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1. Introduction

The goal of coding theory is to design codes that can transmit data with a high level of accuracy
and efficiency by selecting codes with the greatest possible minimum distance, given constraints on
the length of the code. This ensures that the code can correct as many errors as possible during
transmission over a noisy channel.

Let R be a finite commutative ring, and let n be a positive integer. A λ-constacyclic code is a
submodule C of Rn satisfying

(a0, . . . , an−2, an−1) ∈ C ⇒ (λan−1, a0, . . . , an−2) ∈ C.

The λ-constacyclic code C is called a cyclic code when λ = 1, and C is called a negacyclic code
when λ = −1. Each codeword a = (a0, a1, . . . , an−1) is customarily identified with its polynomial
representation a(x) = a0+a1x+. . .+an−1xn−1, and the code C is identified with the set of all polynomial
representations of its codewords. Then in the ring R[x]/⟨xn−λ⟩, xc(x) corresponds to a λ-constacyclic
shift of c(x). From this, the following fact is straightforward:

Proposition 1. A submodule C of Rn is λ-constacyclic over R if and only if C is an ideal of R[x]/⟨xn−

λ⟩.

In the case where R = Fq, Fq[x]/⟨xn − λ⟩ is a principal ideal ring. Thus, λ-constacyclic codes
correspond precisely to the ideals ⟨g(x)⟩ such that g(x) divides xn − λ. However, in general, there
is no known method to determine the ideals of the ring R[x]/⟨xn − λ⟩. The structure of these ideals
depends on the choice of the unit λ, the positive integer n, and the structure of R. If the length n is
coprime with the characteristic of the ring, the structure of cyclic and negacyclic codes of length n
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and their duals over a finite chain ring R is determined by Dinh and López-Permouth in [3]. Later,
Kiah et al. [4] classified all repeated-root cyclic codes of length pk over Galois rings GR(p2,m) (a
special finite chain ring). The structural properties and dual codes of (1 + wγ)-constacyclic codes of
arbitrary length over chain rings are given in [5], where γ is a generator of the maximal ideal and w is
a unit of R.

Consider the finite commutative ring R = Fpm[u]/⟨u3⟩ = Fpm + uFpm + u2Fpm , where u3 = 0. This
ring R is a finite chain ring with a maximal ideal ⟨u⟩ and nilpotency index 3. The units of R are of the
following form:

λ = σ + βu + δu2, where σ ∈ F∗pm and β, δ ∈ Fpm .

The structure of constacyclic codes over R has been extensively examined in various publications.
In the case where β , 0, Dinh et al. demonstrated in [6] that the ring R[x]/⟨xps

− λ⟩ is a chain ring
whose ideals are

⟨1⟩ ⊋ ⟨γx − 1⟩ ⊋ · · · ⊋
〈
(γx − 1)3ps−1

〉
⊋
〈
(γx − 1)3ps〉

= ⟨0⟩,

where γps
= σ. When β = 0 and δ , 0, Sobhani [7] determined the structure of (δ+αu2)-constacyclic

codes of length pk over Fpm[u]/⟨u3⟩. When β = δ = 0, Liu and Xu [8] studied the structure of
constacyclic codes of length ps over R. However, such classification is incomplete, since there are
some intersections between their types of codes. Later, Laaouine et al. [1] completely solved this
problem and gave the classification of such codes, which categorizes them into 8 distinct types, but
the classification is only complete by determining the values of parameters L, L1, U, V , and W.
However, the values of V and W are not well calculated, as shown in Examples 1 and 2, and this error
impacts the determination of the Hamming distance of some types of these codes. Therefore, our
objective in this article is to resolve these problems.

2. Cyclic Codes of Length ps Over R

In this section, we review some structural results presented in [1]. Consider the ring

R = Fpm + uFpm + u2Fpm = Fpm[u]/⟨u3⟩,

where p is a prime number and m is a positive integer. Define R′ as the ring R[x]/⟨xps
− 1⟩, where s is

a positive integer. According to Proposition 1, cyclic codes of length ps over R are ideals of R′. Let
K = Fpm[x]/⟨xps

− 1⟩ and define µ : R′ → K as the map that sends f (x) to f (x) mod u. For an ideal
C in R′, and 0 ≤ i ≤ 2, we define the i-th torsion code of a code C as

Tori(C) = µ({ f (x) ∈ K | ui f (x) ∈ C}),

which is an ideal of the ring K . Clearly, we have

Tor0(C) ⊆ Tor1(C) ⊆ Tor2(C). (1)

Therefore, there exist integers T0(C) ≥ T1(C) ≥ T2(C) such that

Tor0(C) =
〈
(x − 1)T0(C)

〉
, Tor1(C) =

〈
(x − 1)T1(C)

〉
, and Tor2(C) =

〈
(x − 1)T2(C)

〉
.

