know that there are 2"~! unrestricted compositions of n.
MacMahon’s [2] study of compositions was influenced hy his pioneering
work in partitions. For instance, he devised a graphical representation of a
composition, called a zig-zag graph, which resembles the partition Ferrers
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graph except that the first dot of each part is aligned with the last part of
its predecessor. The zig-zag graph of the composition (6, 3,1, 2, 2) is shown
in Figure 1.

Figure 1

The conjugate of a composition is obtained by reading its graph by
columns, from left to right. The Figure 1 gives the conjugate of the com-
position (6,3,1,2,2) as (1,1,1,1,1,2,1,3,2,1).

Munagi [3] gave some primary classes of compositions and the relevant
theorems. Now we recall some terminologies from (3} herein. Let C' denote
the composition of n, a k-composition is a composition with k parts, i.e.
C = (e1,¢2, ..., ck). The conjugate of C is denoted by C’, the inverse of C
is the reversal composition C = (¢, Ck—1, .-, C1)-

C is called self-inverse if C =C.

__ C is inverse-conjugate if it’s inverse coincides with its conjugate: C' =
C.

In 3], Munagi defined the following algebraic operations:

Let A = (a1,a2,...,a;) and B = (b, bs,...,b;) be compositions. The
concatenation of the parts of A and B is defined as

A|B = (a1, a2, ..., ai, b1, by, ..., bj).

In particular for a nonnegative integer c, Al(c) = (A,¢) and (c)|A =
(¢, A).

He defined the join of A and B as

AW B = (al, ag, ..., q; + by, ba, ..., bj).

For the inverse-conjugate of compositions, researchers have obtained
some properties [2,3,4]. It is well known that if C = (¢, ¢z, ...,ck) is an
inverse-conjugate composition of n, then k = n—k+1 or n = 2k — 1. Thus
inverse-conjugate compositions are only defined for odd weights. In fact,
every odd integer > 1 has a nontrivial inverse-conjugate composition. For
example, (1,2%-1) and (1*~!,k) are both inverse-conjugate compositions
of 2k — 1.

Next we shall list some previously known results that will be needed in
the next sections.

Lemma 1.1 ([3]) An inverse-conjugate composition C (or its inverse) has
the form:

C = (1571, by, 15172 by, 15272 by, by, 197200, by > 10 (1)
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Lemma 1.2 ((3]) If C = (c1,¢2,...,Ck) s an inverse-conjugate composi-
tion of n = 2k — 1 > 1, or its inverse, then there is an index j such that
ca+e+...+c;=k—1andcjy +...+cp =k withcjy > 1. Moreover,

(e1, 21 €5) = (€541 — L, G2, onr k) - (2)
Thus C can be written in the form
C=A|1)¥B  suchthat B =74, (3)
where A and B are generally different compositions of k — 1.

Lemma 1.3 ([3]) There are as many inverse-conjugate compositions of
2n — 1 as there are compositions of n.

Let Ic(n) be the number of the inverse -conjugate compositions of n.
This paper is organized as follows. In Section 2, a combinatorial proof of the
recurrence relation of I (n) is given. In Section 3, we first study the inverse-
conjugate compositions having odd parts, and obtain that the number of
the inverse-conjugate compositions of 4k 4+ 1 with odd parts is 2%, where
k > 0. Furthermore, we provide an elegant combinatorial proof. Naturally
we get the fact that there are as many inverse-conjugate compositions of
4k +1 as there are compositions of k+ 1. Lastly, we have a relation between
the number of the inverse-conjugate compositions of 4k 4- 1 with odd parts
and the number of the self-inverse odd compositions of 4k + 1. In addition,
we present the counting results about the inverse-conjugate compositions
having parts of size 1 or 2.

2 A combinatorial proof

Let C(n) denote the number of compositions of n. By Lemma 1.3 and
the recurrence relation of C(n) we easily get the following recurrence rela-
tion of Ic(n). In this section, we will present the combinatorial proof.

Theorem 2.1 We have
Ic(2n+1)=2I¢(2n-1), n>1, Ic(1)=1. (4)

Proof. Let C = (c,c3,...,cn) be an inverse-conjugate composition of
2n—1 > 1, By Lemma 1.2, C will belong to one of the following two cases.

Case 1

(la) e1+cz+...+¢; =n—1and ¢jp1+¢jpa2+...+cn =n withcjyy > 1
and )

(lb) (Clv €2y .0y Cjy 1) = (cj+l) Cj42;5 00y Cn) 3

95



Case 2

(2a) e1+cz+...+c;=nand ¢j41+cjp2+...+en =n—1withe; > 1
and )

(2b) (01,02, ey Cj — 1) = (cj+1,cj+2,...,cn) .

