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1. Introduction

In this survey, an alternate form of Merino-Mička-Mütze’s solution [1] to a combinatorial gen-
eration problem of Knuth [2] is given that is compatible with a reinterpretation [3] of the proof by
Mütze [4] and Gregor, Mütze and Nummenpalo [5] of existence of Hamilton cycles in the middle-
levels graph Mn [6] (0 < n ∈ Z). This graph Mn is induced by the vertices of the (2n + 1)-cube that
represent the n- and (n + 1)-subsets of the set {0, . . . , 2n} and is further considered from Section 2 on.

The reinterpretation in question is given in terms of the associated dihedral quotient graph Nn of
Mn whose vertices (here called necklaces, as in [1], see Definition 2, below) represent the Dyck words
of length 2n defined in the following alternate way to that of [1]:

Definition 1. The deficiency (not the excess, as in [1]) of a bitstring x is its number of 0’s minus its
number of 1’s. If x has deficiency 0 and every prefix has negative deficiency, then we say that x is a
Dyck word. Let Dn be the set of Dyck words of length 2n. Let D = ∪n≥0Dn.

Such words can be linearly ordered via a castling, or lexical, procedure [3, Section 3] (where the
term lexical appears in [3] in relation to Kierstead and Trotter [6]).

The castling procedure uses restricted growth strings or RGSs of length n, namely the n-strings
a1a2 · · · an such that a1 = 0 and ak ≤ ak−1 + 1, for 1 < k ≤ n; see [7, page 325]- [8, page 224 (u)], that
establish that their number is the Catalan number Cn =

1
n+1

(
2n
n

)
[9, A100108]. By eliminating the initial

zero of each such RGS, we say that the resulting (n − 1)-string is an n-germ a2 · · · an = bn−1 · · · b0,
better denoted bn−1 · · · b0 in what follows.
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Those n-germs form an ordered tree T n [3, Theorem 1] whose root is the null n-germ α = 0n−1

and such that each non-null n-germ α = an−1 · · · a1 with rightmost nonzero entry ai (1 ≤ i < n) has as
parent in Tn the n-germ β = bn−1 · · · b1 such that bi = ai − 1 and a j = b j, for j , i.

To each non-null n-germ α corresponds its tight RGS, or irreducible RGS, obtained by removing
its largest null prefix. The ordered trees T k form a chain T 1 ⊂ T 2 ⊂ · · · ⊂ T n ⊂ · · · etc. of ordered
trees obtained by identifying each n-germ α with the (n+1)-germ obtained from α by prefixing a zero
to it. The limit ∪∞i=1T

i of this chain, denoted T , will be considered with each vertex v written as the
tight RGS α associated to the n-germs α, 0α, 00α, . . . that v represents, so we have

V(T 1) = {∅},V(T 2) = {0, 1},V(T 2) = {00, 01, 10, 11, 12}, etc.,

that, as subsets of T , will be expressed as

V(T 1) = {∅},V(T 2) = {∅, 1},V(T 2) = {∅, 1, 10, 11, 12} etc.

The tree T is partially represented on the lower-right of Table 1 by its subtree T 4.
The castling procedure is realized by an inductively defined bijection F from the set of n-germs

onto Dn. This yields a natural way of designating the participating necklaces.
We “personalize” each necklace of length 2n + 1 by taking a representation f0 f1 · · · f2n of it such

that f0 = 0 and f1 · · · f2n ∈ Dn, and then applying the following procedure:

g0 := 0;
begin

for k = 1 to 2k do
if fk+1 = 0 then gk+1 = gk + 1 else gk+1 = gk − 1;

k := k + 1
end.

(1)

The procedure (1) replaces each bit fk of the necklace f0 f1 · · · f2n with a corresponding integer gk

(0 ≤ gk ≤ n). We say that the resulting (2n + 1)-tuple g0g1 · · · g2n is the neck, more specifically
the n-neck, associated to the necklace f0 f1 · · · f2n, (with the 2n-string f1 · · · f2n denoted as an n-nest
in [10, 11]). It happens that the necklace f0 f1 · · · f2n has each bit fk replaced by the height gk it
determines in its Dyck path [12, Subsection 3.2], so that each 0-bit is replaced either by the null
height at the starting point of the Dyck path or the first appearance of each non-null height, and
each 1-bit is replaced by the second appearance of that non-null height. See Remark 4 and Figure 2,
below. This “personalized” representation of the necklaces, that we call necks here, are shown as an
example of Theorem [3, Theorem 2] on the left of Table 1, below, generating T 4 via the procedure
(1), where each row, except the top one, shows an inductively obtained parent correspondence F : n-
germparent 7→ n-neckparent assigned to its child correspondence F : n-germchild 7→ n-neckchild.

In Table 1, from each parent n-germ to its child n-germ, the suffix in bold, shows a unit increase at
the rightmost nonzero entry of the child’s n-germ. Such suffix in bold has the same length as both the
prefixes and suffixes in bold of both the parent neck and child neck. Both are to be kept unchanged,
while a central-string castling takes place on the non-bold central strings. In fact, the one on the
parent side is subdivided into a left Italic substring and a right Roman substring, while the other one,
on the child side (i.e., inside n-neckchild), permutes the order of the two substrings, justifying denoting
this procedure as “castling”, like in chess. The Roman substring of a central string starts at the first
appearance of the integer ℓ + 1 subsequent to the integer ℓ starting the Italic side.

The upper-right of Table 1 represents how n-germs and n-necks fit for each index n into the case
of the subsequent index n + 1, where each zero which is added as a prefix (between auxiliary paren-
theses) of an RGS results in the corresponding neck into an inserted substring (also between auxiliary
parentheses) [10]. As a result, the ordered tree T of RGSs yields a bijection into an ordered tree T ′
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covering all tight necks (namely, where all parenthesized substrings as mentioned above are elimi-
nated).

This section is completed by providing some historical motivation and statement of the main results
of [1] as Theorems 1 and 2. In the rest of the paper, we adapt the discourse of [1] to our alternate
form. In Section 2 we provide additional information about the middle-levels graphs and necklace
graphs. In Section 3, basic flip sequences are presented. In Section 4, periodic paths and gluing pairs
are introduced. In Section 5, an initial attempt at proving theorem 1 is given. In Sections 6 and 8,
sketches of the proofs of Theorems 1 and 2 are given, while Section 7 provides information about
involved efficient computations.

0 F 000 → 012344321 (0)(0)(0)∅ → 01(2(3(44)3)2)1
1 000 → 012344321 001 → 023443211 (0)(0)1 → 02(3(44)3)211
2 000 → 012344321 010 → 013443221 (0)10 → 013(44)3221
3 010 → 013443221 011 → 022134431 (0)11 → 02213(44)31
4 011 → 022134431 012 → 034432211 (0)12 → 03(44)32211
5 000 → 012344321 100 → 012443321 ==== == ========

6 100 → 012443321 101 → 024433211 ↙∅↓↘

7 100 → 012443321 110 → 013324421 1. 10↓ 100↓↘
8 110 → 013324421 111 → 024421331 11↓ 101. 110↓↘
9 111 → 024421331 112 → 033244211 12. 111↓ 120↓

10 110 → 013324421 120 → 014433221 112. 121↓
11 120 → 014433221 121 → 022144331 122↓
12 121 → 022144331 122 → 033221441 123.
13 122 → 033221441 123 → 044332211

Table 1. Castling for n = 4, Fitting Cases n = 2, 3, 4 and Ordered Subtree T 4 of T

Combinatorial generation

An expressed objective of [1] is to generate all (k, ℓ)-combinations, i.e. all ways of choosing a
subset S of a fixed size k from the set [n] := {1, . . . , n}, with n = k + ℓ. Each such subset S is encoded
by a bitstring of length n with exactly k many 1’s, where the i-th bit is 1 if and only if the element i is
contained in S .