The following Theorem is a variation of Theorem 2 and Lemma 3 in [1].

Theorem 1. Cyclic codes of length ps over R, i.e., the ideals of R′, are classified into 8 types as
follows:

• Type 1. ⟨0⟩, ⟨1⟩. For this type, we have

T0(⟨0⟩) = T1(⟨0⟩) = T2(⟨0⟩) = ps,

T0(⟨1⟩) = T1(⟨1⟩) = T2(⟨1⟩) = 0.
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• Type 2. C2 =
〈
u2(x − 1)τ

〉
, where 0 ≤ τ ≤ ps − 1. For this type,

T0(C2) = T1(C2) = ps, T2(C2) = τ.

• Type 3. C3 =
〈
u(x − 1)δ + u2(x − 1)th(x)

〉
, where 0 ≤ L ≤ δ ≤ ps − 1, 0 ≤ t < L, and h(x) is

either 0 or a unit in K , and

L = min
{
k | u2(x − 1)k ∈ C3

}
. (2)

For this type, we have
T0(C3) = ps, T1(C3) = δ, T2(C3) = L.

• Type 4.
C4 =

〈
u(x − 1)δ + u2(x − 1)th(x), u2(x − 1)ω

〉
,

where 0 ≤ ω < L ≤ δ ≤ ps − 1, 0 ≤ t < ω, either h(x) is 0 or h(x) is a unit inK , and L is defined
as in (2). For this type, we have

T0(C4) = ps, T1(C4) = δ, T2(C4) = ω.

• Type 5. C5 =
〈
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x)

〉
, where 0 < V ≤ U ≤ a ≤ ps − 1,

0 ≤ t1 < U, 0 ≤ t2 < V, and

U = min
{
k | u(x − 1)k + u2g(x) ∈ C5

}
, (3)

and

V = min
{
k | u2(x − 1)k ∈ C5

}
. (4)

For this type, we have
T0(C5) = a, T1(C5) = U, T2(C5) = V.

• Type 6. C6 =
〈
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x), u2(x − 1)c

〉
, where 0 ≤ c < V ≤ U ≤

a ≤ ps − 1, 0 ≤ t1 < U, 0 ≤ t2 < c, and for i = 1, 2, hi(x) is either 0 or a unit in K . U and V as
defined in (3) and (4). For this type, we have

T0(C6) = a, T1(C6) = U, T2(C6) = c.

• Type 7. C7 =
〈
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x), u(x − 1)b + u2(x − 1)t3h3(x)

〉
, where

0 ≤ W ≤ b < U ≤ a ≤ ps − 1, 0 ≤ t1 < b, 0 ≤ t2 < W, 0 ≤ t3 < W, and for i = 1, 2, 3, hi(x) is
either 0 or a unit in K . U as defined in (3), and

W = min
{
k | u2(x − 1)k ∈ C7

}
. (5)

For this type, we have
T0(C7) = a, T1(C7) = b, T2(C7) = W.

• Type 8. C8 =
〈
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x), u(x − 1)b + u2(x − 1)t3h3(x), u2(x − 1)c

〉
,

where 0 ≤ c < W ≤ L1 ≤ b < U ≤ a ≤ ps − 1, 0 ≤ t1 < b, 0 ≤ t2 < c, 0 ≤ t3 < c, and for
i = 1, 2, 3, hi(x) is either 0 or a unit in K . U and W as defined in (3) and (5), and

L1 = min
{
k | u2(x − 1)k ∈ ⟨u(x − 1)b + u2(x − 1)t3h3(x)⟩

}
.