We define T(C) = (1, ¢y, ¢, ..., cn+1), then T(C) is an inverse-conjugate
composition of 2n + 1 with the first part 1, and it has same structure as C.
In fact, if C satisfies (1a) and (1), then 14+¢; +c2+...4+¢c; =n and ¢j41+
cjy2+..+(ca+1)=n+1,and (1,c1,¢2,...,¢5,1) = (Cj41,Cj42, - Ca + 1)'.
If C satisfies (2a) and (2b), then 14+ ¢1 +c2+...+¢; =n+1 and ¢j4) +
Cjiy2+ ...+ (cn +1) =n, and (1,01,02, ey Cj — 1) = (Cj+1, Cjt2y s Cn + 1)'.

Next, we again define S(C) = (¢; + 1,¢g,...,¢n,1), then S(C) is an
inverse-conjugate composition of 2n + 1 with the first part > 1, and it has
same structure as C using similar discussion to the image T'.

From the above discussions, we can see that an inverse-conjugate com-
position of 2rn —1 can produce two different inverse-conjugate compositions
of 2n 4+ 1.

Conversely, suppose two inverse-conjugate compositions o = (o, ag, ...,
onyt) and B = (B, B2, .-, Bnt1) of 2n + 1 fulfill the following conditions: if
o) =1, then 8; > 1 and a; + a2 = B1,0n+1 = Bn + Bn+1, and vice versa.
We define T‘l(a) = (a2,03;...,Qnt1 — 1), S—l(ﬁ) = (ﬂl -1, 8, ...,,Bn).
Hence, we get two inverse-conjugate compositions of 2n — 1 and they are
equal.

Therefore, we have the fact that two inverse-conjugate compositions of
2n+-1 correspond to one inverse-conjugate composition of 2n — 1. Thus we
have Ic(2n + 1) = 2I¢(2n - 1).

For example, the corresponding relation between the inverse-conjugate
composition (1,1,3) of 5 and the inverse-conjugate compositions (1,1, 1, 4),
(2,1,3,1) of 7 as follows.

(1,1,3) « (1,1,1,4), (1,1,3) «— (2,1,8,1).

We complete the proof.

3 The inverse-conjugate compositions with
odd parts

In this section, we will study the inverse-conjugate compositions with
odd parts. We will refer to compositions with odd parts as odd compositions.

Then we obtain the following counting result. Furthermore, we provide an
elegant combinatorial proof.
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Theorem 3.1 Let Iicpy(n) denote the number of inverse-conjugate com-
positions of n with odd parts. Then

Icoy(4k+1)=2%, k>o0. (5)

Proof. By Lemma 1.1, if C is an inverse-conjugate composition of 4k +
1, then C or its inverse has the form: C = (1%-~1 by, 15r-1=2 by, 16-2-2 pg,
eybr1, 1972 b)), b; > 1, and the number of parts is 2k + 1. Since C is
always paired with its inverse, we only consider the inverse-conjugate com-
positions with the first part equal to 1 below.

For each inverse-conjugate composition of 4k 4+ 1 with odd parts we
consider the number of 1's: we assume that all the 1’s are moved to the left
and the parts > 1 are moved to right-end while maintaining their order.
Then there are the following cases:

e (1,1,..,1,2k+1);
Ny e’

2k
e (1,1,..,1,c1,¢2),and ¢; > 1, i=1,2.
N——
2%k—1
e (L,1,..,1,c1,c2,c3),and ¢; > 1, i =1,2,3.
N——

2k-2

e (1,1,..,1,¢1,c0,c3,...ck),and ¢; > 1, i =1,2,..., k.
k41
Next we transform the parts > 1 in the above sequences to the following
sequernces:
e  the compositions of 2k + 1 with odd parts having only one part
which is 2k + 1;
e  the compositions of 2k + 2 with odd parts having 2 parts > 1;
e  the compositions of 2k + 3 with odd parts having 3 parts > 1;

&
s  the compositions of 3k with odd parts having k parts > 1 which
is (3,3,...,3).

In this way, our question hecomes to find the corresponding relation
between the compositions of k with ¢ parts and the compositions of 2k + ¢
with ¢ odd parts > 1, where ¢ = 1,2,...,k. For convenience we stipulate
that the first odd is 3, the second odd is 5, and so on.