Buck and Wiedemann conjectured in [13] that all (n + 1, n + 1)-combinations are generated by
star transpositions, for every n ≥ 1, i.e. in each step the element 1 either enters or leaves the set. The
corresponding flip sequence α records the position of the bit swapped with the first bit in each step,
where positions are indexed in [2n + 1] and α has length N :=

(
2n+2
n+1

)
. Buck-Wiedemann’s conjecture

was independently raised by Havel [14] and became known as the middle-levels conjecture, name
coming from an equivalent formulation of the problem, which asks for a Hamilton cycle in the
middle-levels graphs, recalled below in Section 2.

Knuth’s conjecture

In [2, Problem 56, Section 7.2.1.3], Knuth conjectured that there is a star transposition that orders
the (n + 1, n + 1)-combinations, for every n ≥ 1, such that the flip sequence α has a block structure
α = (α0, α1, . . . , α2n), where each block αi has length N

2n+1 =
1

2n+1

(
2(n+1)

n+1

)
and is obtained from α0

by element-wise addition of i mod 2n + 1, where i ∈ [2n]. As the entries of α are from [2n + 1],
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the numbers 1, . . . , 2n + 1 are chosen as addition residue-class representatives, rather than the usual
0, . . . , 2n. Note that N

2n+1 = 2Cn, where Cn =
1

n+1

(
2n
n

)
is the n-th Catalan number. Then, [1] proves the

following.

Theorem 1. [1, Theorem 1] For any n ≥ 1 and 1 ≤ s ≤ 2n that is coprime to 2n + 1, there is a star-
transposition ordering of all (n + 1, n + 1)-combinations such that the corresponding flip sequence is
of the form α = (α0, α1, . . . , α2n) with each block αi obtained from α0 by element-wise addition of i.s
modulo 2n + 1, where i ∈ [2n].

Remark 1. By omitting the first entry of every (n+1, n+1)-combination, the (n+1, n+1)-combinations
are transformed bijectively into the vertices of the middle-levels graphs Mn, so Theorem 1 can be
rephrased in terms of Hamilton cycles of Mn, each cycle formed as a concatenation of 2n + 1 copies
of a periodic path representing a block as in the statement of the theorem, presented below in terms
of the approach of [3], with lemmas and propositions leading to the proof of Theorem 1 stated in
parallel to those of [1].

The proof of Theorem 1 in [1] is constructive and translates into an algorithm that generates all
(n + 1, n + 1)-combinations by star transpositions efficiently, stated in [1] as follows.

Theorem 2. [1, Theorem 2] There is an algorithm that computes for any n ≥ 1 and 1 ≤ s ≤ 2n that
is coprime to 2n + 1, a star transposition ordering of all (n + 1, n + 1)-combinations as in Theorem 1,
with running time O(n) for each generated combination, using O(n) memory.

Since T n is an ordered tree, then its vertex set V(Tn) inherits a natural linear order Ln. Thus, we
have a chain of linear orders L1 ⊂ L2 ⊂ · · · ⊂ Ln ⊂ · · · etc. The limit ∪∞i=1L

i of such a chain, denoted
L and consisting of tight RGSs, induces via the castling operation a linear order L′ of the tight necks,
offering an universal reference point of view [10]– [11] to express and integrate the periodic paths or
blocks whose concatenation leads to Hamilton cycles resulting from Remark 1.

Question 1. Can the Hamilton cycles obtained in the middle-levels graphs, or the periodic paths
found for Knuth problem, according to Remark 1, be set in terms of the tight RGSs in the linear order
L, or their numerical designations via the linear order L′?

Question 2. Is it possible to find a periodic path Pn in each Mn, for n > 1, so that when considering
the composing vertices of such paths as elements of V(T ′) it happens that Pn is an initial subpath
(prefix) of Pn+1, ∀n > 1?

110

12301200110211

1233012200110002010401111113110410021204122311241010121

123440123300122000110000200104001110111301104010020120401223011240101001212

012121121512212123201012511230123051233112310120111200310005110041110511113

111131220411225111241101510010101151120412225121131210010101121221223

2. Middle-levels Graphs and Necklace Graphs

Let 0 < n ∈ Z. Let An (resp. Bn) be the set of bitstrings of length 2n + 1 and weight n (resp.
n + 1). The middle-levels graph Mn can be set as the graph whose vertex set is V(Mn) = An ∪ Bn

and whose adjacency is given by a single flip. The positions of the bitstrings in V(Mn) are denoted
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1, 2, ..., 2n + 1 (mod 2n + 1), where 2n + 1 takes the place of additive identity 0. Let σi(x) denote
the cyclic right-rotation by i positions ( [1] uses left-rotation, while our approach here is compatible
with the treatment of [3]). The necklace ⟨x⟩ of x is defined to be {σi(x); i ≥ 0}. For example, if
x = 11000 ∈ A2 then ⟨x⟩ = {11000, 01100, 00110, 00011, 10001}.

Definition 2. Define the necklace graph Nn to have as vertex set all necklaces ⟨x⟩, (x ∈ V(Mn)), with
an edge between ⟨x⟩ and ⟨y⟩ if and only if x and y differ in a single bit. Nn is quotient graph of Mn

under the equivalence relation given by cyclically rotating bitstrings. There may be, for each ⟨x⟩, two
distinct bits in x that reach the same ⟨y⟩. But Nn is to be considered as a simple graph, so in Nn not
all vertices have the same degree. Nn has less vertices than Mn by a factor of 2n + 1.

Definition 3. To obtain a flip sequence for a Hamilton cycle in Mn, we say that a path P = {x1, ..., xk}

in Mn is periodic if flipping a single bit in xk yields a vertex xk+1 that satisfies ⟨xk+1⟩ = ⟨x1⟩.

Operations on sequences x = (x1, . . . , xn) of integers x + a := (x1 + a, ..., xk + a), (a ∈ Z) and |x| =
length of x; of bitstrings: ⟨x⟩ = (⟨x1⟩, . . . , ⟨xk⟩) and σi(x) = (σi(x1), . . . , σi(xk)).

Remark 2 (Rooted trees). Differing from [1], all rooted trees treated here have a specific right-to-
left ordering for the children of each vertex. Every Dyck word x ∈ Dn can be interpreted as one
such rooted tree on n edges, as follows, adapting the viewpoint of [1] to the setting of [3], where ϵ
stands for the empty bitstring: If x = ϵ, then x is associated to the tree formed by an isolated root;
else, x = u0v1, where u, v ∈ D. The trees R, L corresponding to v, u, respectively, have the tree
corresponding to x with R rooted at the rightmost child of the root, and the edges from the root to all
other children except that rightmost child, together with their subtrees, forming the tree L. This yields
a bijection from Dn onto the rooted trees with n edges.

Remark 3. []Rooted-tree rotations] Given a rooted tree x , ϵ, let ρ(x) denote the tree obtained by
rotating x to the left (in contrast to [1], that rotates it to the right), which corresponds to designating
the rightmost child (not leftmost as in [1]) of the root of x as the root of ρ(x). In terms of bitstrings, if
x = u0v1, with u, v ∈ D, then ρ(x) = 0u1v. See the left half of Figure 1, which resembles, but differs
reflectively from [1, Figure 7].

Definition 4. A plane tree is a tree embedded in the plane with a specified clockwise cyclic ordering
for the neighbors of each vertex, (not counterclockwise, shortened as ccw, [1]).

For n ≥ 1, let PTn be the set of all plane trees with n vertices. For any rooted tree x, let [x] denote
the set of all rooted trees obtained from x by rotation (that is [x] = {ρi(x); i ≥ 0}), to be interpreted as
the plane tree underlying x, obtained by ”forgetting” the root.