For this type, we have
T0(C8) = a, T1(C8) = b, T2(C8) = c.
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Proposition 2. [1] Let L , L1 and U be as above, then we have

L =

δ, if h(x) = 0,
min {δ, ps − δ + t} , if h(x) , 0.

L1 =

b, if h3(x) = 0,
min {b, ps − b + t3} , if h3(x) , 0.

U =

a, if h1(x) = 0,
min {a, ps − a + t1} , if h1(x) , 0.

Remark 1. In Propositions 7 and 8 of [1] it is claimed that

V =


a, if h1(x) = h2(x) = 0,
min {a, ps − a + t2} , if h1(x) = 0 and h2(x) , 0,
min {a, ps − a + t1} , if h1(x) , 0.

(6)

W =



b, if h1(x) = h2(x) = h3(x) = 0,
or h1(x) , 0 and h3(x) = 0,

min {b, ps − a + t2} , if h1(x) = h3(x) = 0, h2(x) , 0,
min {b, ps − b + t3} , if h1(x) = h2(x) = 0, h3(x) , 0

or h1(x) , 0 and h3(x) , 0,
min {b, ps − a + t2, ps − b + t3} , if h1(x) = 0, h2(x) , 0, h3(x) , 0.

(7)

This claim is not true in general. To be more precise, in the following, we present a counter-example.

Example 1. Let R = F2 + uF2 + u2F2. Consider the cyclic code C5 = ⟨(x − 1) + u⟩ of length 2 over R.
Here, a = 1, t1 = 0, h1(x) = 1, and h2(x) = 0. Since u2 = [(x − 1) + u][(x − 1) + u], we have u2 ∈ C5.
This implies that V = 0. By (6), we see that min{a, ps − a + t1} = 1. Hence V , min{a, ps − a + t1}.

Example 2. Let R = F3 + uF3 + u3F3. Consider the cyclic code C7 = ⟨(x − 1)2 + u, u(x − 1)⟩ of length
3 over R. Here, a = 2, b = 1, t1 = 0, h1(x) = 1, and h2(x) = h3(x) = 0. We have

u2 = u
[
(x − 1)2 + u

]
− (x − 1) [u(x − 1)] ∈ C7.

This implies that W = 0. By (7), we see that W = b = 1, which is not true.

In the following Theorem we provide a correction of Propositions 7 and 8 of [1].

Theorem 2. Let V be as defined in (4), then we have

V =



a, if h1(x) = h2(x) = 0,
min{a, ps − a + t2}, if h1(x) = 0 and h2(x) , 0,
min{a, ps − 2a + 2t1}, if h1(x) , 0, h2(x) = 0 and a ≤ ps − a + t1,

min{a, ps − a + t2, ps − 2a + 2t1}, if h1(x) , 0, h2(x) , 0, a ≤ ps − a + t1 and 2t1 , a + t2,

min{a, ps − a + t2 + α1}, if h1(x) , 0, h2(x) , 0, a ≤ ps − a + t1 and 2t1 = a + t2,

t1, if h1(x) , 0, h2(x) = 0 and a ≥ ps − a + t1,

min{t1, a + t2 − t1}, if h1(x) , 0, h2(x) , 0, a ≥ ps − a + t1 and 2t1 , a + t2,

min {ps + t1 − a, t1 + α1} , if h1(x) , 0, h2(x) , 0, a ≥ ps − a + t1 and 2t1 = a + t2,

(8)

where
α1 = max

{
0 ≤ k ≤ ps | (x − 1)k divides h1(x) − h2(x)h1(x)−1

}
.
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Proof. Since u2(x−1)V ∈ C5, there exists F(x) = g0(x)+ug1(x)+u2g2(x), where g0(x), g1(x), g2(x) ∈ K
such that

u2(x − 1)V =F(x)
(
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x)

)
=(x − 1)ag0(x) + u

(
(x − 1)t1h1(x)g0(x) + (x − 1)ag1(x)

)
+ u2 ((x − 1)t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x)

)
.

