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Note

A Parity Result for Some p-Regular Partitions
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Abstract: Let p > 2 be prime and r ∈ {1, 2, . . . , p − 1}. Denote by cp(n) the number of p-regular
partitions of n in which parts can occur not more than three times. We prove the following: If 8r + 1
is a quadratic non-residue modulo p, cp(pn + r) ≡ 0 (mod 2) for all non negative integers n.
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1. Introduction

Let n ∈ Z≥0. A partition of n is a sequence (λ1, λ2, . . . , λℓ) satisfying λ1 ≥ λ2 ≥ . . . ≥ λℓ ≥ 1

and
ℓ∑

i=1
λi = n. The number of partitions of n is usually denoted by p(n) and p(0) is defined to be

1. For instance, there are 7 partitions of 5, namely; (5), (4, 1), (3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1) and
(1, 1, 1, 1, 1). Thus p(5) = 7. The function p(n) is called the (unrestricted) partition function.

At times, further restrictions on parts of partitions are imposed. If that happens, the partition
enumerating function in question is called restricted partition function. One of such examples is the
number of p-regular partitions. A partition is p-regular if none of its parts is divisible by p.

Parity results for the number of p-regular partitions have been recorded. The interested reader is
referred to [1–3] for related work. We shall use the following q-series notation

(a; q)∞ =
∞∏

n=1

(1 − aqn).

Using the notation above, the generating function for p(n) is given by

∞∑
n=0

p(n)qn =
1

(q; q)∞
. (1)

See [4]. Furthermore, we recall the following q-identities:

∞∑
j=0

(−1) j(2 j + 1)q
j( j+1)

2 = (q; q)3
∞, (2)

∞∑
j=−∞

(−1) jq
j(3 j−1)

2 = (q; q)∞. (3)
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See [4, 5]. For a prime p greater than 3, Sellers [6] gave parity results for p-regular partitions into
distinct parts. We relax this condition of parts being distinct, and allow repetitions of parts up to three
times. Let cp(n) denote the number of p-regular partitions of n in which each part cannot appear more
than three times. In this note, we prove the following result.

Theorem 1. Let p > 2 be prime and r ∈ {1, 2, . . . , p − 1} such that 8r + 1 is a quadratic non-residue
modulo p. Then cp(pn + r) ≡ 0 (mod 2) for all nonnegative integers n.

2. Proof of Theorem 1

The generating function of cp(n) is

∞∑
n=0

cp(n)qn =

∞∏
n=1

1 + qn + q2n + q3n

1 + qpn + q2pn + q3pn .

Thus, by (1), (2) and (3),

∞∑
n=0

cp(n)qn =
(q4; q4)∞
(q; q)∞

(qp; qp)∞
(q4p; q4p)∞

≡
(q; q)4

∞

(q; q)∞

(qp; qp)∞
(q4p; q4p)∞

(mod 2)

=
(q; q)3

∞(qp; qp)∞
(q4p; q4p)∞

≡

∞∑
j=0

q
j( j+1)

2

∞∑
k=−∞

q
pk(3k−1)

2

∞∑
l=0

p(l)q4pl (mod 2).

Suppose pn + r = j( j+1)
2 +

pk(3k−1)
2 + 4pl for some integers j, l ≥ 0 and k. Then

r ≡
j( j + 1)

2
(mod p)

which implies
8r + 1 ≡ (2 j + 1)2 (mod p).

Hence, if 8r + 1 is a quadratic non-residue modulo p, pn + r cannot be represented as a sum j( j+1)
2 +

pk(3k−1)
2 + 4pl for some integers j, l ≥ 0 and k. Therefore, we must have

cp(pn + r) ≡ 0 (mod 2).
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