Let λ(x) = |[x]|. For T = [x] ∈ PTn, define λ(T ) = λ(x). Note that

λ(x) = min{i ≥ 1; ρi(x) = x},

the choice of representative of [x] in defining λ(T ) being irrelevant, for λ(T ) is well defined. Examples
for λ = 4, 8, 2, 3 are given in Figure 2, below, in the notation of [3], meaning that each 0-bit (resp.
1-bit) is represented by the first (resp. second) appearance of each integer, counting appearances
rotationally from the red 0 and in the direction indicated by “>” or by “<”. See also Remark 4.

Subtrees

Let T ∈ PTn. Let (a, b) ∈ E(T ). Let T (a,b) be T seen as a rooted tree with root a and rightmost
child b (not leftmost as in [1]). Let T (a,b)− be obtained from T (a,b) by removing all its children and
their subtrees except for b and its descendants. Given a ∈ V(T ), and all neighbors bi of a, (i ∈ [k]),
let the trees ti = T (a,bi)− be called the a-subtrees of T . Then, T = [(t1, . . . , tk)], where (t1, . . . , tk) is the
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rooted tree obtained by gluing t1, . . . , tk at their roots from right to left (in this order, reversed to that
of [1]): In terms of bitstrings, (t1, . . . , tk) is obtained by concatenating the bitstring representations of
t1, . . . , tk.

Centroids

Given a (rooted or plane) tree T , the potential ϕ(a) of a vertex a of T is the sum of the distances
from a to V(T ). The potential ϕ(T ) of T is ϕ(T ) =min{ϕ(a); a ∈ V(T )}. A centroid of T is an a ∈ V(T )
with ϕ(a) = ϕ(T ). Merino, Mička and Mütze [1]: (i) mention that a centroid of T is a vertex whose
removal splits T into subtrees with at most |V(T )|

2 vertices each; (ii) prove in [1, Lemma 3] that T has
either one centroid or two adjacent centroids, and that if |E(T ))| is even, then T has just one centroid.

Lemma 1. [1, Lemma 4] Let T ∈ PTn with n ≥ 1 edges. Then, λ(T )|2n. If T has a unique centroid,
then λ(T ) is even; else, λ(T ) = 2n if n is even, and λ(T ) ∈ {n, 2n} if n is odd. For n ≥ 4 and any even
divisor k of 2n, or for k = n, there is T ∈ PTn with λ(T ) = k.

Relation of middle levels to Dyck words

Our objective is to define as in [1] basic flip sequences that visit every necklace exactly once in
order to obtain a 2-factor (or cycle factor [1]) in Nn, namely a collection of disjoint cycles that visits
every vertex of Nn exactly once.

Lemma 2. Let n ≥ 1. For any x ∈ An, there is a unique integer ℓ = ℓ(x) with 0 ≤ ℓ ≤ 2n such that
the last 2n bits of σℓ(x) form a Dyck word. For any y ∈ Bn, there is a unique integer ℓ = ℓ(y) with
0 ≤ ℓ ≤ 2n such that the first 2n bits of σℓ(y) form a Dyck word. (Modified from [1, Lemma 5] that
refers in turn to [15, Problem 7]).

Dyck words of An in the notation of Lemma 2

∀x ∈ An, let t(x) ∈ Dn denote the last 2n bits of σℓ(x), where ℓ = ℓ(x), i.e. σℓ(x) = 0t(x), and
∀y ∈ Bn, let t(y) ∈ Dn denote the first 2n bits of σℓ(y), where ℓ = ℓ(y), i.e. σℓ(y) = t(y)1. Then,
by Lemma 2, every x ∈ An (resp. y ∈ Bn) can be identified uniquely with the pair (t(x), ℓ(x)) (resp.
(t(y), ℓ(y))).

3. Basic Flip Sequences

A bijection f on V(Mn) is introduced that yields a basic flip sequence visiting every necklace
exactly once, however in a different fashion to that of [1] but akin to the treatment of [3].

Let x ∈ An with ℓ(x) = 0, i.e. x = 0(u0v1) = 0t(x), where u, v ∈ D. Define y := f (x) =
(0u1v)1 = ρ(t(x))1 ∈ Bn, where ℓ(y) = 1 and ρ is as in Remark 3. Furhter, define f (y) = f ( f (x)) =
(0u1v)0 = ρ(t(x))0 ∈ An, where ℓ( f (y)) = 0. Extend these definitions of f for all x ∈ V(Mn) via
f (x) := σ−ℓ( f (σℓ)), where ℓ := ℓ(x). Then f is invertible and t( f ( f (x))) = t( f (x)) = ρ(t(x)). In our
alternate situation (differing from that of [1]), ℓ(x) = 1, ℓ( f (x)) = 0 and ℓ( f ( f (x))) = 0. Then, for all
x ∈ An, ℓ( f (x)) = ℓ(x) − 1 and ℓ( f ( f (x))) = ℓ(x) − 1.

Definition 5. For any x ∈ V(Mn), let κ(x) = min{i > 0; ⟨ f i(x)⟩ = ⟨x⟩}, be the period of f at x, namely
the number of times f must be applied before returning to the same necklace of x. For any x ∈ V(Mn),
let P(x) := (x, f (x), f 2(x), . . . , f κ(x)−1(x)) be the periodic path of f at x (Definition 3) in Mn, namely a
path of period κ(x). Therefore, ⟨P(x)⟩ is a cycle in Nn.

Remark 4. Our definition of f (differing from the f in [1, display (6)]) is illustrated in Figure 2,
below, in the notation of [3], arising from the Dyck path associated to each vertex x of Mn, with 0, or
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the first (resp. second) appearance of each integer in [n + 1], corresponding to a 0- (resp. 1-) bit in
x, where vertices x ∈ An (resp. x ∈ Bn) are expressed as “> . . . >” (resp. “< . . . <”), to be read from
left to right (resp. right to left). The ordered trees for those vertices x are drawn to the right of each
resulting periodic path in Figure 2.

Figure 1. Ordered-tree Modifications

Lemma 3. [1, Lemma 6] Let n ≥ 1 and let x ∈ V(Mn). Then,

1. ∀y ∈ ⟨x⟩ and ∀0 ≤ i ∈ Z, ⟨ f i(x)⟩ = ⟨ f i(y)⟩. In particular, κ(y) = κ(x).

2. ∀0 ≤ i ∈ Z, ⟨ f i(x)⟩ = ⟨ f κ(x)+i(x)⟩.

3. ∀0 ≤ i < j ≤ κ(x) in Z, ⟨ f i(x)⟩ , ⟨ f j(x)⟩.

4. ∀0 ≤ i ∈ Z, κ( f i(x)) = κ(x).

5. κ(x) = 2λ(t(x)), so λ(t(x)) is semi-period of f at x.

4. Periodic Paths and Gluing Pairs

Cycle factor of Nn

For any y ∈ ⟨x⟩ and any 0 ≤ i ∈ Z, we have κ( f i(y)) = κ(x), so ⟨P(x)⟩ = ⟨P( f i(y))⟩. This yields a
2-factor of Nn, denoted F := {⟨P(x); x ∈ V(Mn)}.

Proposition 1. [1, Proposition 7] For any n ≥ 2, Fn has the following properties:

1. for every x ∈ V(Mn) the (2i)-th vertex y after x on P(x) satisfies t(y) = ρi(t(x)). Therefore, both
P(x) and ⟨P(x)⟩ can be identified with [t(x)].

2. |V(P(x))| = 2λ(t(x)) ≥ 4 and ℓ( f 2i(x)) = ℓ(x) + i, ∀i = 0, . . . , λ(t(x)).

3. The cycles of Fn are in bijective correspondence with the plane trees on n + 1 vertices.

By Proposition 1 item 3, the number of cycles of Fn fits the sequence [9, A002995]. Also, [1]
mentions that the number of plane trees, or cycles of Fn, grows exponentially.