This equation can be represented as a system of equations:

(x − 1)ag0(x) = 0, (9a)
(x − 1)t1h1(x)g0(x) + (x − 1)ag1(x) = 0, (9b)
(x − 1)V = (x − 1)t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x). (9c)

Equation (9a) can be rewritten as g0(x) = (x− 1)ps−ag′0(x), where g′0(x) ∈ K . Substituting this into the
system (9), we obtain:

(x − 1)ps−a+t1h1(x)g′0(x) + (x − 1)ag1(x) = 0, (10a)

(x − 1)V = (x − 1)ps−a+t2h2(x)g′0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x). (10b)

We will now consider the four possible cases:

• If h1(x) = h2(x) = 0, we have that C5 = ⟨(x − 1)a⟩, and V = a.
• If h1(x) = 0 and h2(x) , 0, then equation (10b) can be simplified to:

(x − 1)V = (x − 1)ps−a+t2h2(x)g′0(x) + (x − 1)ag2(x).

Therefore, it follows that V ≥ min{a, ps − a + t2}. Conversely, when we consider

g1(x) = g′0(x) = 0, g2(x) = 1, and g′0(x) = h2(x)−1, g1(x) = g2(x) = 0,

we can deduce that u2(x − 1)a, u2(x − 1)ps−a+t2 ∈ C5. This implies that V = min{a, ps − a + t2}.

• If h1(x) , 0 and a ≤ ps − a + t1. Then from (10a) we have,

(x − 1)ps−2a+t1h1(x)g′0(x) + g1(x) = (x − 1)ps−ag4(x),

for some g4(x) ∈ K . Then from (10b),

(x − 1)V =(x − 1)ps−a+t2h2(x)g′0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x)

=(x − 1)ps−a+t2h2(x)g′0(x) + (x − 1)ag2(x)

+ (x − 1)t1h1(x)
(
(x − 1)ps−ag4(x) − (x − 1)ps−2a+t1h1(x)g′0(x)

)
=(x − 1)ag2(x) +

(
(x − 1)ps−a+t2h2(x) − (x − 1)ps−2a+2t1h1(x)2

)
g′0(x)

+ (x − 1)ps−a+t1h1(x)g4(x)

=(x − 1)ag2(x) + (x − 1)β1 f1(x)g′0(x) + (x − 1)ps−a+t1h1(x)g4(x),

where

β1 = max{k | (x − 1)k divides (x − 1)ps−a+t2h2(x) − (x − 1)ps−2a+2t1h1(x)2}

=


ps − 2a + 2t1, if h2(x) = 0,
min{ps − a + t2, ps − 2a + 2t1}, if h2(x) , 0 and 2t1 , a + t2,

ps − a + t2 + α1, if h2(x) , 0 and 2t1 = a + t2,

and f1(x) a unit of K such that

(x − 1)ps−a+t2h2(x) − (x − 1)ps−2a+2t1h1(x) = (x − 1)β1 f1(x).

Then V ≥ min{a, β1, ps − a + t1} = min{a, β1}. Conversely if we take
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g4(x) = g′0(x) = 0, g2(x) = 1, and g′0(x) = f1(x)−1, g4(x) = g2(x) = 0,

we obtain respectively u2(x − 1)a, u2(x − 1)β1 ∈ C5. So

V = min{a, β1} =


min{a, ps − 2a + 2t1}, if h2(x) = 0,
min{a, ps − a + t2, ps − 2a + 2t1}, if h2(x) , 0 and 2t1 , a + t2,

min{a, ps − a + t2 + α1}, if h2(x) , 0 and 2t1 = a + t2.

(11)

• If h1(x) , 0 and a ≥ ps − a + t1. Then from (10a), we have,

h1(x)g′0(x) + (x − 1)2a−ps−t1g1(x) = (x − 1)a−t1g5(x),

for some g5(x) ∈ K . This implies that, from (10b),

(x − 1)V =(x − 1)ag2(x) + (x − 1)ps−a+t2h2(x)g′0(x) + (x − 1)t1h1(x)g1(x)

=(x − 1)ag2(x) + (x − 1)ps−a+t2
(
(x − 1)a−t1g5(x) − (x − 1)2a−ps−t1g1(x)

)
h2(x)h1(x)−1

+ (x − 1)t1h1(x)g1(x)

=(x − 1)ag2(x) + (x − 1)ps+t2−t1h2(x)h1(x)−1g5(x)

+
(
(x − 1)t1h1(x) − (x − 1)a+t2−t1h2(x)h1(x)−1

)
g1(x)