To establish the desired correspondence we do the following: the com-
position (k) of k with 1 part corresponds with the composition (2k + 1) of
2k + 1 with one odd part > 1, and the part k in the composition of k& cor-
responds to the part in the odd composition of 2k + 1 which is the k** odd
number, that is, (k) «— (2k+1). The compositions of k£ with 2 parts corre-
spond with the compositions of 2k + 2 with 2 odd parts > 1, and the part s
in the compositions of k¥ corresponding to the part in the odd compositions
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of 2k 4+ 2 which is the s** odd number. For example, (1,4) +— (3,9). The
compositions of k having 3 parts correspond with the odd compositions of
2k + 3 having 3 odd parts > 1, and the part s in the compositions of &
corresponding to the part in the odd compositions of 2k + 3 which is the
sth odd number. For example, (2,2,1) +— (5,5, 3). ....... The composition
of k having k parts, (1,1,...,1) corresponds with the odd compositions of
3k with k odd parts, (3,3,...,3), that is, (1,1,...,1) «— (3,3, ...,3).

Obviously the above correspondence is one-to-one.

Hence there are 2~1 inverse-conjugate odd compositions of 4k + 1 with
the first part equal to 1. So the number of all inverse-conjugate odd com-
positions of 4k + 1 is 2 x 2k—1 = 2k,

We complete the proof.

Here we cite an example to illustrate Theorem 3.1.

Example 3.1 Let k = 3, then there are 8 inverse-conjugate compositions
of 13 with odd parts, and 4 compositions of 3. The corresponding relations
in proof of Theorem 3.1 are as follows:

(1,1,1,1,1,1,7) «— (7) «— (3),

(1,1,5,1,1,1,3) «— (1,1,1,1,1,8) +— (8) «+— (3,5) +— (2,1),
(1,1,1,1,3,1,5) «— (1,1,1,1,1,8) «— (8) «— (5,3) «— (1,2),
(1,1,3,1,3,1,3) «— (1,1,1,1,9) «— (9) «— (3,3,3) «— (1,1,1).

and

(1,1,1,1,1,1,7) «— (3) «— (7,1,1,1,1,1,1),
(1,1,5,1,1,1,3) «— (2,1) «— (3,1,1,1,5,1,1),
(1,1,1,1,3,1,5) +— (1,2) «— (5,1,3,1,1,1,1),
(1,1,3,1,3,1,3) «— (1,1,1) «— (3,1,3,1,3,1,1).

Of course, we easily get the following relation between the number of
inverse-conjugate compositions of 4k + 1 with odd parts and the number
of the compositions of n.

Corollary 3.1 Let I(coy(n) and C(n) denote the number of inverse-conjugate
compositions of n with odd parts and the number of the compositions of n,
respectively. Then

licoy(4k+1) =C(k+1), k21 (6)
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In [4], Munagi gave the following relations about the compositions, the
inverse-compositions and self-conjugate partitions.

Theorem 3.2 [4] The following sets of objects are equinumerous:
(i) Compositions of n.

(ii) Inverse-conjugate compositions of 2n — 1.

(iii) Self-conjugate partitions with largest part equal to n.

By Theorem 3.1 and Corollary 3.1 we easily get the following identities.

Corollary 3.2 The number of inverse-conjugate compositions of 4k + 1
with odd parts equals the number of inverse-conjugate compositions of 2k+1.

Corollary 3.3 The number of inverse-conjugate compositions of 4k + 1
with odd parts equals the number of self-conjugate partitions with largest
part equal to k + 1.

Not unnaturally, using the recurrence relation: C(n) = 2C(n —1),n >
1 we obtain the following recurrence relation of the number of inverse-
conjugate compositions with odd parts.

Corollary 3.4 Let Iico)(n) denote the number of inverse-conjugate com-
positions of n with odd parts. Then

I(CO)(4k +1)= 21(00)(4’6 -3), k>1, I(CO)(I) =1. (M

Remark. There are no inverse-conjugate compositions of number 4k +
3,k > 0 with odd parts. In fact, if C is an inverse-conjugate composition of
4k + 3 with odd parts, then the number of parts of C is 2k + 2. We know
this is impossible.

For the inverse-conjugate compositions of odd integer n, MacMahon
demonstrated the following result using LG method. And Munagi gave the
combinatorial proof in (3].

Theorem 3.3 (MacMahon) The number of inverse-conjugate composition-
s of an odd integer n > 0 equals the number of compositions of n which are
self-inverse.