Gluing pairs

Consider the star sn = 0(01)n−11 ∈ Dn for n ≥ 3 and the footed-star s′n = 01sn−1 ∈ Dn for n ≥ 4. A
gluing pair is a pair (x, y) , (sn, s′n), with x = u0v011 and y = u0v101, where u, v ∈ D.

Pull/push operations

Let Gn be the set of all gluing pairs (x, y), where x, y ∈ Dn. By seeing x, y as rooted trees, [1]
declares that y is obtained from x by a pull operation, and calls its inverse a push operation. In our
treatment, the right half of our Figure 1 resembles, but differs reflectively, from [1, Figure 9]. We
write y = pull(x) and x = push(y), say that x is pullable, y is pushable and that u and v are the left and
right subtrees of both x and y.
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Figure 2. Examples of λ = 4, 8, 2, 3

Lemma 4. [1, Lemma 8] Let (x, y) ∈ Gn. If x has a centroid in u, then u is also a centroid of y, so
ϕ(y) = ϕ(x) − 1. If y has a centroid in v, then v is also a centroid of x, so ϕ(y) = ϕ(x) + 1.

Let (x, y) ∈ Gn. Let xi := f i(0x) and yi := f i(0y), for i ≥ 0. The resulting sequences agree with
the first vertices of P(x) and P(y), respectively. In such notation, we notice the 6-cycle C(x, y) =
(x0, y1, y0, x5, x6, x1), where:

x0 = 0u0v011,
y1 = 0u0v111,
y0 = 0u0v101,
x5 = 0u1v101,
x6 = 0u1v001,
x1 = 0u1v011.

(2)

Then, P(x) and P(y) are glued together by removing the alternate edges (y0, y1), (x0, x1) and (x5, x6)
via the symmetric difference between C(x, y) and P(x) ∪ P(y).

Lemma 5. [1, Lemma 9] (x, y) ∈ Gn ⇒ (|P(x0)| = κ(x0) ≥ 8 and |P(y0)| = κ(y0) ≥ 4).

Figure 3. The ∇ Operation Illustrated

Modifying the proof of Lemma 9 in [1], we get for our Lemma 5 now that

α(C(x, y)) = (|u| + |v| + 3, |u| + |v| + 4, |u| + 2, |u| + |v| + 3, |u| + |v| + 4, |u| + 2).

On the other hand, if (x, y) = (sn, s′n), then κ(x0) = 4, so ⟨x0⟩ = ⟨x4⟩, ⟨x2⟩ = ⟨x6⟩, and Lemma 5 does
not hold.

Remark 5. By Lemma 5, σi(C(x, y)) shares σi(x0, x1) and σi(x5, x6) with σi(P(x0)), and σi(y0, y1)
with σi(P(y0)). These edges are said to be the f -edges of the gluing cycle σi(C(i, j)).
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If [x] , [y], then ⟨P(x)⟩ and ⟨P(y)⟩ are distinct cycles in Nn by Proposition 1, so we have that the
grafted path

P(x0)∇P(y0) := (x0, y1, y2, . . . , y2λ(y)−1, σ−λ(y)(y0, x5, x4, x3, x2, x1, x6, x7, . . . , x2λ(x)−1))

is a periodic path in Mn.
The 2n + 1 periodic paths σi(P(x0)∇P(y0)) form

∪i≥0(σi(P(x0)∇P(y0))), that visits all vertices of ∪i≥0 (σi(P(x0) ∪ P(y0))).

Indeed, |P(x0)| = 2λ(x), |P(y0)| = 2λ(y) and σλ(i)(y2λ(y)) = y0, by Proposition 1, item 2. Then,
E(∪i≥0(σi(P(x0)∇P(y0)))) is the symmetric difference of

E(∪i≥0(σi(P(x0) ∪ P(y0)))) with the gluing cycles ∪i≥0 σ
i(C(x, y)).

Additional notation

For all i ≥ 0, the subpath σi(x1, . . . , σ5) of σi(P(x0)) is said to be reversed by σi(C(x, y)). Two glu-
ing cycles σi(C(x, y)) and σ j(C(x′, y′)) are compatible if they have no f -edges in common. They are
nested if the edge σi(y0, y1)) of σi(C(x, y)) belongs to the path reversed by σ j(C(x′, y′)) (see Figure 4).
They are interleaved if the f -edge σ j(x′0, x′1) of σ j(C(x′, y′)) belongs to the path that is reversed by
σi(C(i, j)).

Proposition 2. [1, Proposition 10] Let n ≥ 4. Let (x, y), (x′y′) ∈ Gn with [x] , [y], [x′] , [y′] and
{[x], [y]} , {[x′], [y′]}. Then, ∀0 ≤ i, j ∈ Z, σi(C(x, y)) and σ j(C(x′, y′)) are:

1. compatible;

2. interleaving⇔ i = j + 2 and x′ = ρ2(x);

3. nested⇔ i = j − 1 and x′ = ρ−1(y).

Figure 4. Two Nested 6-Cycles C(x, y) and C(x′, y′)

Item 3 here can be interpreted as follows: Starting at the tree x, pull an edge e towards the root to
reach the tree y =pull(x), then perform an inverse tree rotation x′ = ρ−1(y) which makes e pullable,
and pull it again to reach y′ =pull(x′). Thus, nested gluing cycles occur if and only if the same edge
of the underlying plane trees is pulled twice in succession.

Definition 6. For n ≥ 4, let Hn be the directed arc-labeled multigraph with vertex set PTn and such
that for each (x, y) ∈ Gn there is an arc labeled (x, y) from [x] to [y].

Some pairs of nodes inHn may be connected by multiple arcs similarly oriented but with different
labels, e.g. ([0011001101], [0101001101]) and ([0011010011], [0101010011]); oppositely oriented,
e.g. ([00101011], [01001011]) and ([00110101], [01010101]). There may be also loops in Hn, e.g.
([00101101], [01001101]).
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Figure 5. Pullable and Pushable Trees

Remark 6. Let T be a simple subgraph of Hn. Let G(T ) be the set of all arc labels of T . Since T
is simple, then [x] , [y], [x′] , [y′] and {[x], [y]} , {[x′], [y′]}, for all ([x], [y]), ([x′], [u′]) ∈ G(T ).
We say that G(T ) is interleaving-free or nesting-free, respectively, if there are no two gluing pairs
(x, y), (x′, y′) ∈ G(T ) such that the gluing cyclesσi(C(x, y)) andσ j(C(x′, y′)) are interleaved or nested
for any i, j ≥ 0.

Lemma 6. [1, Lemma 11] If for every (x, y) ∈ G(T ) the root of x is not a leaf, then G(T ) is
interleaving-free.

Pullable/pushable trees

Let T be a tree, let a, c ∈ V(T ) and let d(a, c) be the distance between a and c. Let pi(a, c) be the
i-th vertex in the path from a to c, (i = 0, 1, . . . , d(a, c)). In particular, p0(a, c) = 0 and pd(a,c)(a, c) = c.
(See Figure 5).

Let c, a ∈ V(T ), where a is a leaf of T and d(a, c) ≥ 2. Then a is pullable to c if p1(a, c) has no
neighbors between p2(a, c) and a in the clockwise ordering of neighbors. (This and the next concepts
differ from the couterclockwise stance in [1]). Also, a is pushable to c if p1(a, c) has no neighbors
between a and p2(a, c) in the clockwise ordering of neighbors.

Let d(a, c) ≥ 1. Then, a is pullable from c if d(a, c) ≥ 2 and p1(a, c) has at least one neighbor
between p2(a, c) and a in its clockwise ordering of neighbors or if c is not a leaf and d(a, c) = 1. Also,
a is pushable from c if d(a, c) ≥ 2 and p1(a, c) has at least one neighbor between a and p2(a, c) in its
clockwise ordering of neighbors or if c is not a leaf and d(a, c) = 1.