=(x − 1)ag2(x) + (x − 1)ps+t2−t1h2(x)h1(x)−1g5(x) + (x − 1)β2 f2(x)g1(x),

where

β2 = max
{
0 ≤ k ≤ ps | (x − 1)k divides (x − 1)t1h1(x) − (x − 1)a+t2−t1h2(x)h1(x)−1

}
=


t1, if h2(x) = 0,
min{t1, a + t2 − t1}, if h2(x) , 0 and 2t1 , a + t2,

t1 + α1, if h2(x) , 0 and 2t1 = a + t2,

and f2(x) a unit of K such that

(x − 1)t1h1(x) − (x − 1)a+t2−t1h2(x)h1(x)−1 = (x − 1)β2 f2(x).

Similarly to the previous case, we have:

– If h2(x) = 0, then V = min {a, β2} = t1.
– If h2(x) , 0, then

V = min {a, ps + t2 − t1, β2} =

min{t1, a + t2 − t1}, if 2t1 , a + t2,

min {ps + t1 − a, t1 + α1} , if 2t1 = a + t2.

□

Theorem 3. Let W be defined as in (5). Then we have:

W =



b, if h1(x) = h2(x) = h3(x) = 0,
min{b, a − b + t3}, if h1(x) = h2(x) = 0 and h3(x) , 0,
min{ps − a + t2, b}, if h2(x) , 0 and h1(x) = h3(x) = 0,
min{ps − a + t2, b, a − b + t3}, if h1(x) = 0, h2(x) , 0 and h3(x) , 0,
t1, if h1(x) , 0 and h2(x) = h3(x) = 0,
min{ps − a + t2, t1}, if h1(x) , 0, h2(x) , 0 and h3(x) = 0,
min{β3, β4, b, ps − b + t3}, if h1(x) , 0 and h3(x) , 0,
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where

β3 =


ps − a + t1 − b + t3, if h2(x) = 0,
min{ps − a + t2, ps − a + t1 − b + t3}, if h2(x) , 0 and t2 , t1 − b + t3,

ps − a + t1 − b + t3 + α3, if h2(x) , 0 and t2 = t1 − b + t3,

β4 =

min{t1, a − b + t3}, if t1 , a − b + t3,

t1 + α4, if t1 = a − b + t3,

α3 = max
{
0 ≤ k ≤ ps | (x − 1)k divides h2(x) − h1(x)h3(x)

}
,

α4 = max
{
0 ≤ k ≤ ps | (x − 1)k divides h1(x) − h3(x)

}
.

Proof. Since u2(x − 1)W ∈ C7, then there exist F1(x) and F2(x) in R′ such that

u2(x − 1)W =F1(x)
(
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x)

)
+ F2(x)

(
u(x − 1)b + u2(x − 1)t3h3(x)

)
.

Write F1(x) and F2(x) as:

F1(x) = (x − 1)ps−ag0(x) + ug1(x) + u2g2(x),

and
F2(x) = g4(x) + ug5(x),

where, g0(x), ..., g5(x) ∈ K . Then

u2(x − 1)W = u
(
(x − 1)ps−a+t1h1(x)g0(x) + (x − 1)ag1(x) + (x − 1)bg4(x)

)
= u2((x − 1)ps−a+t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x)
+ (x − 1)bg5(x) + (x − 1)t3h3(x)g4(x)

)
.

We must have,
(x − 1)ps−a+t1h1(x)g0(x) + (x − 1)ag1(x) + (x − 1)bg4(x) = 0. (12)

• If h1(x) = 0, then
(x − 1)a−bg1(x) + g4(x) = (x − 1)ps−bg6(x),

for some g6(x) ∈ K . Hence

(x − 1)W = (x − 1)ps−a+t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)bg5(x)
+ (x − 1)t3h3(x)g4(x)

= (x − 1)ps−a+t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)bg5(x)

+ (x − 1)ps−b+t3h3(x)g6(x) − (x − 1)a−b+t3h3(x)g1(x).

– If h2(x) = h3(x) = 0. Then W = min{a, b} = b.
– If h2(x) = 0 and h3(x) , 0. Then W = min{a, b, ps − b + t3, a − b + t3} = min{b, a − b + t3}.