Similar to the method of Munagi, we obtain the following result.

Theorem 3.4 The number of inverse-conjugate odd compositions of 4k +
1 > 1 equals the number of self-inverse odd compositions of 4k +1 > 1 with
the middle part is 4s+ 1 > 1, and their conjugate are odd compositions.
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Proof. If C is inverse-conjugate odd composition of 4k + 1, then C can
be written in the form C = A|(1) W B or C = Aw(1)|B for certain odd
compositions A, B, of 2k satisfying B' = 4.

If C = A|(1) @ B, by (2), we get T(C) = A|[(1) & B, which is a
self-inverse odd composition with the middle part is 1.

IfC=Aw (l)IB, then there is an odd part m > 1 such that C =
X |(m) |B, where X is composition of integer < 2k. Now split m between the
two compositions as follows: X|(m—1)l¢J(1)|B = (X,m—-1)w(1, B), which is
in the first case form. Hence T(C) = (X, m—1)&(1, B)', giving a self-inverse
odd composition with the middle part is d. Where d is 4s+1 > 1 since m—1

’

is even, and the first part of (1, B) is m using (2). Because the conjugate
of self-inverse composition is self-inverse composition, and C is inverse-
conjugate odd composition, so we get the self-inverse odd compositions of

4k + 1.

Conversely given a self-inverse odd composition a = (by,b2,...,b,) =
B|(d) |-§ of 4k 4+ 1 with middle part is d = 4s +1 > 1, and the conjugate
composition o also is self-inverse odd composition, we first write o as the
join of two compositions of 2k and 2k + 1 by splitting the middle part.
The middle part, by weight, is bj11 such that s; = b; + ... + b; < 2k and
8j +bjy1 = 2k + 1. Thus

a s (b, by, ..., b;)|(2k — 55) W ((2k + 1) — £;)|(Bjq2s .-y br)
= X|(2k — s;) W ((2k +1) — t;)| X.

where tj=bjpo+ ...+ by.

Hence T !(e) = (X, (2k — s;) & (((2k + 1) —¢t;),X)’, which is inverse-
conjugate odd composition.

Thus we complete the proof.

We include an example to demonstrate how the bijection actually works.

Example 3.2 When k = 4, the set of inverse-conjugate odd compositions
of 17 contains the following 16 objects.

(1,1,1,1,1,1,1,1,9), (9,1,1,1,1,1,1,1,1), (7,1,3,1,1,1,1,1,1),
3,1,1,1,1,1,7,1,1),(5,1,1,1,5,1,1,1,1), (3,1,3,1,3,1,3,1,1,),
1,1,1,1,3,1,3,1,5), (1,1,3,1,1,1,5,1,3)(1,1,5,1,3,1,1,1,3),
(1,1,3,1,3,1,3,1,3), (5,1,3,1,3,1,1,1,1), (1,1,1,1,1,1,3,1,7)
(3,1,1,1,3,1,5,1,1), (1,1,1,1,5,1,1,1,5), (3,1,5,1,1,1,3,1,1),
(1,1,7,1,1,1,1,1,3).
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And the second set of compositions contains these 16 objects:

(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), (7,1,1,1,7),
3,1,1,1,1,1,1,1,1,1,1,1,3), (5,1,1,1,1,1,1,1,5)
3,1,3,1,1,1,3,1,3), (1,1,1,1,3,1,1,1,3,1,1,1, 1),
1,1,3,1,1,1,1,1,1,1,3,1,1), (1,1,5,1,1,1,5,1,1,)
1,1,3,1,5,1,3,1,1), (5,1,5,1,5), (1,1,1,1,1,1,5,1,1,1,1,1,1),
3,1,1,1,5,1,1,1,3), (1,1,1,1,9,1,1,1,1), (3,1,9,1,3),
1,1,13,1,1), (17).

In this section, we also study the inverse-conjugate compositions for
compositions of n having parts of size 1 or 2. Let 1-2 compositions be the
compositions of n having parts of size 1 or 2. Then we have the following
result about the 1-2 compositions.

Theorem 3.5 For n > 1, there are exactly two inverse-conjugate of the
1-2 compositions of 2n + 1, namely (1,2™) and (27,1).

Proof. This result follows immediately from Lemma 1.1.
We complete the proof.

Remark. According to Lemma 1.1, there is no inverse-conjugate com-
position of the compositions of 2n + 1 with parts > 1.

Acknowledgement. The author would like to thank the referee for
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this paper.
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