For odd n ≥ 5, consider the dumbbells dn := (01)
n−1

2 0(01)
n−1

2 1 and d′n := ρ2(dn) =
010(01)(n−1)/20(01)(n−3)/2. Each dumbbell has two centroids of degree n+1

2 , while all the remaining
vertices are leaves.

If T has just one centroid c, every c-subtree of T is said to be active. If T has two centroids c, c′,
every c-subtree except the one containing c′ and every c′-subtree except the one containing c are also
said to be active. For n ≥ 4, if T , [sn] and T , [dn] for odd n, then T has a centroid with an active
subtree that is not a single edge.

Lemma 7. [1, Lemma 12] Let c be a centroid of a plane tree T , let a be a leaf of T that is pullable
to c and that belongs to an active c-tree unless n ≥ 5 is odd with T = dn. Then, the rooted tree
x := x(T, c, a) = T (p2(a,c),p1(a,c)) is a pullable tree, the rooted tree y := pull(x) satisfies ϕ(y) = ϕ(x) − 1
and the leaf a is pushable from c in [y]. Moreover, the centroids of x and y are identical and contained
in the left subtrees of x and y, unless n ≥ 5 is odd with x = dn, in which case x has two centroids,
namely the roots of its left and right subtrees, and the root of the left subtree is the unique centroid of
y.
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Figure 6. Illustration of the Trees Q0, . . . , q9 in Thick Trace. Remaining Edges in Path
to Selected Centroid C in Thin/dashed Trace. Pull/push Operations Indicated in Non-
Gray/black Colors and Numbers. The Spanning Tree Tn Has Every Arc ([x], [y]) Labeled by
a Gluing Pair (x, y). The Rooted Trees x and y Are Obtained by Rooting the Plane Trees [x]
and [y] as Indicated by the Short Arrows, Thus Showing the Splitting of the Cyclic Ordering
of the Neighbors of Each Such Vertex to Get the Right-to-Left Ordering of the Children of
the Corresponding Root. Moreover, the Short Arrow at an [x] Has a Thick Shaft and That
of the Corresponding [y] a Thin Shaft. Every Arc and the Corresponding Two Short Arrows
Are Marked by the Same Integer. the Underlined Trees q1, . . . q5 and q7, q8 Are Treated by
Separate Rules in Step (T2)
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A leaf of T is thin if its unique neighbor in T has degree ≤ 2; otherwise, it is thick.

Lemma 8. [1, Lemma 13] Let c be a centroid of a plane tree T , let a be a thick leaf of T that is
pushable to c and that belongs to an active c-subtree unless n ≥ 5 is odd with T = [d′n]. Then,
the rooted tree y := y[T, c, a] := T (p1(a,c),a) is a pushable tree, the rooted tree x = push(y) satisfies
ϕ(x) = ϕ(y) − 1, and the leaf a is pushable from c in [y]. Moreover, the centroid(s) of x, y (is) are
identical and contained in the right subtrees of x, y, unless n ≥ 5 is odd with x = dn, in which case x
has two centroids, namely the roots of its left and right subtrees, and the leaf of its right subtree is the
unique centroid of y.

Definition 7. For n ≥ 4, let Tn be a subgraph of Hn such that: (a) for every T ∈ PTn with T , [sn],
and T , [dn] if n is odd, there is a centroid c of T with at least one active c-subtree C that is not
a single edge; the rightmost leaf of every such C is pullable to c; we fix one such leaf a; (b) If n
is odd and T = [dn], let c be one of its centroids with exactly one c-subtree C which is not a leaf,
namely the tree s(n+1)/2; the rightmost leaf of C is pullable to c. In both cases, let x := x(T, c, a) be the
corresponding pullable rooted tree as defined in Lemma 7 and define y := pull(x), yielding the gluing
pair (x, y) ∈ Gn. We let Tn be the spanning subgraph ofHn given by the union of arcs ([x], [y]) labeled
(x, y) for all gluing pairs (x, y) obtained this way. Ties between two centroids or multiple c-subtrees
are broken arbitrarily. For any arc (T,T ′), T ′ is an out-neighbor and T is an in-neighbor.

Lemma 9. [1, Lemma 14] For any n ≥ 4, Tn is a spanning tree ofHn, and for every arc (T,T ′) inHn,
ϕ(T ′) = ϕ(T ) − 1. Every plane tree T , [sn] has exactly one neighbor T ′ in Tn with ϕ(T ′) = ϕ(T ) − 1
which is an out-neighbor. Furthermore, G(Tn) is interleaving-free.

Definition 8. Consider a periodic path P = (x1, . . . , xk) in Mn. An integer sequence α = (a1, . . . , ak)
is a flip sequence if ai is the position at which xi+1 differs from xi, for each i ∈ [k − 1], and the vertex
xk+1 obtained from xk by flipping the bit at position ak satisfies ⟨xk+1⟩ = ⟨x1⟩. There is a unique integer
λ mod 2n + 1 given by the relation x1 = σ

λ(xk+1). Let λ(α) = λ be said to be the shift of α.

5. Initial Attempt at Proving Theorem 1

Scaling trick

[1] presents a scaling trick consisting in the construction of a flip sequence α0 for one particular
shift s coprime to 2n + 1. From such a shift s, a transformation Υ yields every shift s′ coprime to
2n + 1, where Υ consists in multiplying all entries of α0 by s−1s′ mod 2n + 1, with s−1 equal to the
multiplicative inverse of s.

Define rev(P) := (x1, σ
λ(α)(xk, xk−1, . . . , x2)) and rev(α) := (ak, ak−1, . . . , a1) − λ(α), with indices

taken mod 2n+1. Note that rev(α) is a flip sequence for the periodic path rev(P) satisfying λ(rev(α)) =
−λ(α).

Define mov(P) := (x2, . . . , xk, σ
−λ(α)(x1)) and mov(α) := (a2, . . . , ak, a1 + λ(α)), this being a flip

sequence for the periodic path mov(P) satisfying λ(mov(α)) = λ(α), which means that the shift is
independent of the choice of the starting vertex along the path. Similarly, α + i is a flip sequence for
σ−i(P) satisfying λ(α + i) = λ(α), ∀i ∈ Z.

For any x ∈ V(Mn), let α(x) be the sequence of positions at which f i+1(x) differs from f i(x),
∀i = 0, . . . , κ(x) − 1. Clearly, α(x) is a flip sequence for P(x) (Definition 5). By Proposition 1 item 2,
λ(α(x)) = λ(t(x)).

For any subtree T of Hn with G := G(T ) interleaving-free as in Remark 6, define the set of
necklaces N(T ) := ∪[x]∈T ⟨P(0x)⟩. By Proposition 1 item 1, this is the set of necklaces visited by
those cycles ⟨P(0x)⟩ in Nn for which [x] ∈ T .

For any z ∈ N(T ) and any x ∈ z, there is a pairPG(X) = {P, P′} of two periodic paths P and P′, both
starting at x ∈ V(Mn) with flip sequences α(P) and α(P′) such that P′ =rev(P) and α(P′) =rev(α(P)).

Ars Combinatoria Volume 160, 37–57



An alternate form of Merino-Mička-Mütze’s solution 49

Figure 7. Illustration of the Spanning Trees T4,T5,T6. The Subgraphs S1,S2 ⊆ Tn with all
Plane Trees that have One and Two Centroids, Respectively, are Highlighted. Centroid(s)
are Marked Red and Black, with each Red Centroid as Selected in Step (T1). Plane Trees
Are Arranged in Levels According to Their Potential, Which is Shown on the Left Side. the
Arrow Markings Are as in Figure 6

Moreover, ⟨P⟩ and ⟨P′⟩ are oppositely oriented in the subgraph of Nn whose vertex set is N(T ).
The node set of Tn is PTn. By Lemma 9, G(Tn) is interleaving-free. Fix x1 := 0n+11n ∈ V(Mn).