– If h2(x) , 0 and h3(x) = 0. Then W = min{ps − a + t2, a, b} = min{ps − a + t2, b}.
– If h2(x) , 0 and h3(x) , 0. Then W = min{ps − a + t2, a, b, ps − b + t3, a − b + t3} =

min{ps − a + t2, b, a − b + t3}.

• If h1(x) , 0, since b ≤ U then by Proposition 2, ps − a + t1 ≥ b. From (12),

(x − 1)ps−a+t1−bh1(x)g0(x) + (x − 1)a−bg1(x) + g4(x) = (x − 1)ps−bg7(x),
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for some g7(x) ∈ K . Hence

(x − 1)W = (x − 1)ps−a+t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x) + (x − 1)bg5(x)
+ (x − 1)t3h3(x)g4(x)

= (x − 1)ps−a+t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x) + (x − 1)bg5(x)

+ (x − 1)t3
(
(x − 1)ps−bg7(x) − (x − 1)ps−a+t1−bh1(x)g0(x) − (x − 1)a−bg1(x)

)
h3(x)

=
(
(x − 1)ps−a+t2h2(x) − (x − 1)ps−a+t1−b+t3h1(x)h3(x)

)
g0(x)

+ (x − 1)ag2(x) +
(
(x − 1)t1h1(x) − (x − 1)a−b+t3h3(x)

)
g1(x)

+ (x − 1)bg5(x) + (x − 1)ps−b+t3h3(x)g7(x).

– If h3(x) = 0, then

(x − 1)W = (x − 1)ps−a+t2h2(x)g0(x) + (x − 1)ag2(x) + (x − 1)t1h1(x)g1(x) + (x − 1)bg5(x).

Then W =

min{a, t1, b} = t1, if h2(x) = 0,
min{ps − a + t2, a, t1, b} = min{ps − a + t2, t1}, if h2(x) , 0.

– If h3(x) , 0 . Let

β3 = max
{
0 ≤ k ≤ ps | (x − 1)k divides (x − 1)ps−a+t2h2(x) − (x − 1)ps−a+t1−b+t3h1(x)h3(x)

}
=


ps − a + t1 − b + t3, if h2(x) = 0,
min{ps − a + t2, ps − a + t1 − b + t3}, if h2(x) , 0 and t2 , t1 − b + t3,

ps − a + t1 − b + t3 + α3, if h2(x) , 0 and t2 = t1 − b + t3.

β4 = max
{
0 ≤ k ≤ ps | (x − 1)k divides (x − 1)t1h1(x) − (x − 1)a−b+t3h3(x)

}
=

min{t1, a − b + t3}, if t1 , a − b + t3,

t1 + α4, if t1 = a − b + t3.

And f3(x) a unit of K such that

(x − 1)ps−a+t2h2(x) − (x − 1)ps−a+t1−b+t3h1(x)h3(x) = (x − 1)β3 f3(x).

And f4(x) a unit of K such that

(x − 1)t1h1(x) − (x − 1)a−b+t3h3(x) = (x − 1)β4 f4(x).

Which means that

(x − 1)W =(x − 1)β3 f3(x)g0(x) + (x − 1)ag2(x) + (x − 1)β4 f4(x)g1(x)

+ (x − 1)bg5(x) + (x − 1)ps−b+t3h3(x)g7(x).

Then W = min{β3, β4, b, ps − b + t3}.

□

3. Hamming Distance and MDS Codes

The Hamming weight of a codeword w is represented as wtH(w) and is calculated as the cardinality
of the set {i | wi , 0}. The Hamming distance of a code C is denoted by dH(C) and is defined as the
minimum value of wtH(w) for w , 0, where w ∈ C.

In 1998, Norton et al. [9] introduced the Singleton bound for a linear code C of length n over a
finite chain ring R with respect to the Hamming distance dH(C). This bound is expressed as |C| ≤
|R|n−dH(C)+1.

Ars Combinatoria Volume 160, 105–115



A Note on Complete Classification of Repeated-Root 113

Definition 1. Let C be a linear code of length n over a finite commutative ring R. C is said to be a
Maximum Distance Separable (MDS) code with respect to the Hamming distance if |C| = |R|n−dH(C)+1.

In [2], the Hamming distances and MDS codes in the family of cyclic codes of length ps over R
have been established. However, for certain types of these codes, both the Hamming distances and
MDS codes depend on the values of V and W. This indicates that the Hamming distances and MDS
codes provided by [2] are not correct. In the following, we will present the necessary corrections. We
begin with a key theorem.

Theorem 4. [10, Theorem V.1.] Let C be a cyclic codes of length ps over R. Then the following hold.

1. dh(C) = dh (Tor2(C)).

2. The code C is an MDS code if and only if Tor0(C) = Tor2(C) and Tor2(C) is an MDS code of
length ps over Fpm .

As for any cyclic code C of length ps over R, Tor2(C) is a cyclic code of length ps over Fpm , its
Hamming distance is completely determined by the following theorem.

Theorem 5. [11, Theorem 4.11.] Let C be a cyclic codes of length ps, then C =
〈
(x − 1)i

〉
⊆

Fpm[x]/⟨ps − 1⟩, for i ∈ {0, 1, . . . , ps}. The Hamming distance di of C is determined by

di =



1, if i = 0,
β + 2, if βps−1 + 1 ⩽ i ⩽ (β + 1)ps−1 where 0 ⩽ β ⩽ p − 2,
(t + 1)pk, if ps − ps−k + (t − 1)ps−k−1 + 1 ⩽ i ⩽ ps − ps−k + tps−k−1

where 1 ⩽ t ⩽ p − 1, and 1 ⩽ k ⩽ s − 1,
0, if i = ps.

Next, we will identify all MDS cyclic codes of length ps over R. It is clear that Tor0(C) = Tor2(C)
if and only if C = ⟨1⟩ or C is of type 5 with V = a. Additionally, it is evident that C = ⟨1⟩ is an MDS
code. Subsequently, our focus will be on the determination of all MDS cyclic codes of length ps over
R of type type 5.

Lemma 1. [12, Theorem 3.2] Let C = ⟨(x − 1)a
⟩ be a cyclic code of length ps over Fpm , for a ∈

{1, . . . , ps − 1}. Then C is an MDS cyclic code if and only if one of the following conditions holds:

• If s = 1, then 1 ≤ a ≤ p − 1. In this case, dh (C) = a + 1.
• If s ≥ 2, and a = 1, In this case, dh (C) = 2.
• If s ≥ 2, and a = ps − 1. In this case, dh (C) = ps.

Theorem 6. Let C5 = ⟨(x − 1)a
⟩ be a cyclic code of length ps over R, for a ∈ {1, . . . , ps − 1}. Then C5

is an MDS cyclic code if and only if one of the following conditions holds:

• If s = 1, then 1 ≤ a ≤ p − 1. In this case, dh (C5) = a + 1.
• If s ≥ 2, and a = 1, In this case, dh (C5) = 2.
• If s ≥ 2, and a = ps − 1. In this case, dh (C5) = ps.

Proof. Just notice that Tor0(C) = Tor2(C) = a and we apply the previous lemma. □

Theorem 7. Let C5 =
〈
(x − 1)a + u2(x − 1)t2h2(x)

〉
be a cyclic code of length ps over R, of type 5 (as

defined in Theorem 1), where h2(x) , 0. Then C5 is an MDS cyclic code if and only if one of the
following conditions holds:

• If s = 1, then max {2a − ps, 0} ≤ t2 < a ≤ p − 1, in such case, dh (C5) = a + 1.
• If s ≥ 2, then
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– C5 = ⟨(x − 1) + uh2⟩ where h2 ∈ F
∗
pm , in such case, dh (C5) = 2.

– a = ps − 1, t2 = ps − 2, in such case, dh (C5) = ps.

Proof. According to equation (8), it is required that a = min{a, ps−a+ t2}, which can be expressed as
2a− ps ≤ t2. Consequently, by Lemma 1, C5 is an MDS cyclic code if and only if one of the following
conditions holds:

• If s = 1, then max{2a − ps, 0} ≤ t2 < a ≤ p − 1.
• If s ≥ 2, there are two possibilities:

– When a = 1, then t2 = 0, resulting in C5 = ⟨(x − 1) + uh2⟩, where h2 ∈ F
∗
pm .

– When a = ps − 1, then t2 < a ≤ ps − a + t2. It follows that t2 = a − 1 = ps − 2.