The pair PG(Tn)(x1) contains a periodic path P with starting vertex x1 and second vertex f (x1) in Mn

such that ⟨P⟩ has vertex set N(Tn) = ∪[x]∈PTn⟨P(0x)⟩ = {⟨x⟩|x ∈ V(Mn)}, i.e. ⟨P⟩ is Hamilton cycle in
Nn. The corresponding flip sequence α(P) has a shift

λ(α(P)) =
∑

T∈PTn

γT .λ(T ), (3)

for numbers γT ∈ {1,−1} that are determined by which gluing cycles encoded by Tn are nested.
With s := λ(α(P)), define α0 := α(P) and αi := α0 + i.s, for i ∈ [2n]. If we apply the entire flip

sequence (α0, α1, . . . , α2n) to x1 in Mn, then the vertex σi.s(x1) is reached after applying all flips in
(α0, α1, . . . , αi−1), ∀i ∈ [2n + 1]. If s and 2n + 1 are coprime, then x1 is reached only after applying
the entire flip sequence. Since α0 is the flip sequence of the Hamilton cycle ⟨P⟩ in Nn, the resulting
sequence of bitstrings is a Hamilton cycle in Mn. However, this approach requires that s = λ(α(P))
and 2n + 1 be coprime. A technique is needed to modify α(P) into another flip sequence α′ such that
s′ := λ(α′) is coprime to 2n + 1.

Switches and their shifts

Let p(x, y) indicate a pair x, y ∈ V(Mn) that differ in just one position. A triple of vertices τ =
(x, y, y′), where x ∈ An, {y, y′} ⊆ Bn and y , y′, is a switch if x differs from y, (resp. y′) in a
single bit, and ⟨y⟩ = ⟨y′⟩. In Nn, a switch may be considered as a multiedge (⟨x⟩, ⟨y⟩) = (⟨x⟩, ⟨y′⟩).
The shift of a switch τ = (x, y, y′), denoted λ(τ), is the integer i such that y = σi(y′). Denote a
switch τ = (x, y, y′) compactly by writing x with the 0-bit at position p(x, y) underlined and the 0-bit
at position p(x, y′) overlined. This way, we write τ = (0000111, 1000111, 0001111) = 0000111.
For any switch τ = (x, y, y′), the inverted switch τ−1 = (x, y′, y) has shift λ(τ−1) = −λ(τ). Clearly,
cyclically rotating a switch yields another switch with the same shift. Also, reversing a switch yields
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another switch with the negated shift. For example, σ(τ) = 1100001 has shift 1 while its reversed
switch 1000011 has shift −1.

Consider a flip sequence α = (a1, . . . , ak) with shift λ(α) for a periodic path P = (x1, . . . , xk) and
let xk+1 be the vertex obtained from xk by flipping the bit at position ak. If (xi, xi+1) = (x, y) for some
i ∈ [k], then the modified flip sequence

α′ = (a1, . . . , ai−1, p(x, y′), ai+1 + λ(τ), . . . , ak + λ(τ)) (4)

yields a periodic path P′ = (x′1, . . . , x
′
k) that visits necklaces in the same order as does P, i.e. ⟨xi⟩ =

⟨x′i⟩, for i ∈ [ak], and λ(α′) = λ(α) + λ(τ). The situation where (xi, xi+1) = (x, y′) is symmetric and
considers the inverted switch τ−1, with λ(τ−1) = −λ(τ).

Similarly, if (xi, xi+1) = (y′, x) for some i ∈ [k], then the modified sequence

α′ := (a1, . . . , ai−1, p(x, y) + λ(τ), ai+1 + λ(τ), . . . , ak + λ(τ)) (5)

produces a periodic path P′ = (x′1, . . . , x
′
k) that visits necklaces in the same order as P, and λ(α′) =

λ(α) + λ(τ). The situation (xi, xi+1) = (y, x) is symmetric and goes to the inverted switch τ−1, with
λ(τ−1) = −λ(τ).

In particular, if ⟨P⟩ is a Hamilton cycle in Nn, then ⟨P′⟩ is also a Hamilton cycle in Nn with shift
λ(α′) = λ(α) + λ(τ).

Construction of switches out of τn,1 = 00n−101n, with λ(τ) = 1

For any integers n ≥ 1, d ≥ 1 and 1 ≤ s ≤ d, make the (s, d)-orbit to be the maximal prefix of
the sequence s + id, i ≥ 0, modulo 2n + 1, in which all the numbers are distinct. Then, the number
of distinct (s, d)-orbits for fixed d and s ≥ 1 is nd :=gcd(2n + 1, d), and the length of each orbit is
ℓd := 2n+1

nd
, where both nd and ℓd are odd. For example, let n = 10 and d = 6, so nd = 3, ℓd = 7 and

the (1, 6)-orbit is (1, 7, 13, 19, 4, 10, 16), the (2, 6)-orbit is (2, 8, 14, 20, 5, 11, 17) and the (3, 6)-orbit is
(3, 9, 15, 21, 6, 12, 18).

For any integer d (2 ≤ d ≤ n) that is coprime to 2n + 1, let τn,d denote the sequence whose entries
at the positions given by the (1, d)-orbit equal τn,1 = 00n−101n, including the overlined and underlined
entries.

For any n ≥ 1, let Zn be the set of bitstrings of length 2n and weight n. For any integers d
(3 ≤ d ≤ n) not coprime to 2n + 1, select an arbitrary bitstring z = (z2, . . . , znd ) ∈ Z(nd−1)/2. Let τn,d,z be
the sequence: (a) whose entries at the positions given by the (1, d)-orbit form the sequence τ(ℓd−1)/2,1,
including the underlined and overlined entries, and (b) for j = 2, . . . , nd, all entries at the positions
given by the ( j, d)-orbit form the sequence z j. Then, the number of choices for z in such a construction
is
(

nd−1
(nd−1)/2

)
.

Lemma 10. [1, Lemma 15] Let n ≥ 1. For any integer d (1 ≤ d ≤ n) coprime to 2n+ 1, the sequence
τn,d is a switch with λ(τn,d) = d. For any integer 3 ≤ d ≤ n not coprime to 2n + 1 and any bitstring
z ∈ Z(nd−1)/2, the sequence τd,n,z is a switch with λ(τd,n,z) = d.

Interactions

Given a flip bijection f of V(Mn) as in Section 3, a switch τ = τ(x, y, y′) is said to be f -conformal
if either y = f (x) or x = f (y′); in such cases, (x, y) or (y′, x), respectively, is said to be the f -edge of τ.
We say that τ is f −1-conformal if τ−1 is conformal and we refer to the f -edge of τ−1 also as an f -edge
of τ. That a switch is f -conformal means that its f -edge belongs to a periodic path, as in Definition 5.
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Given a subset G ⊆ Gn, an f -conformal or f −1-conformal switch τ is usable with respect to G if
for every (x′, y′) ∈ G and all i ≥ 0, the three f -edges of σi(C(x′, y′)) in Remark 5 are distinct from the
f -edges of τ. Those three f -edges are removed when joining periodic paths.

Lemma 11. [1, Lemma 16] Let τ = (x, y, y′) be an f −1-conformal switch with f -edge (y, x) for which
t(x) = 00 . . .. Then τ is usable with respect to any subset G ⊆ Gn.

Lemma 12. [1, Lemma 17] Let n ≥ 4. The switch τn,1 =: (x, y, y′) = 00n−101n, where x ∈ An and
y ∈ Bn differ in the first bit, has f -edge (y, x) and is f −1-conformal. The switch τn,2 =: 00(01)n−1 =

(x, y, y′) = 001(01)n−1, where x ∈ An and y′ ∈ Bn differ in the first bit, has f -edge (y′, x) and is
f -conformal. Both switches are usable with respect to any subset G ⊆ Gn.