□

In the following, we examine the case where h1(x) is a unit. Since Tor0(C) = Tor2(C), it follows
from (1) that a = U. This implies a ≤ ps − a + t1 according to Proposition 2. Then, from (11), we
have that V = a if and only if:

a ≤ ps − 2a + 2t1, if h2(x) = 0,
a ≤ ps − a + t2 and a ≤ ps − 2a + 2t1, if h2(x) , 0 and 2t1 , a + t2,

a ≤ ps − a + t2 + α1, if h2(x) , 0 and 2t1 = a + t2.

This is equivalent to:


max
{

3a−ps

2 , 0
}
≤ t1, if h2(x) = 0,

max {2a − ps, 0} ≤ t2 and max
{

3a−ps

2 , 0
}
≤ t1, if h2(x) , 0 and 2t1 , a + t2,

2a ≤ ps + t2 + α1, if h2(x) , 0 and 2t1 = a + t2.

(13)

Therefore, we have the following Theorems.

Theorem 8. Let C5 =
〈
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x)

〉
be a cyclic code of length p over

R, of type 5 (as defined in Theorem 1), where h1(x) , 0. Then C5 is an MDS cyclic code if and only if
one of the following conditions holds:

• If h2(x) = 0, then max
{

3a−p
2 , 0
}
≤ t1.

• If h2(x) , 0 and 2t1 , a + t2, then max {2a − p, 0} ≤ t2 and max
{

3a−p
2 , 0
}
≤ t1.

• If h2(x) , 0 and 2t1 = a + t2, then 2a ≤ p + t2 + α1.

In all cases, dh (C5) = a + 1.

Theorem 9. Let C5 =
〈
(x − 1)a + u(x − 1)t1h1(x) + u2(x − 1)t2h2(x)

〉
be a cyclic code of length ps over

R, of type 5 (as defined in Theorem 1), where h1(x) , 0 and s ≥ 2. Then C5 is an MDS cyclic code if
and only if one of the following conditions holds:

• C5 =
〈
(x − 1) + uh1 + u2h2

〉
where h1, h2 ∈ Fpm and h1 , 0. In this case, dh(C5) = 2.

• a = ps − 1, h2(x) , 0, 2t1 = a + t2, and 2a ≤ ps + t2 + α1. In this case, dh(C5) = ps.

Proof. According to Lemma 1, a = 1 or a = ps − 1. In the case where a = 1, (13) is always
satisfied. In the case where a = ps − 1, (13) is satisfied if and only if h2(x) , 0, 2t1 = a + t2, and
2a ≤ ps + t2 + α1. □

Remark 2. Consider σ ∈ F∗pm . It follows that σpm
= σ. By utilizing the Division Algorithm, we

can find nonnegative integers σq and σr such that s = σqm + σr, where 0 ≤ σr ≤ m − 1. Let
σ0 = σ

−p(σq+1)m−s
= σ−pm−σr . Consequently, σps

0 = σ
−p(σq+1)m

= σ−1.
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Let ∆ be the map ∆ : R[x]/⟨xps
−1⟩ → R[x]/⟨xps

−σ⟩, given by f (x) 7→ f (σ0x). It is easy to verify
that ∆ is a ring isomorphism and it preserves the Hamming weight.

Specifically, A is a cyclic code of length ps over R if and only if B = ∆(A) is a σ-constacyclic code
of length ps over R, and furthermore dh(B) = dh(A). Moreover, B is an MDS code if and only if A is
an MDS code. Thus, our results about the Hamming distance of cyclic codes of length ps over R can
be correspondingly carried over to σ-constacyclic codes of length ps over R via the isomorphism ∆.

Declaration of competing interest

There is no conflict of interest related to this work.

References

1. Laaouine, J., Charkani, M. E. and Wang, L., 2021. Complete classification of repeated-root
σ-constacyclic codes of prime power length over Fpm[u]/

〈
u3
〉
. Discrete Mathematics, 344(6),

p.112325.

2. Dinh, H. Q., Laaouine, J., Charkani, M. E. and Chinnakum, W., 2021. Hamming distance of
constacyclic codes of length ps over Fpm + uFpm + u2Fpm . IEEE Access, 9, pp.141064–141078.
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