Lemma 13. [1, Lemma 18] Let n ≥ 11 and let 3 ≤ c, d ∈ Z be such that c.d = 2n + 1. The switch
τn,d,z =: (x, y, y′) = z0(z0)(c−3)/2z0(z1)(c−1)/2, where z := 0(d−1)/21(d−1)/2 ∈ Z(d−1)/2 has f -edge (y, x) and
is f −1-conformal and usable with respect to G(Tn).

Number theory

Let n ≥ 1. Let P(n) be the set of prime factors of n. For any s ∈ {0, 1, . . . , n − 1}, define
P(n, s) := P(n) \ P(s), if s > 0, and P(n, 0) := ∅.

Lemma 14. [1, Lemma 19] Let n ≥ 1 be such that 2n+ 1 is not a prime power. Let s ∈ {0, . . . , n− 1}
be not coprime to 2n + 1. If P(2n + 1, s) , ∅, then both numbers s + d and s − d, where d := Π{p ∈
P(2n + 1, s)}, are coprime to 2n + 1. If P(2n + 1, s) = ∅, then P(2n + 1, s + d) = P(2n + 1, s − d) =
P(2n + 1)) \ {d} , ∅, for any d ∈ P(2n + 1).

Lemma 15. [1, Lemma 20] Let n be an integer such that 4 ≤ n ≤ 10 and let s ∈ {0, . . . , 2n} be
not coprime to 2n + 1. Then, both numbers in at least one of the pairs {s − 1, s + 1}, (s − 2, s + 2},
{s − 1, s + 2}, {s + 1, s − 2} are coprime to 2n + 1.

6. Sketch of Proof of Theorem 1

Proof. Theorem 1 is established via the scaling trick (Section 5) for each n ≥ 1 and any value of s
coprime to 2n+ 1. For n = 1, via flip sequence α := 32 starting at x1 = 001 and yielding shift s = −1;
for n = 2, via flip sequence α = 1531 starting at 00011 and yielding shift s = 1; for k = 3, via flip
sequence 2635426753 starting at 0000111 and yielding s = −1.

Assume n ≥ 4. Consider the spanning tree Tn ⊆ Hn (Definition 7). In Section 5, a periodic path P
is defined with starting vertex x1 = 0n+11n and second vertex f (x1) in Mn such that ⟨P⟩ is a Hamilton
cycle in Nn and the shift of the corresponding flip sequence α(P) is given by (3). Denote this shift by
s := λ(α(P)). If s is coprime to 2n + 1, we are done. Let us consider the case s not coprime to 2n + 1.

If 4 ≤ n ≤ 10, consider the switches τn,1 and τn,2, which are f −1- and f -conformal, respectively,
both usable with respect to G(Tn) by Lemma 12. By Lemma 10, their shifts are λ(τn,1) = 1 and
λ(τn,2) = 2, respectively. Consequently, by modifying the flip sequence α(P) to become like α′ in (4)
via one of the two, or both, switches, we obtain a flip sequence α′ with shift

s′ := λ(α′) = s + χ1.γ1 + χ2.γ2.2, (6)

for certain signs γ1, γ2 ∈ {1,−1} and with indicators χ1, χ2 ∈ {0, 1} that are nonzero if the correspond-
ing switches are employed.

If n ≥ 11, we distinguish 3 cases: If 2n+ 1 is prime power, then s is also power of the same prime.
Apply the switch τn,1 as above, modifying α(P) so that the resulting flip sequence α′ has shift

s′ := λ(α′) + γ1.1, (7)
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for some γ1 ∈ {−1, 1}, with s′ = s ± 1 coprime to 2n + 1.
If 2n + 1 is not a prime power and P(2n + 1, s) , ∅, we define d := Π{p ∈ P(2n + 1, s)} and

c := 2n+1
d , and consider the switch τn,d,z from Lemma 13, modifying the flip sequence α(P) so that the

resulting α′ has shift

s′ := λ(α′) = s + γd.d. (8)

If 2n + 1 is not a prime power and P(2n + 1, s) = ∅, then we pick some d ∈ P(2n + 1), define
c = 2n+1

d and apply switch τn,d,z, yielding a flip sequence α′ with shift s′ given as above, which satisfies
P(2n+1, z) , ∅ by the last sentence of Lemma 14. We then modify the flip sequence a second time as
in the previous case, and the switch used is distinct from the first one, as d′ := Π{p ∈ P(2n+1, s±d)} =
Π{p ∈ P(2n + 1) \ {d}} clearly satisfies d′ , d. □

The switches τn,1 and τn,2 are not sufficient alone for the proof of Theorem 1, starting with n = 52
and 2n + 1 = 105 = 35̇7̇ and s = 5, for which none of the three numbers s − 2 = 3, s + 1 = 6 and
s + 2 = 7 is coprime to 2n + 1, so Lemma 15 cannot be applied and it is necessary to use switches
τn,s,z.

Remark 7. If we knew that G(Tn) is not only interleaving-free, but also nesting-free, then this would
guarantee that all signs γT in (3) are positive, yielding

s = λ(α(P)) =
∑

T∈Tm

λ(T ) = Cn. (9)

Following [1] with the stance of [3], we define now another spanning tree Tn of Hn such that G(Tn)
is both interleaving-free and nesting-free.

7. Efficient Computation: Redefinition of Tn

In [1], ten rooted trees are distinguished, that in our alternate viewpoint are expressed as:

q0 := 01, q1 := 0011, q2 := 001011, q3 := 00100111,
q4 := 00101011, q5 := 0010010111, q6 := 0010100111, q7 := 0001100111,
q8 := 00011010111, q9 := 0010101011.

(10)

For n ≥ 4, let Tn be a subgraph ofHn given as follows: For each plane tree T ∈ PTn with T , [sn],
consider a gluing pair (x, y) ∈ Gn with either T = [x] or T = [y]. Let Tn be the spanning subgraph of
Hn given by the union of the arcs ([x], [y]), labeled (x, y), for all gluing pairs (x, y) obtained this way.
The definition of the gluing pair (x, y) for a given plane tree T , [sn] proceeds as in the following
three steps (T1)-(T3), unless n is odd and T = [dn], in which case the special rule (D) is applied.

(D) Dumbbell rule

If n is odd and T = [dn], let c be one of the centroids of T having exactly one c-subtree that is not
a single edge, namely the subtree s(n+1)/2. Its leftmost leaf a is thick and pushable to c in T , so we
define y := y(T, c, a) = d′n and x := push(y), as in Lemma 8.

(T1) Fix the centroid and subtree ordering

If T has two centroids, we let c be a centroid of T whose active c-subtrees are not all single edges.
If this is true for both centroids, we let c be the one for which its clockwise-ordered active c-subtrees
t1, . . . , tk give the lexicographically minimal string (t1, . . . , tk), with t1 as the first c-subtree found after
the c-subtree containing the other centroid.
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If T has a unique centroid, we denote it by c and consider all c-subtrees of T , denoting them
t1, . . . , tk, i.e. T = [(t1, . . . , tk)] such that among all possible clockwise orderings around c, the string
(t1, . . . , tk) is lexicographically minimal.

(T2) Select c-subtree of T

If T has two centroids, we let ti′ be the first of the trees t1, . . . , tk that differs from q0, in display
(10).

If T has a unique centroid, then for each of the following conditions (i)-(iv), we consider all trees
ti (i ∈ [k]) and determine the first subtree ti satisfying the condition, i.e. only check one of these
conditions once all trees failed all previous conditions:

(i) ti = q1 and ti−1 = q0;

(ii) ti ∈ {q2, q4} and ti+1 ∈ {q0, q1, q2};

(iii) ti < {q0, q1, q2, q4};

(iv) ti , q0.

Conditions (i) and (ii) refer to the previous tree ti−1 and the next tree ti+1 in the clockwise ordering of
c-subtrees, and those indices are considered modulo k. Note that T , [sn]. Thus, at least one c-subtree
is not q0 and satisfies condition (iv), so this rule to determine ti is well defined. Let ti′ be the c-subtree
determined in this way. Clearly, ti′ has at least two edges.

(T3) Select a leaf to push/pull

If ti′ = 0lq j1l, for some l ≥ 0 and j ∈ {1, . . . , 8}, i.e. ti′ is a path with one of the trees q j attached to
it. Then, four cases are distinguished:

(q137) If j ∈ {1, 3, 7}, let a be the rightmost leaf of ti′ , which is thin, and define x := x(T, c, a) and
y := pull(x), as in Lemma 7. Clearly, ( j = 1) ⇒ (y = 0l−1q21l−1, if l > 0, and y = q2

0, if l = 0);
also, ( j = 3)⇒ (y = 0lq41l); and ( j = 7)⇒ (t = 0lq81l).

(q24) If j ∈ {2, 4}, let a be the leftmost leaf of ti′ , which is thick, and define y := y(T, c, a) and
x := push(y), as in Lemma 8. Clearly, ( j = 2)⇒ (x = 0l−1q31l−1, if l > 0, and x = q2q0, if l = 0);
also, ( j = 4)⇒ (x = 0l−1q51l−1, if l > 0, and x = q2q0, if l = 0).

(q5) If j = 5, let a be the unique leaf of ti′ that is neither the rightmost nor the leftmost leaf of ti′ ,
where a is thick, and define y := y(T, c, a) and y = push(x), as in Lemma 8. Clearly, x = 0lq61l.

(q8) If j = 8, let a be the leftmost leaf of ti′ , which is thin, and define x := x(T, c, a) and y := pull(x),
as in Lemma 7. Clearly, y = 0lq01l.

Otherwise, there are three cases to be distinguished:

(e) If the potential ϕ(T ) = ϕ(c) is even, we let a be the rightmost leaf of ti′ and define x := x(T, c, a)
and y = pull(x), as in Lemma 7.

(o1) If the potential ϕ(T ) = ϕ(c) is odd and the leftmost leaf a of ti′ is thin, define x := x(T, c, a) and
y := pull(y), as in Lemma 7.

(o2) If the potential ϕ(T ) = ϕ(c) is odd and the leftmost leaf a of ti′ is thick, define y := y(T, c, a) and
x := push(y), as in Lemma 8.
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Figure 8. Illustration of the Spanning Tree T7
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This completes the definition of Tn. [1] refers to rules (q137), (q8), (e) and (o1) in step (T3) as pull
rules and to rules (q24), (q5) and (o2) as push rules. The leaf to which one of the pull rules (q137),
(q8) or (o1) is applied is always thin, whereas the leaf to which any push rule is applied is always
thick.

Lemma 16. [1, Lemma 21] If T has a unique centroid c, then the c-subtree ti′ selected in Step (T2)
satisfies the following conditions:

1. If ti′ = q1, then ti′−1 = q0 or t1 = t2 = · · · = tk = q1.

2. If ti′ =∈ {q2, q4}, then ti′+1 ∈ {q0, q1, q2} or t1 = t2 = · · · = tk = q4.

Lemma 17. [1, Lemma 22] For any n ≥ 4, the graph Tn is a spanning tree of Hn. For every arc
(T,T ′) in Tn, either ϕ(T ′) = ϕ(T ) − 1 or ϕ(T ) = ϕ(T ′) − 1. Every plane tree T , [sn] has exactly one
neighbor T ′ in Tn with ϕ(T ′) = ϕ(T ) − 1 which is either an out-neighbor or in-neighbor. Moreover,
G(Tn) is interleaving-free and nesting-free.

Illustrations for the spanning trees Ti for i = 4, 5, 6, 7 are in Figures 7-8, the versions of [1, Figures
15-16] for the alternate viewpoint in this survey.

Interaction with switches

Assume G ⊆ Gn is nesting-free. A usable switch τ is reversed if the f -edge of τ lies on the
reversed path of one of the gluing cycles σi(C(x′, y′)), (x′, y′) ∈ G, for some i ≥ 0, i.e. on the path
σi(x′1, . . . , x′5).

Lemma 18. [1, Lemma 23] Let Tn be the spanning tree ofHn of Section 7. For n ≥ 4, the switch τn,1

is reversed with respect to G(Tn) and the switch τn,2 is not reversed with respect to any set of gluing
pairs G ⊆ Gn. For n, d, z as in Lemma 13, the switch τn,d,z is usable and not reversed with respect to
G(Tn).

8. Sketch of Proof of Algorithmic Theorem 2

The algorithm in Theorem 2 is a faithful implementation of the constructive proof of Theorem 1
sketched in Section 6 which also works with the spanning tree Tn of Section 7. In particular, the
switch τn,d,z is usable by Lemma 18. The effective shifts of the switches τn,1, τn,2 and τn,d,z used in the
proof, i.e. the signs γ1, γ2 and γd in displays (6)-(8), can now be computed explicitly. Specifically,
from Lemmas 12, 13 and 18, it is obtained:

γ1 = (−1)(−1) = +1, γ2 = (+1)(+1) = (+1), γd = (−1)(+1) = −1. (11)

In each product in (11), the first factor is −1 if and only if the switch is f −1-conformal and the second
factor is −1 if and only if the switch is reversed.

Proof. The input of the algorithm is the integer n ≥ 1, the initial combination x′ and the desired shift
s̄ coprime to 2n+ 1. Then, Cn mod 2n+ 1 is computed in O(n2) time via Segner’s recurrence relation,
namely

C0 = 1 and Cn+1 =

n∑
i=0

CiCn−i.

By (9), this yields the shift s of the flip sequence obtained from gluing without modifications. A
test of whether s is coprime to 2n + 1 proceeds, followed by the computation of one or two switches
such that the shift s′ of the modified flip sequence s′, via (6)-(8) and (11), is coprime to 2n + 1. In
particular, the definition of d in (8) involves computing the prime factorization of 2n + 1. From s′,
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the scaling factor (s′)−1 s̄ is computed as well as the corresponding initial combination x, such that
x′ is obtained from x by permuting columns according to the rule i 7→ (s′)−1 s̄i (applying the inverse
permutation). These remaining initial steps can be performed in O(n) time. All further computations
are then performed with x, and whenever a flip position is computed for x, it is scaled by (s′)−1 s̄,
before applying it to x′.

To decide whether to perform an f -step or a pull/push step, the following computations are per-
formed on the current plane tree T = [t(x)], following steps (T1)-)(T3), Section 7:

1. compute a centroid c of T and its potencial ϕ(c), as in (T1), in time O(n) (see [16]);

2. compute the lexicographic subtree ordering, as in (T1), in time O(n); if the centroid is unique,
this is done via Booth’s algorithm [17]; specifically, to compute the lexicographically smallest
clockwise (differing from ccw in [1]) ordering (t1, . . . , tk) of the c-subtrees of T , insert −1’s as
separators between the bitstrings ti; this takes to the string z := (−1, t1,−1, , . . . ,−1, tk); such
trick makes Booth’s algorithm return a cyclic rotation of z that starts with -1; it follows that such
rotation is also the one minimizing the cyclic subtree ordering (t1, . . . , tk);

3. compute a c-subtree of T and one of its leaves, as in steps (T2)-(T3), Section 7.

Overall, the decision of which type of step to perform next takes time O(n) to compute. Whenever a
switch appears in the course of the algorithm, detectable in time O(n), a modified flip as in (4)-(5) is
performed. Each time this occurs, the position ℓ(c) has to be recomputed, with T = [t(x)] unchanged.

In sum, the algorithm runs in time O(n) in each step, using O(n) memory all the time, and it
requires time O(n2) for initialization. □
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